-
Notifications
You must be signed in to change notification settings - Fork 2
/
Frontiers _ Big Data’s Role in Precision Public Health _ Public Health.htm
2434 lines (2196 loc) · 430 KB
/
Frontiers _ Big Data’s Role in Precision Public Health _ Public Health.htm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!-- saved from url=(0066)https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full -->
<html lang="en" class=" js flexbox flexboxlegacy canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><script type="text/javascript" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/598a124f17"></script><script src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nr-1071.min.js"></script><script type="text/javascript" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/1.txt"></script><script type="text/javascript" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/1(1).txt"></script>
<meta http-equiv="X-UA-Compatible" content="IE=edge"><script async="" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/analytics.js"></script><script type="text/javascript">window.NREUM||(NREUM={});NREUM.info = {"beacon":"bam.nr-data.net","errorBeacon":"bam.nr-data.net","licenseKey":"598a124f17","applicationID":"3007887","transactionName":"MQcDMkECCkNSW0YMWghNLDBwTCVCR1FRCVAlDQ8SQQwIXFZKHSNACg41A0sXJkl3d3s=","queueTime":0,"applicationTime":335,"agent":"","atts":""}</script><script type="text/javascript">(window.NREUM||(NREUM={})).loader_config={xpid:"VgUHUl5WGwAAVFZaDwY="};window.NREUM||(NREUM={}),__nr_require=function(t,n,e){function r(e){if(!n[e]){var o=n[e]={exports:{}};t[e][0].call(o.exports,function(n){var o=t[e][1][n];return r(o||n)},o,o.exports)}return n[e].exports}if("function"==typeof __nr_require)return __nr_require;for(var o=0;o<e.length;o++)r(e[o]);return r}({1:[function(t,n,e){function r(t){try{s.console&&console.log(t)}catch(n){}}var o,i=t("ee"),a=t(15),s={};try{o=localStorage.getItem("__nr_flags").split(","),console&&"function"==typeof console.log&&(s.console=!0,o.indexOf("dev")!==-1&&(s.dev=!0),o.indexOf("nr_dev")!==-1&&(s.nrDev=!0))}catch(c){}s.nrDev&&i.on("internal-error",function(t){r(t.stack)}),s.dev&&i.on("fn-err",function(t,n,e){r(e.stack)}),s.dev&&(r("NR AGENT IN DEVELOPMENT MODE"),r("flags: "+a(s,function(t,n){return t}).join(", ")))},{}],2:[function(t,n,e){function r(t,n,e,r,s){try{p?p-=1:o(s||new UncaughtException(t,n,e),!0)}catch(f){try{i("ierr",[f,c.now(),!0])}catch(d){}}return"function"==typeof u&&u.apply(this,a(arguments))}function UncaughtException(t,n,e){this.message=t||"Uncaught error with no additional information",this.sourceURL=n,this.line=e}function o(t,n){var e=n?null:c.now();i("err",[t,e])}var i=t("handle"),a=t(16),s=t("ee"),c=t("loader"),f=t("gos"),u=window.onerror,d=!1,l="nr@seenError",p=0;c.features.err=!0,t(1),window.onerror=r;try{throw new Error}catch(h){"stack"in h&&(t(8),t(7),"addEventListener"in window&&t(5),c.xhrWrappable&&t(9),d=!0)}s.on("fn-start",function(t,n,e){d&&(p+=1)}),s.on("fn-err",function(t,n,e){d&&!e[l]&&(f(e,l,function(){return!0}),this.thrown=!0,o(e))}),s.on("fn-end",function(){d&&!this.thrown&&p>0&&(p-=1)}),s.on("internal-error",function(t){i("ierr",[t,c.now(),!0])})},{}],3:[function(t,n,e){t("loader").features.ins=!0},{}],4:[function(t,n,e){function r(t){}if(window.performance&&window.performance.timing&&window.performance.getEntriesByType){var o=t("ee"),i=t("handle"),a=t(8),s=t(7),c="learResourceTimings",f="addEventListener",u="resourcetimingbufferfull",d="bstResource",l="resource",p="-start",h="-end",m="fn"+p,w="fn"+h,v="bstTimer",y="pushState",g=t("loader");g.features.stn=!0,t(6);var b=NREUM.o.EV;o.on(m,function(t,n){var e=t[0];e instanceof b&&(this.bstStart=g.now())}),o.on(w,function(t,n){var e=t[0];e instanceof