-
Notifications
You must be signed in to change notification settings - Fork 300
/
prepare.sh
executable file
·319 lines (279 loc) · 9.67 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
export CUDA_VISIBLE_DEVICES=""
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/librilight
# You can find small, medium, large, etc. inside it.
#
# - $dl_dir/libriheavy
# You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
# If you want to do PromptASR experiments, please set it to True
# as this will keep the texts and pre_text information required for
# the training of PromptASR.
keep_custom_fields=False
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
fbank_dir=data/fbank
manifests_dir=data/manifests
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download audio data."
# If you have pre-downloaded it to /path/to/librilight,
# you can create a symlink
#
# ln -sfv /path/to/librilight $dl_dir/librilight
#
mkdir -p $dl_dir/librilight
for subset in small medium large; do
log "Downloading ${subset} subset."
if [ ! -d $dl_dir/librilight/${subset} ]; then
wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar
tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight
else
log "Skipping download, ${subset} subset exists."
fi
done
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download manifests from huggingface."
# If you have pre-downloaded it to /path/to/libriheavy,
# you can create a symlink
#
# ln -sfv /path/to/libriheavy $dl_dir/libriheavy
#
mkdir -p $dl_dir/libriheavy
for subset in small medium large dev test_clean test_other; do
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Downloading ${subset} subset."
wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz
else
log "Skipping download, ${subset} subset exists."
fi
done
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Download manifests from modelscope"
mkdir -p $dl_dir/libriheavy
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_small.jsonl.gz ]; then
cd $dl_dir/libriheavy
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/datasets/pkufool/Libriheavy.git
cd Libriheavy
git lfs pull --exclude "raw/*"
mv *.jsonl.gz ../
cd ..
rm -rf Libriheavy
cd ../../
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p $manifests_dir
if [ ! -e $manifests_dir/.musan.done ]; then
lhotse prepare musan $dl_dir/musan $manifests_dir
touch $manifests_dir/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare Libriheavy manifests"
mkdir -p $manifests_dir
for subset in small medium large dev test_clean test_other; do
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Prepare manifest for subset : ${subset}"
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir $keep_custom_fields
fi
done
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p $fbank_dir
if [ ! -e $fbank_dir/.musan.done ]; then
./local/compute_fbank_musan.py
touch $fbank_dir/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for small subset and validation subsets"
for subset in test_clean test_other dev small; do
log "Computing $subset subset."
if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then
./local/compute_fbank_libriheavy.py \
--manifest-dir ${manifests_dir} \
--subset ${subset} \
--fbank-dir $fbank_dir \
--num-workers $nj
fi
done
fi
num_per_split=8000
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Split medium and large subsets."
for subset in medium large; do
log "Spliting subset : $subset"
split_dir=$manifests_dir/libriheavy_${subset}_split
mkdir -p $split_dir
if [ ! -e $split_dir/.split_completed ]; then
lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split
touch $split_dir/.split_completed
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank for medium and large subsets"
mkdir -p $fbank_dir
chunk_size=20
for subset in medium large; do
if [ $subset == "large" ]; then
chunk_size=200
fi
num_splits=$(find $manifests_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz" | wc -l)
if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then
for i in $(seq 0 1 6); do
start=$(( i * $chunk_size ))
end=$(( (i+1) * $chunk_size ))
./local/compute_fbank_libriheavy.py \
--manifest-dir ${manifests_dir} \
--use-splits 1 \
--subset ${subset} \
--fbank-dir $fbank_dir \
--num-splits $num_splits \
--num-workers $nj \
--start $start \
--stop $end &
done
wait
touch $fbank_dir/.libriheavy.${subset}.done
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Combine features for medium and large subsets."
for subset in medium large; do
log "Combining $subset subset."
if [ ! -f $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
pieces=$(find $fbank_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz")
lhotse combine $pieces $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz
fi
done
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Train BPE model for normalized text"
if [ ! -f data/texts ]; then
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
| ./local/norm_text.py > data/texts
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
cp data/texts $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Train BPE model for unnormalized text"
if [ ! -f data/punc_texts ]; then
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' > data/punc_texts
fi
for vocab_size in ${vocab_sizes[@]}; do
new_vocab_size=$(($vocab_size + 256))
lang_dir=data/lang_punc_bpe_${new_vocab_size}
mkdir -p $lang_dir
cp data/punc_texts $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--byte-fallback \
--vocab-size ${new_vocab_size} \
--byte-fallback \
--character-coverage 0.99 \
--transcript $lang_dir/text
fi
done
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Prepare language model for normalized text"
for subset in small medium large; do
if [ ! -f $manifests_dir/texts_${subset} ]; then
gunzip -c $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
| ./local/norm_text.py > $manifests_dir/texts_${subset}
fi
done
mkdir -p data/lm
if [ ! -f data/lm/text ]; then
cat $manifests_dir/texts_small $manifests_dir/texts_medium $manifests_dir/texts_large > data/lm/text
fi
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
> data/lm/words.txt
cat data/lm/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| awk '{print $1" "NR+3}' >> data/lm/words.txt
num_lines=$(< data/lm/words.txt wc -l)
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
>> data/lm/words.txt
# Train LM on transcripts
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text data/lm/text \
-lm data/lm/3-gram.unpruned.arpa
fi
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table=data/lm/words.txt \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
fi
fi