forked from omaralvarez/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imageNet.cu
100 lines (68 loc) · 3.02 KB
/
imageNet.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
* http://github.com/dusty-nv/jetson-inference
*/
#include "cudaUtility.h"
// gpuPreImageNet
__global__ void gpuPreImageNet( float2 scale, float4* input, int iWidth, float* output, int oWidth, int oHeight )
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int n = oWidth * oHeight;
if( x >= oWidth || y >= oHeight )
return;
const int dx = ((float)x * scale.x);
const int dy = ((float)y * scale.y);
const float4 px = input[ dy * iWidth + dx ];
const float3 bgr = make_float3(px.z, px.y, px.x);
output[n * 0 + y * oWidth + x] = bgr.x;
output[n * 1 + y * oWidth + x] = bgr.y;
output[n * 2 + y * oWidth + x] = bgr.z;
}
// cudaPreImageNet
cudaError_t cudaPreImageNet( float4* input, size_t inputWidth, size_t inputHeight,
float* output, size_t outputWidth, size_t outputHeight )
{
if( !input || !output )
return cudaErrorInvalidDevicePointer;
if( inputWidth == 0 || outputWidth == 0 || inputHeight == 0 || outputHeight == 0 )
return cudaErrorInvalidValue;
const float2 scale = make_float2( float(inputWidth) / float(outputWidth),
float(inputHeight) / float(outputHeight) );
// launch kernel
const dim3 blockDim(8, 8);
const dim3 gridDim(iDivUp(outputWidth,blockDim.x), iDivUp(outputHeight,blockDim.y));
gpuPreImageNet<<<gridDim, blockDim>>>(scale, input, inputWidth, output, outputWidth, outputHeight);
return CUDA(cudaGetLastError());
}
// gpuPreImageNetMean
__global__ void gpuPreImageNetMean( float2 scale, float4* input, int iWidth, float* output, int oWidth, int oHeight, float3 mean_value )
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int n = oWidth * oHeight;
if( x >= oWidth || y >= oHeight )
return;
const int dx = ((float)x * scale.x);
const int dy = ((float)y * scale.y);
const float4 px = input[ dy * iWidth + dx ];
const float3 bgr = make_float3(px.z - mean_value.x, px.y - mean_value.y, px.x - mean_value.z);
output[n * 0 + y * oWidth + x] = bgr.x;
output[n * 1 + y * oWidth + x] = bgr.y;
output[n * 2 + y * oWidth + x] = bgr.z;
}
// cudaPreImageNetMean
cudaError_t cudaPreImageNetMean( float4* input, size_t inputWidth, size_t inputHeight,
float* output, size_t outputWidth, size_t outputHeight, const float3& mean_value )
{
if( !input || !output )
return cudaErrorInvalidDevicePointer;
if( inputWidth == 0 || outputWidth == 0 || inputHeight == 0 || outputHeight == 0 )
return cudaErrorInvalidValue;
const float2 scale = make_float2( float(inputWidth) / float(outputWidth),
float(inputHeight) / float(outputHeight) );
// launch kernel
const dim3 blockDim(8, 8);
const dim3 gridDim(iDivUp(outputWidth,blockDim.x), iDivUp(outputHeight,blockDim.y));
gpuPreImageNetMean<<<gridDim, blockDim>>>(scale, input, inputWidth, output, outputWidth, outputHeight, mean_value);
return CUDA(cudaGetLastError());
}