b&&i("bst",[e,n,this.bstStart,g.now()])}),a.on(m,function(t,n,e){this.bstStart=g.now(),this.bstType=e}),a.on(w,function(t,n){i(v,[n,this.bstStart,g.now(),this.bstType])}),s.on(m,function(){this.bstStart=g.now()}),s.on(w,function(t,n){i(v,[n,this.bstStart,g.now(),"requestAnimationFrame"])}),o.on(y+p,function(t){this.time=g.now(),this.startPath=location.pathname+location.hash}),o.on(y+h,function(t){i("bstHist",[location.pathname+location.hash,this.startPath,this.time])}),f in window.performance&&(window.performance["c"+c]?window.performance[f](u,function(t){i(d,[window.performance.getEntriesByType(l)]),window.performance["c"+c]()},!1):window.performance[f]("webkit"+u,function(t){i(d,[window.performance.getEntriesByType(l)]),window.performance["webkitC"+c]()},!1)),document[f]("scroll",r,{passive:!0}),document[f]("keypress",r,!1),document[f]("click",r,!1)}},{}],5:[function(t,n,e){function r(t){for(var n=t;n&&!n.hasOwnProperty(u);)n=Object.getPrototypeOf(n);n&&o(n)}function o(t){s.inPlace(t,[u,d],"-",i)}function i(t,n){return t[1]}var a=t("ee").get("events"),s=t(18)(a,!0),c=t("gos"),f=XMLHttpRequest,u="addEventListener",d="removeEventListener";n.exports=a,"getPrototypeOf"in Object?(r(document),r(window),r(f.prototype)):f.prototype.hasOwnProperty(u)&&(o(window),o(f.prototype)),a.on(u+"-start",function(t,n){var e=t[1],r=c(e,"nr@wrapped",function(){function t(){if("function"==typeof e.handleEvent)return e.handleEvent.apply(e,arguments)}var n={object:t,"function":e}[typeof e];return n?s(n,"fn-",null,n.name||"anonymous"):e});this.wrapped=t[1]=r}),a.on(d+"-start",function(t){t[1]=this.wrapped||t[1]})},{}],6:[function(t,n,e){var r=t("ee").get("history"),o=t(18)(r);n.exports=r,o.inPlace(window.history,["pushState","replaceState"],"-")},{}],7:[function(t,n,e){var r=t("ee").get("raf"),o=t(18)(r),i="equestAnimationFrame";n.exports=r,o.inPlace(window,["r"+i,"mozR"+i,"webkitR"+i,"msR"+i],"raf-"),r.on("raf-start",function(t){t[0]=o(t[0],"fn-")})},{}],8:[function(t,n,e){function r(t,n,e){t[0]=a(t[0],"fn-",null,e)}function o(t,n,e){this.method=e,this.timerDuration=isNaN(t[1])?0:+t[1],t[0]=a(t[0],"fn-",this,e)}var i=t("ee").get("timer"),a=t(18)(i),s="setTimeout",c="setInterval",f="clearTimeout",u="-start",d="-";n.exports=i,a.inPlace(window,[s,"setImmediate"],s+d),a.inPlace(window,[c],c+d),a.inPlace(window,[f,"clearImmediate"],f+d),i.on(c+u,r),i.on(s+u,o)},{}],9:[function(t,n,e){function r(t,n){d.inPlace(n,["onreadystatechange"],"fn-",s)}function o(){var t=this,n=u.context(t);t.readyState>3&&!n.resolved&&(n.resolved=!0,u.emit("xhr-resolved",[],t)),d.inPlace(t,y,"fn-",s)}function i(t){g.push(t),h&&(x?x.then(a):w?w(a):(E=-E,O.data=E))}function a(){for(var t=0;t<g.length;t++)r([],g[t]);g.length&&(g=[])}function s(t,n){return n}function c(t,n){for(var e in t)n[e]=t[e];return n}t(5);var f=t("ee"),u=f.get("xhr"),d=t(18)(u),l=NREUM.o,p=l.XHR,h=l.MO,m=l.PR,w=l.SI,v="readystatechange",y=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],g=[];n.exports=u;var b=window.XMLHttpRequest=function(t){var n=new p(t);try{u.emit("new-xhr",[n],n),n.addEventListener(v,o,!1)}catch(e){try{u.emit("internal-error",[e])}catch(r){}}return n};if(c(p,b),b.prototype=p.prototype,d.inPlace(b.prototype,["open","send"],"-xhr-",s),u.on("send-xhr-start",function(t,n){r(t,n),i(n)}),u.on("open-xhr-start",r),h){var x=m&&m.resolve();if(!w&&!m){var E=1,O=document.createTextNode(E);new h(a).observe(O,{characterData:!0})}}else f.on("fn-end",function(t){t[0]&&t[0].type===v||a()})},{}],10:[function(t,n,e){function r(t){var n=this.params,e=this.metrics;if(!this.ended){this.ended=!0;for(var r=0;r<d;r++)t.removeEventListener(u[r],this.listener,!1);if(!n.aborted){if(e.duration=a.now()-this.startTime,4===t.readyState){n.status=t.status;var i=o(t,this.lastSize);if(i&&(e.rxSize=i),this.sameOrigin){var c=t.getResponseHeader("X-NewRelic-App-Data");c&&(n.cat=c.split(", ").pop())}}else n.status=0;e.cbTime=this.cbTime,f.emit("xhr-done",[t],t),s("xhr",[n,e,this.startTime])}}}function o(t,n){var e=t.responseType;if("json"===e&&null!