From d0bd37e56f9fd8371a194098c77fb1c091734772 Mon Sep 17 00:00:00 2001 From: Khashayar Neshat <111620549+kneshat@users.noreply.github.com> Date: Wed, 24 Jul 2024 23:12:35 -0700 Subject: [PATCH] Delete examples/ex_SL(2,3).jl --- examples/ex_SL(2,3).jl | 35 ----------------------------------- 1 file changed, 35 deletions(-) delete mode 100644 examples/ex_SL(2,3).jl diff --git a/examples/ex_SL(2,3).jl b/examples/ex_SL(2,3).jl deleted file mode 100644 index 59b905e..0000000 --- a/examples/ex_SL(2,3).jl +++ /dev/null @@ -1,35 +0,0 @@ -using SymbolicWedderburn -using PermutationGroups -import SymbolicWedderburn as SW - - -# Constructing SL(2,3) or binary tetrahedral group as a permutation group of 8 elements -gen1 = perm"(1,2,3,4)(5,6,7,8)" -gen2 = perm"(1,7,3,5)(2,6,4,8)" -gen3 = perm"(2,6,7)(4,8,5)" -MyGroup = PermGroup([gen1, gen2, gen3]) # SL(2,3) - -# Compute the character table -tbl = SW.CharacterTable(Rational{Int}, MyGroup) - -# Get irreducible characters -irreducible_chars = irreducible_characters(tbl) - -# Define multiplicities (for simplicity, use twos, it should be even for the quaternion case) -multiplicities = fill(2, length(irreducible_chars)) - -# Get real irreducible characters and their multiplicities -real_irreps, real_mults = SW.affordable_real(irreducible_chars, multiplicities) -# Print the Frobinus-Schur indicator of each complex irrep -using SymbolicWedderburn.Characters -for (i, χ) in enumerate(irreducible_characters(tbl)) - fs_indicator = Characters.frobenius_schur(χ) - println("Frobenius-Schur indicator of $χ: $fs_indicator") - println() -end -# Print characters of real irreps -println("Real Irreducible Characters:") -for irrep in real_irreps - println(irrep) -end -# Expected Result: χ does not change if its FS is 1. χ is doubled if its FS is -1. χ is added by another character if its FS is 0.