-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile
220 lines (179 loc) · 5.98 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
ARG UBUNTU_VERSION=18.04
ARG ARCH=
ARG CUDA=10.0
FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
# ARCH and CUDA are specified again because the FROM directive resets ARGs
# (but their default value is retained if set previously)
ARG ARCH
ARG CUDA
ARG CUDNN=7.6.2.24-1
# Needed for string substitution
SHELL ["/bin/bash", "-c"]
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
cuda-command-line-tools-${CUDA/./-} \
cuda-cublas-${CUDA/./-} \
cuda-cufft-${CUDA/./-} \
cuda-curand-${CUDA/./-} \
cuda-cusolver-${CUDA/./-} \
cuda-cusparse-${CUDA/./-} \
curl \
libcudnn7=${CUDNN}+cuda${CUDA} \
libfreetype6-dev \
libhdf5-serial-dev \
libzmq3-dev \
pkg-config \
software-properties-common \
unzip
RUN [ ${ARCH} = ppc64le ] || (apt-get update && \
apt-get install -y --no-install-recommends libnvinfer5=5.1.5-1+cuda${CUDA} \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*)
# For CUDA profiling, TensorFlow requires CUPTI.
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
# dynamic linker run-time bindings .................................
RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1 \
&& echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf \
&& echo "/usr/local/cuda/extras/CUPTI/lib64" > /etc/ld.so.conf.d/cupti.conf \
&& ldconfig
ARG USE_PYTHON_3_NOT_2
ARG _PY_SUFFIX=${USE_PYTHON_3_NOT_2:+3}
ARG PYTHON=python${_PY_SUFFIX}
ARG PIP=pip${_PY_SUFFIX}
# See http://bugs.python.org/issue19846
ENV LANG C.UTF-8
RUN apt-get update && apt-get install -y \
${PYTHON} \
${PYTHON}-pip
RUN ${PIP} --no-cache-dir install --upgrade \
pip \
setuptools
# Some TF tools expect a "python" binary
RUN ln -s $(which ${PYTHON}) /usr/local/bin/python
# settings:
# tensorflow
# tensorflow-gpu
# tf-nightly
# tf-nightly-gpu
# Set --build-arg TF_PACKAGE_VERSION=1.11.0rc0 to install a specific version.
# Installs the latest version by default.
ARG TF_PACKAGE=tensorflow-gpu
ARG TF_PACKAGE_VERSION=
RUN ${PIP} install ${TF_PACKAGE}${TF_PACKAGE_VERSION:+==${TF_PACKAGE_VERSION}}
# COPY bashrc /etc/bash.bashrc
# RUN chmod a+rwx /etc/bash.bashrc
# nvidia-container-runtime
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility
ENV NVIDIA_REQUIRE_CUDA "cuda>=10.1 brand=tesla,driver>=384,driver<385 brand=tesla,driver>=396,driver<397 brand=tesla,driver>=410,driver<411"
# ARG cuda_version=10.0
# ARG cudnn_version=7.4
# FROM nvidia/cuda:${cuda_version}-cudnn${cudnn_version}-devel
MAINTAINER thisgithub
# Install system packages
RUN apt-get update && apt-get install -y --no-install-recommends \
bzip2 \
g++ \
git \
graphviz \
libgl1-mesa-glx \
libhdf5-dev \
openmpi-bin \
wget && \
rm -rf /var/lib/apt/lists/*
# Install conda
ENV CONDA_DIR /opt/conda
ENV PATH $CONDA_DIR/bin:$PATH
RUN wget --quiet --no-check-certificate https://repo.continuum.io/miniconda/Miniconda3-4.2.12-Linux-x86_64.sh && \
echo "c59b3dd3cad550ac7596e0d599b91e75d88826db132e4146030ef471bb434e9a *Miniconda3-4.2.12-Linux-x86_64.sh" | sha256sum -c - && \
/bin/bash /Miniconda3-4.2.12-Linux-x86_64.sh -f -b -p $CONDA_DIR && \
rm Miniconda3-4.2.12-Linux-x86_64.sh && \
echo export PATH=$CONDA_DIR/bin:'$PATH' > /etc/profile.d/conda.sh
# Install Python packages and keras
ENV NB_USER keras
ENV NB_UID 1000
RUN useradd -m -s /bin/bash -N -u $NB_UID $NB_USER && \
chown $NB_USER $CONDA_DIR -R && \
mkdir -p /src && \
chown $NB_USER /src
# USER $NB_USER
USER root
ARG python_version=3.6
RUN conda config --append channels conda-forge
# Install git, wget, python-dev, pip, BLAS + LAPACK and other dependencies
# RUN apt-get update && apt-get install -y \
# gfortran \
# liblapack-dev \
# libopenblas-dev \
# python-dev \
# python-tk\
# git \
# curl \
# emacs24
ENV PATH /opt/conda/bin:$PATH
ENV PATH /opt/conda/envs/idp/bin:$PATH
RUN conda update conda
RUN conda config --add channels intel
RUN conda create -n idp intelpython3_full python=3
# RUN echo "source activate idp" > ~/.bashrc
# RUN echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc
# Install miniconda to /miniconda
# RUN curl -LO http://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh
# RUN bash Miniconda-latest-Linux-x86_64.sh -p /miniconda -b
# RUN rm /Miniconda-latest-Linux-x86_64.sh
# ENV PATH=/opt/conda/bin:${PATH}
# ENV PATH=/miniconda/envs/idp/bin:$PATH
# RUN conda remove -n tensorflow
# ARG python_version=3.6
RUN conda config --append channels conda-forge
RUN conda install -y python=${python_version} && \
# pip install --upgrade pip && \
pip install \
sklearn_pandas \
h5py \
MedPy \
nibabel \
Keras \
numpy \
scipy \
Pillow \
click \
tensorflow-gpu && \
conda install \
bcolz \
h5py \
matplotlib \
mkl \
nose \
notebook \
pandas \
pydot \
pygpu \
pyyaml \
scikit-learn \
six \
theano \
pygpu \
mkdocs \
&& \
git clone git://github.com/keras-team/keras.git /src && pip install -e /src[tests] && \
pip install git+git://github.com/keras-team/keras.git && \
conda clean -yt
# create a docker user
RUN useradd -ms /bin/bash docker
ENV HOME /home/docker
# copy necessary files to container
RUN mkdir $HOME/src
ENV PATH=/$HOME/src:${PATH}
ADD __init__.py $HOME/src/
ADD CNN_Longitudinal_CrossSectional_GUI.py $HOME/src/
ADD training_script_Cross_Sectional.py $HOME/src/
ADD training_script_Longitudinal.py $HOME/src/
ADD libs $HOME/src/libs
ADD sources $HOME/src/sources
ADD images $HOME/src/images
ADD tensorboardlogs $HOME/src/
USER docker
WORKDIR $HOME/src