==n)return n;var r="arraybuffer"===e||"blob"===e||"json"===e?t.response:t.responseText;return h(r)}function i(t,n){var e=c(n),r=t.params;r.host=e.hostname+":"+e.port,r.pathname=e.pathname,t.sameOrigin=e.sameOrigin}var a=t("loader");if(a.xhrWrappable){var s=t("handle"),c=t(11),f=t("ee"),u=["load","error","abort","timeout"],d=u.length,l=t("id"),p=t(14),h=t(13),m=window.XMLHttpRequest;a.features.xhr=!0,t(9),f.on("new-xhr",function(t){var n=this;n.totalCbs=0,n.called=0,n.cbTime=0,n.end=r,n.ended=!1,n.xhrGuids={},n.lastSize=null,p&&(p>34||p<10)||window.opera||t.addEventListener("progress",function(t){n.lastSize=t.loaded},!1)}),f.on("open-xhr-start",function(t){this.params={method:t[0]},i(this,t[1]),this.metrics={}}),f.on("open-xhr-end",function(t,n){"loader_config"in NREUM&&"xpid"in NREUM.loader_config&&this.sameOrigin&&n.setRequestHeader("X-NewRelic-ID",NREUM.loader_config.xpid)}),f.on("send-xhr-start",function(t,n){var e=this.metrics,r=t[0],o=this;if(e&&r){var i=h(r);i&&(e.txSize=i)}this.startTime=a.now(),this.listener=function(t){try{"abort"===t.type&&(o.params.aborted=!0),("load"!==t.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof n.onload))&&o.end(n)}catch(e){try{f.emit("internal-error",[e])}catch(r){}}};for(var s=0;s<d;s++)n.addEventListener(u[s],this.listener,!1)}),f.on("xhr-cb-time",function(t,n,e){this.cbTime+=t,n?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof e.onload||this.end(e)}),f.on("xhr-load-added",function(t,n){var e=""+l(t)+!!n;this.xhrGuids&&!this.xhrGuids[e]&&(this.xhrGuids[e]=!0,this.totalCbs+=1)}),f.on("xhr-load-removed",function(t,n){var e=""+l(t)+!!n;this.xhrGuids&&this.xhrGuids[e]&&(delete this.xhrGuids[e],this.totalCbs-=1)}),f.on("addEventListener-end",function(t,n){n instanceof m&&"load"===t[0]&&f.emit("xhr-load-added",[t[1],t[2]],n)}),f.on("removeEventListener-end",function(t,n){n instanceof m&&"load"===t[0]&&f.emit("xhr-load-removed",[t[1],t[2]],n)}),f.on("fn-start",function(t,n,e){n instanceof m&&("onload"===e&&(this.onload=!0),("load"===(t[0]&&t[0].type)||this.onload)&&(this.xhrCbStart=a.now()))}),f.on("fn-end",function(t,n){this.xhrCbStart&&f.emit("xhr-cb-time",[a.now()-this.xhrCbStart,this.onload,n],n)})}},{}],11:[function(t,n,e){n.exports=function(t){var n=document.createElement("a"),e=window.location,r={};n.href=t,r.port=n.port;var o=n.href.split("://");!r.port&&o[1]&&(r.port=o[1].split("/")[0].split("@").pop().split(":")[1]),r.port&&"0"!==r.port||(r.port="https"===o[0]?"443":"80"),r.hostname=n.hostname||e.hostname,r.pathname=n.pathname,r.protocol=o[0],"/"!==r.pathname.charAt(0)&&(r.pathname="/"+r.pathname);var i=!n.protocol||":"===n.protocol||n.protocol===e.protocol,a=n.hostname===document.domain&&n.port===e.port;return r.sameOrigin=i&&(!n.hostname||a),r}},{}],12:[function(t,n,e){function r(){}function o(t,n,e){return function(){return i(t,[f.now()].concat(s(arguments)),n?null:this,e),n?void 0:this}}var i=t("handle"),a=t(15),s=t(16),c=t("ee").get("tracer"),f=t("loader"),u=NREUM;"undefined"==typeof window.newrelic&&(newrelic=u);var d=["setPageViewName","setCustomAttribute","setErrorHandler","finished","addToTrace","inlineHit","addRelease"],l="api-",p=l+"ixn-";a(d,function(t,n){u[n]=o(l+n,!0,"api")}),u.addPageAction=o(l+"addPageAction",!0),u.setCurrentRouteName=o(l+"routeName",!0),n.exports=newrelic,u.interaction=function(){return(new r).get()};var h=r.prototype={createTracer:function(t,n){var e={},r=this,o="function"==typeof n;return i(p+"tracer",[f.now(),t,e],r),function(){if(c.emit((o?"":"no-")+"fn-start",[f.now(),r,o],e),o)try{return n.apply(this,arguments)}catch(t){throw c.emit("fn-err",[arguments,this,t],e),t}finally{c.emit("fn-end",[f.now()],e)}}}};a("setName,setAttribute,save,ignore,onEnd,getContext,end,get".split(","),function(t,n){h[n]=o(p+n)}),newrelic.noticeError=function(t){"string"==typeof t&&(t=new Error(t)),i("err",[t,f.now()])}},{}],13:[function(t,n,e){n.exports=function(t){if("string"==typeof t&&t.length)return t.length;if("object"==typeof t){if("undefined"!