diff --git a/test/action_permutation.jl b/test/action_permutation.jl index 8b048c1..accd24a 100644 --- a/test/action_permutation.jl +++ b/test/action_permutation.jl @@ -87,12 +87,12 @@ end @test typeof(SymbolicWedderburn.induce(ehom, one(G))) == Perm{UInt32} # the default ψ = SymbolicWedderburn.action_character(ehom, tbl) - @test SymbolicWedderburn.multiplicities(ψ) == [40, 22, 18] + @test SymbolicWedderburn.multiplicities(ψ) == [22, 18, 40] irr = SymbolicWedderburn.irreducible_characters(tbl) multips = SymbolicWedderburn.multiplicities(ψ) @test dot(SymbolicWedderburn.degree.(irr), multips) == length(words) simple = isone.(SymbolicWedderburn.degree.(irr)) - @test simple == [false, true, true] + @test simple == [true, true, false] inv_vec = SymbolicWedderburn.invariant_vectors( tbl, @@ -106,19 +106,19 @@ end let i = 1 χ, m, s = irr[i], multips[i], simple[i] b = SymbolicWedderburn.image_basis(ehom, χ) - @test size(b, 1) == SymbolicWedderburn.degree(χ) * m == 80 + @test size(b, 1) == SymbolicWedderburn.degree(χ) * m == 22 end let i = 2 χ, m, s = irr[i], multips[i], simple[i] b = SymbolicWedderburn.image_basis(ehom, χ) - @test size(b, 1) == SymbolicWedderburn.degree(χ) * m == 22 + @test size(b, 1) == SymbolicWedderburn.degree(χ) * m == 18 end let i = 3 χ, m, s = irr[i], multips[i], simple[i] b = SymbolicWedderburn.image_basis(ehom, χ) - @test size(b, 1) == SymbolicWedderburn.degree(χ) * m == 18 + @test size(b, 1) == SymbolicWedderburn.degree(χ) * m == 80 end @test symmetry_adapted_basis(G, action, words; semisimple = true) isa @@ -146,11 +146,11 @@ end @test [convert(Matrix{Float64}, b) for b in sa_basis] isa Vector{Matrix{Float64}} @test length(sa_basis) == 3 - @test multiplicity.(sa_basis) == [40, 22, 18] - @test SymbolicWedderburn.degree.(sa_basis) == [2, 1, 1] + @test multiplicity.(sa_basis) == [22, 18, 40] + @test SymbolicWedderburn.degree.(sa_basis) == [1, 1, 2] @test size.(sa_basis, 1) == multips .* SymbolicWedderburn.degree.(irr) == - [80, 22, 18] + [22, 18, 80] @test sum(first ∘ size, sa_basis) == length(words) end @@ -222,9 +222,9 @@ end sa_basis = symmetry_adapted_basis(G, action, words) @test length(sa_basis) == 3 - @test multiplicity.(sa_basis) == [40, 22, 18] - @test SymbolicWedderburn.degree.(sa_basis) == [2, 1, 1] + @test multiplicity.(sa_basis) == [22, 18, 40] + @test SymbolicWedderburn.degree.(sa_basis) == [1, 1, 2] @test all(issimple, sa_basis) - @test size.(sa_basis, 1) == multips == [40, 22, 18] + @test size.(sa_basis, 1) == multips == [22, 18, 40] end end diff --git a/test/ccmatrix.jl b/test/ccmatrix.jl index 8422d4d..401750a 100644 --- a/test/ccmatrix.jl +++ b/test/ccmatrix.jl @@ -147,7 +147,7 @@ end end @testset "random subgroups of SymetricGroup(N)" begin - for i in 2:6 + for i in 3:6 G = if i == 2 PermGroup(perm"(1,2)") else diff --git a/test/dixon.jl b/test/dixon.jl index 133b75d..dbc0aee 100644 --- a/test/dixon.jl +++ b/test/dixon.jl @@ -209,11 +209,11 @@ end @test sort(SymbolicWedderburn.degree.(chars)) == [1, 1, 1, 1, 4] @test [collect(values(χ)) for χ in chars] == [ - E(4, 0) .* [4, 0, 0, 0, -1], E(4, 0) .* [1, 1, 1, 1, 1], E(4, 0) .* [1, 1, -1, -1, 1], - E(4, 0) .* [1, -1, E(4), -E(4), 1], E(4, 0) .* [1, -1, -E(4), E(4), 1], + E(4, 0) .* [1, -1, E(4), -E(4), 1], + E(4, 0) .* [4, 0, 0, 0, -1], ] end end diff --git a/test/sa_basis.jl b/test/sa_basis.jl index 6de76b0..ee9101c 100644 --- a/test/sa_basis.jl +++ b/test/sa_basis.jl @@ -29,7 +29,7 @@ end irr = SymbolicWedderburn.irreducible_characters(G) @test irr isa AbstractVector{<:SymbolicWedderburn.Character{<:Cyclotomic}} - @test SymbolicWedderburn.degree.(irr) == [2, 1, 1] + @test SymbolicWedderburn.degree.(irr) == [1, 1, 2] RG = let G = G b = StarAlgebras.Basis{UInt16}(collect(G)) @@ -48,8 +48,8 @@ end mps, ranks = SymbolicWedderburn.minimal_projection_system(irr, RG) @test all(isone, ranks) - @test rank(float.(SymbolicWedderburn.matrix_projection(irr[1]))) == 2 - @test rank(float.(SymbolicWedderburn.matrix_representation(mps[1]))) == + @test rank(float.(SymbolicWedderburn.matrix_projection(irr[3]))) == 2 + @test rank(float.(SymbolicWedderburn.matrix_representation(mps[3]))) == 1 sa_basis_ssimple = symmetry_adapted_basis( @@ -59,8 +59,8 @@ end semisimple = true, ) - @test issimple.(sa_basis_ssimple) == [false, true] - @test rank.(convert.(Matrix, sa_basis_ssimple)) == [2, 1] + @test issimple.(sa_basis_ssimple) == [true, false] + @test rank.(convert.(Matrix, sa_basis_ssimple)) == [1, 2] @test dot( multiplicity.(sa_basis_ssimple), SymbolicWedderburn.degree.(sa_basis_ssimple),