This page shows the WERs for test-clean/test-other using only train-clean-100 subset as training data.
Related models/log/tensorboard: https://huggingface.co/GuoLiyong/stateless6_baseline_vs_disstillation
Following results are obtained by ./distillation_with_hubert.sh
The only differences is in pruned_transducer_stateless6/train.py.
For baseline: set enable_distillation=False
For distillation: set enable_distillation=True (the default)
Decoding method is modified beam search.
test-clean | test-other | comment | |
---|---|---|---|
baseline no vq distillation | 7.09 | 18.88 | --epoch 20, --avg 10, --max-duration 200 |
baseline no vq distillation | 6.83 | 18.19 | --epoch 30, --avg 10, --max-duration 200 |
baseline no vq distillation | 6.73 | 17.79 | --epoch 40, --avg 10, --max-duration 200 |
baseline no vq distillation | 6.75 | 17.68 | --epoch 50, --avg 10, --max-duration 200 |
distillation with hubert | 5.82 | 15.98 | --epoch 20, --avg 10, --max-duration 200 |
distillation with hubert | 5.52 | 15.15 | --epoch 30, --avg 10, --max-duration 200 |
distillation with hubert | 5.45 | 14.94 | --epoch 40, --avg 10, --max-duration 200 |
distillation with hubert | 5.50 | 14.77 | --epoch 50, --avg 10, --max-duration 200 |
Using commit 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc
.
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
greedy search (max sym per frame 2) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
greedy search (max sym per frame 3) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
modified beam search (beam size 4) | 6.31 | 16.3 | --epoch 57, --avg 17, --max-duration 100 |
The training command for reproducing is given below:
cd egs/librispeech/ASR/
./prepare.sh
./prepare_giga_speech.sh
export CUDA_VISIBLE_DEVICES="0,1"
./transducer_stateless_multi_datasets/train.py \
--world-size 2 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
--full-libri 0 \
--max-duration 300 \
--lr-factor 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--modified-transducer-prob 0.25
--giga-prob 0.2
The decoding command is given below:
for epoch in 57; do
for avg in 17; do
for sym in 1 2 3; do
./transducer_stateless_multi_datasets/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--max-sym-per-frame $sym
done
done
done
epoch=57
avg=17
./transducer_stateless_multi_datasets/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
The tensorboard log is available at https://tensorboard.dev/experiment/qUEKzMnrTZmOz1EXPda9RA/
A pre-trained model and decoding logs can be found at https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21