=typeof ArrayBuffer&&t instanceof ArrayBuffer&&t.byteLength)return t.byteLength;if("undefined"!=typeof Blob&&t instanceof Blob&&t.size)return t.size;if(!("undefined"!=typeof FormData&&t instanceof FormData))try{return JSON.stringify(t).length}catch(n){return}}}},{}],14:[function(t,n,e){var r=0,o=navigator.userAgent.match(/Firefox[\/\s](\d+\.\d+)/);o&&(r=+o[1]),n.exports=r},{}],15:[function(t,n,e){function r(t,n){var e=[],r="",i=0;for(r in t)o.call(t,r)&&(e[i]=n(r,t[r]),i+=1);return e}var o=Object.prototype.hasOwnProperty;n.exports=r},{}],16:[function(t,n,e){function r(t,n,e){n||(n=0),"undefined"==typeof e&&(e=t?t.length:0);for(var r=-1,o=e-n||0,i=Array(o<0?0:o);++r<o;)i[r]=t[n+r];return i}n.exports=r},{}],17:[function(t,n,e){n.exports={exists:"undefined"!=typeof window.performance&&window.performance.timing&&"undefined"!=typeof window.performance.timing.navigationStart}},{}],18:[function(t,n,e){function r(t){return!(t&&t instanceof Function&&t.apply&&!t[a])}var o=t("ee"),i=t(16),a="nr@original",s=Object.prototype.hasOwnProperty,c=!1;n.exports=function(t,n){function e(t,n,e,o){function nrWrapper(){var r,a,s,c;try{a=this,r=i(arguments),s="function"==typeof e?e(r,a):e||{}}catch(f){l([f,"",[r,a,o],s])}u(n+"start",[r,a,o],s);try{return c=t.apply(a,r)}catch(d){throw u(n+"err",[r,a,d],s),d}finally{u(n+"end",[r,a,c],s)}}return r(t)?t:(n||(n=""),nrWrapper[a]=t,d(t,nrWrapper),nrWrapper)}function f(t,n,o,i){o||(o="");var a,s,c,f="-"===o.charAt(0);for(c=0;c<n.length;c++)s=n[c],a=t[s],r(a)||(t[s]=e(a,f?s+o:o,i,s))}function u(e,r,o){if(!c||n){var i=c;c=!0;try{t.emit(e,r,o,n)}catch(a){l([a,e,r,o])}c=i}}function d(t,n){if(Object.defineProperty&&Object.keys)try{var e=Object.keys(t);return e.forEach(function(e){Object.defineProperty(n,e,{get:function(){return t[e]},set:function(n){return t[e]=n,n}})}),n}catch(r){l([r])}for(var o in t)s.call(t,o)&&(n[o]=t[o]);return n}function l(n){try{t.emit("internal-error",n)}catch(e){}}return t||(t=o),e.inPlace=f,e.flag=a,e}},{}],ee:[function(t,n,e){function r(){}function o(t){function n(t){return t&&t instanceof r?t:t?c(t,s,i):i()}function e(e,r,o,i){if(!l.aborted||i){t&&t(e,r,o);for(var a=n(o),s=h(e),c=s.length,f=0;f<c;f++)s[f].apply(a,r);var d=u[y[e]];return d&&d.push([g,e,r,a]),a}}function p(t,n){v[t]=h(t).concat(n)}function h(t){return v[t]||[]}function m(t){return d[t]=d[t]||o(e)}function w(t,n){f(t,function(t,e){n=n||"feature",y[e]=n,n in u||(u[n]=[])})}var v={},y={},g={on:p,emit:e,get:m,listeners:h,context:n,buffer:w,abort:a,aborted:!1};return g}function i(){return new r}function a(){(u.api||u.feature)&&(l.aborted=!0,u=l.backlog={})}var s="nr@context",c=t("gos"),f=t(15),u={},d={},l=n.exports=o();l.backlog=u},{}],gos:[function(t,n,e){function r(t,n,e){if(o.call(t,n))return t[n];var r=e();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(t,n,{value:r,writable:!0,enumerable:!1}),r}catch(i){}return t[n]=r,r}var o=Object.prototype.hasOwnProperty;n.exports=r},{}],handle:[function(t,n,e){function r(t,n,e,r){o.buffer([t],r),o.emit(t,n,e)}var o=t("ee").get("handle");n.exports=r,r.ee=o},{}],id:[function(t,n,e){function r(t){var n=typeof t;return!t||"object"!==n&&"function"!==n?-1:t===window?0:a(t,i,function(){return o++})}var o=1,i="nr@id",a=t("gos");n.exports=r},{}],loader:[function(t,n,e){function r(){if(!x++){var t=b.info=NREUM.info,n=l.getElementsByTagName("script")[0];if(setTimeout(u.abort,3e4),!(t&&t.licenseKey&&t.applicationID&&n))return u.abort();f(y,function(n,e){t[n]||(t[n]=e)}),c("mark",["onload",a()+b.offset],null,"api");var e=l.createElement("script");e.src="https://"+t.agent,n.parentNode.insertBefore(e,n)}}function o(){"complete"===l.readyState&&i()}function i(){c("mark",["domContent",a()+b.offset],null,"api")}function a(){return E.exists&&performance.now?Math.round(performance.now()):(s=Math.max((new Date).getTime(),s))-b.offset}var s=(new Date).getTime(),c=t("handle"),f=t(15),u=t("ee"),d=window,l=d.document,p="addEventListener",h="attachEvent",m=d.XMLHttpRequest,w=m&&m.prototype;NREUM.o={ST:setTimeout,SI:d.setImmediate,CT:clearTimeout,XHR:m,REQ:d.Request,EV:d.Event,PR:d.Promise,MO:d.MutationObserver};var v=""+location,y={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",agent:"js-agent.newrelic.com/nr-1071.min.js"},g=m&&w&&w[p]&&!/CriOS/.test(navigator.userAgent),b=n.exports={offset:s,now:a,origin:v,features:{},xhrWrappable:g};t(12),l[p]?(l[p]("DOMContentLoaded",i,!1),d[p]("load",r,!1)):(l[h]("onreadystatechange",o),d[h]("onload",r)),c("mark",["firstbyte",s],null,"api");var x=0,E=t(17)},{}]},{},["loader",2,10,4,3]);</script>
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<title>Frontiers | Big Data’s Role in Precision Public Health | Public Health</title>
<link rel="shortcut icon" href="https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/favicon_16x16.ico" type="image/x-icon">
<meta property="og:type" content="article">
<meta property="frontiers:type" content="Article">
<meta property="og:site_name" name="site_name" content="Frontiers">
<meta property="og:title" name="Title" content="Big Data’s Role in Precision Public Health">
<meta property="og:description" name="Description" content="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.">
<meta property="og:url" name="url" content="https://www.frontiersin.org/article/10.3389/fpubh.2018.00068/full">
<meta property="og:image" content="https://www.frontiersin.org/files/MyHome%20Article%20Library/297813/297813_Thumb_400.jpg">
<meta name="citation_volume" content="6">
<meta name="citation_journal_title" content="Frontiers in Public Health">
<meta name="citation_publisher" content="Frontiers">
<meta name="citation_journal_abbrev" content="Front. Public Health">
<meta name="citation_issn" content="2296-2565">
<meta name="citation_doi" content="10.3389/fpubh.2018.00068">
<meta name="citation_pages" content="68">
<meta name="citation_language" content="English">
<meta name="citation_title" content="Big Data’s Role in Precision Public Health">
<meta name="citation_keywords" content="Precision public health; big data; Computational epidemiology; Infectious disease surveillance; precision population health">
<meta name="citation_abstract" content="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.">
<meta name="description" content="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.">
<meta name="citation_online_date" content="2018/02/20">
<meta name="citation_date" content="2018">
<meta name="citation_publication_date" content="2018/03/07">
<meta name="citation_pdf_url" content="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/pdf">
<meta name="citation_author" content="Dolley, Shawn">
<meta name="citation_author_institution" content="Cloudera, Inc., United States">
<meta name="citation_author_email" content="[email protected]">
<meta name="Keywords" content="Precision public health, big data, Computational epidemiology, Infectious disease surveillance, precision population health">
<meta name="dc.identifier" content="doi:10.3389/fpubh.2018.00068"> <!--CrossMark widget-->
<script type="text/javascript">
var CurrentIBarMenu = 'bysubjects';
var CurrentPageCode = 'ARTICLE_PAGE_NEW';
var FRConfiguration = (function() {
return {
Environment: 'Live',
SANVirtualPath: 'http://www.frontiersin.org/files/',
SharepointWebsiteUrl: 'https://www.frontiersin.org',
CommunityWebsiteUrl: 'http://community.frontiersin.org',
FrontiersJournalUIUrl: 'https://www.frontiersin.org',
FrontiersJournalAPIUrl: 'https://api-journal.frontiersin.org',
FrontiersReviewUIUrl: '',
FrontiersReviewAPIUrl: '',
FrontiersNetworkingAPIUrl: 'https://api-network.frontiersin.org',
FrontiersCookie: 'frontiersN',
FrontiersCookieRememberMe: 'frontiersNt',
FrontiersLoginUrl: 'https://www.frontiersin.org/Login.aspx',
FrontiersRegistrationUrl: 'http://www.frontiersin.org/Registration/Register.aspx'
};
})();
var FRLanguage = (function() {
var languageSet = {"ART_FRONTIERS":"Frontiers ","Article_AcceptedDate":"Accepted: ","Article_AnalyticsToolTip":"The total view count is updated once a day, so not to worry if you don\u0027t see immediate results.","Article_AnalyticsTotalViews":"total views","Article_AnalyticsViewImpact":"View Article Impact","Article_ArchiveLinkText":"Articles","Article_BibTex":"BibTex","Article_Citation":"Citation: ","Article_Commentary":"COMMENTARY","Article_Copyright":"Copyright: ","Article_CopyrightText":"This is an open-access article distributed under the terms of the \u003ca href=\"http://creativecommons.org/licenses/by/4.0/\"\u003eCreative Commons Attribution License (CC BY)\u003c/a\u003e. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.","Article_Correspondence":"* Correspondence: ","Article_DownloadArticle":"Download Article","Article_DownloadPDF":"Download PDF","Article_DownloadProvisionalArticle":"Download Provisional Article","Article_DownloadProvisionalPDF":"Download Provisional PDF","Article_EditedBy":"Edited by: ","Article_EndNote":"EndNote","Article_EPUB":"EPUB","Article_ExportCitation":"Export Citation","Article_JATS":"JATS","Article_Keywords":"Keywords: ","Article_NLM":"XML (NLM)","Article_OriginalArticle":"ORIGINAL ARTICLE","Article_PaperPendingPublishedDate":"Paper pending published: ","Article_PDF":"PDF","Article_ProvisionalPDF":"Provisional PDF","Article_PublishedDate":"Published online: ","Article_ReadFullText":"Read Full Text","Article_ReceivedDate":"Received: ","Article_ReferenceManager":"Reference Manager","Article_ReviewedBy":"Reviewed by: ","Article_RTInfoText":"This article is part of the Research Topic","Article_ShareOn":"SHARE ON","Article_SimpleTEXTfile":"Simple TEXT file","Article_SupplementalData":"SUPPLEMENTAL DATA","Article_TableOfContent":"TABLE OF CONTENTS","Article_ViewEnhancedPDF":"ReadCube","Article_XML":"XML","BrowserWarningText":"\u003ch2\u003eWarning!\u003c/h2\u003e\u003cp\u003eYou are using an \u003cstrong\u003eoutdated\u003c/strong\u003e browser. This page doesn\u0027t support Internet Explorer 6, 7 and 8.\u003cbr /\u003ePlease \u003ca class=\"blue\" href=\"http://browsehappy.com/\"\u003eupgrade your browser\u003c/a\u003e or \u003ca class=\"blue\" href=\"http://www.google.com/chromeframe/?redirect=true\"\u003eactivate Google Chrome Frame\u003c/a\u003e to improve your experience.\u003c/p\u003e","COMMENT_HEADERTEXT":"Comment text too long","COMMENT_WARNINGTEXT":"Comments must be less than 4,000 characters. You have entered ","Impact_BackToArticle":"Back to article","People_Also_LookedAt":"People also looked at"};
return {
value: function(key) {
if (languageSet[key]) {
return languageSet[key];
} else {
throw new Error('Unable to get the value status from the language set'); // Use Error, not FRError
}
}
};
})();
var FRJournalDetails = (function() {
return {
JournalType: 'section',
JournalId: '609',
SectionId: '652'
};
})();
var FRArticleRecaptchaSettings = (function() {
return {
RecaptchaSiteKey: '6LdG3i0UAAAAAOC4qUh35ubHgJotEHp_STXHgr_v'
};
})();
</script>
<script src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/addthis_widget.js"></script><div id="_atssh" style="visibility: hidden; height: 1px; width: 1px; position: absolute; top: -9999px; z-index: 100000;"><iframe id="_atssh516" title="AddThis utility frame" style="height: 1px; width: 1px; position: absolute; top: 0px; z-index: 100000; border: 0px; left: 0px;" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/sh.e4e8af4de595fdb10ec1459d.html" kwframeid="1"></iframe></div><style type="text/css">.at-icon{fill:#fff;border:0}.at-icon-wrapper{display:inline-block;overflow:hidden}a .at-icon-wrapper{cursor:pointer}.at-rounded,.at-rounded-element .at-icon-wrapper{border-radius:12%}.at-circular,.at-circular-element .at-icon-wrapper{border-radius:50%}.addthis_32x32_style .at-icon{width:2pc;height:2pc}.addthis_24x24_style .at-icon{width:24px;height:24px}.addthis_20x20_style .at-icon{width:20px;height:20px}.addthis_16x16_style .at-icon{width:1pc;height:1pc}#at16lb{display:none;position:absolute;top:0;left:0;width:100%;height:100%;z-index:1001;background-color:#000;opacity:.001}#at_complete,#at_error,#at_share,#at_success{position:static!important}.at15dn{display:none}#at15s,#at16p,#at16p form input,#at16p label,#at16p textarea,#at_share .at_item{font-family:arial,helvetica,tahoma,verdana,sans-serif!important;font-size:9pt!important;outline-style:none;outline-width:0;line-height:1em}* html #at15s.mmborder{position:absolute!important}#at15s.mmborder{position:fixed!important;width:250px!important}#at15s{background:url();float:none;line-height:1em;margin:0;overflow:visible;padding:5px;text-align:left;position:absolute}#at15s a,#at15s span{outline:0;direction:ltr;text-transform:none}#at15s .at-label{margin-left:5px}#at15s .at-icon-wrapper{width:1pc;height:1pc;vertical-align:middle}#at15s .at-icon{width:1pc;height:1pc}.at4-icon{display:inline-block;background-repeat:no-repeat;background-position:top left;margin:0;overflow:hidden;cursor:pointer}.addthis_16x16_style .at4-icon,.addthis_default_style .at4-icon,.at4-icon,.at-16x16{width:1pc;height:1pc;line-height:1pc;background-size:1pc!important}.addthis_32x32_style .at4-icon,.at-32x32{width:2pc;height:2pc;line-height:2pc;background-size:2pc!important}.addthis_24x24_style .at4-icon,.at-24x24{width:24px;height:24px;line-height:24px;background-size:24px!important}.addthis_20x20_style .at4-icon,.at-20x20{width:20px;height:20px;line-height:20px;background-size:20px!important}.at4-icon.circular,.circular .at4-icon,.circular.aticon{border-radius:50%}.at4-icon.rounded,.rounded .at4-icon{border-radius:4px}.at4-icon-left{float:left}#at15s .at4-icon{text-indent:20px;padding:0;overflow:visible;white-space:nowrap;background-size:1pc;width:1pc;height:1pc;background-position:top left;display:inline-block;line-height:1pc}.addthis_vertical_style .at4-icon,.at4-follow-container .at4-icon{margin-right:5px}html>body #at15s{width:250px!important}#at15s.atm{background:none!important;padding:0!important;width:10pc!important}#at15s_inner{background:#fff;border:1px solid #fff;margin:0}#at15s_head{position:relative;background:#f2f2f2;padding:4px;cursor:default;border-bottom:1px solid #e5e5e5}.at15s_head_success{background:#cafd99!important;border-bottom:1px solid #a9d582!important}.at15s_head_success a,.at15s_head_success span{color:#000!important;text-decoration:none}#at15s_brand,#at15sptx,#at16_brand{position:absolute}#at15s_brand{top:4px;right:4px}.at15s_brandx{right:20px!important}a#at15sptx{top:4px;right:4px;text-decoration:none;color:#4c4c4c;font-weight:700}#at15sptx:hover{text-decoration:underline}#at16_brand{top:5px;right:30px;cursor:default}#at_hover{padding:4px}#at_hover .at_item,#at_share .at_item{background:#fff!important;float:left!important;color:#4c4c4c!important}#at_share .at_item .at-icon-wrapper{margin-right:5px}#at_hover .at_bold{font-weight:700;color:#000!important}#at_hover .at_item{width:7pc!important;padding:2px 3px!important;margin:1px;text-decoration:none!important}#at_hover .at_item.athov,#at_hover .at_item:focus,#at_hover .at_item:hover{margin:0!important}#at_hover .at_item.athov,#at_hover .at_item:focus,#at_hover .at_item:hover,#at_share .at_item.athov,#at_share .at_item:hover{background:#f2f2f2!important;border:1px solid #e5e5e5;color:#000!important;text-decoration:none}.ipad #at_hover .at_item:focus{background:#fff!important;border:1px solid #fff}.at15t{display:block!important;height:1pc!important;line-height:1pc!important;padding-left:20px!important;background-position:0 0;text-align:left}.addthis_button,.at15t{cursor:pointer}.addthis_toolbox a.at300b,.addthis_toolbox a.at300m{width:auto}.addthis_toolbox a{margin-bottom:5px;line-height:initial}.addthis_toolbox.addthis_vertical_style{width:200px}.addthis_button_facebook_like .fb_iframe_widget{line-height:100%}.addthis_button_facebook_like iframe.fb_iframe_widget_lift{max-width:none}.addthis_toolbox a.addthis_button_counter,.addthis_toolbox a.addthis_button_facebook_like,.addthis_toolbox a.addthis_button_facebook_send,.addthis_toolbox a.addthis_button_facebook_share,.addthis_toolbox a.addthis_button_foursquare,.addthis_toolbox a.addthis_button_google_plusone,.addthis_toolbox a.addthis_button_linkedin_counter,.addthis_toolbox a.addthis_button_pinterest_pinit,.addthis_toolbox a.addthis_button_stumbleupon_badge,.addthis_toolbox a.addthis_button_tweet{display:inline-block}.at-share-tbx-element .google_plusone_iframe_widget>span>div{vertical-align:top!important}.addthis_toolbox span.addthis_follow_label{display:none}.addthis_toolbox.addthis_vertical_style span.addthis_follow_label{display:block;white-space:nowrap}.addthis_toolbox.addthis_vertical_style a{display:block}.addthis_toolbox.addthis_vertical_style.addthis_32x32_style a{line-height:2pc;height:2pc}.addthis_toolbox.addthis_vertical_style .at300bs{margin-right:4px;float:left}.addthis_toolbox.addthis_20x20_style span{line-height:20px}.addthis_toolbox.addthis_32x32_style span{line-height:2pc}.addthis_toolbox.addthis_pill_combo_style .addthis_button_compact .at15t_compact,.addthis_toolbox.addthis_pill_combo_style a{float:left}.addthis_toolbox.addthis_pill_combo_style a.addthis_button_tweet{margin-top:-2px}.addthis_toolbox.addthis_pill_combo_style .addthis_button_compact .at15t_compact{margin-right:4px}.addthis_default_style .addthis_separator{margin:0 5px;display:inline}div.atclear{clear:both}.addthis_default_style .addthis_separator,.addthis_default_style .at4-icon,.addthis_default_style .at300b,.addthis_default_style .at300bo,.addthis_default_style .at300bs,.addthis_default_style .at300m{float:left}.at300b img,.at300bo img{border:0}a.at300b .at4-icon,a.at300m .at4-icon{display:block}.addthis_default_style .at300b,.addthis_default_style .at300bo,.addthis_default_style .at300m{padding:0 2px}.at300b,.at300bo,.at300bs,.at300m{cursor:pointer}.addthis_button_facebook_like.at300b:hover,.addthis_button_facebook_like.at300bs:hover,.addthis_button_facebook_send.at300b:hover,.addthis_button_facebook_send.at300bs:hover{opacity:1}.addthis_20x20_style .at15t,.addthis_20x20_style .at300bs{overflow:hidden;display:block;height:20px!important;width:20px!important;line-height:20px!important}.addthis_32x32_style .at15t,.addthis_32x32_style .at300bs{overflow:hidden;display:block;height:2pc!important;width:2pc!important;line-height:2pc!important}.at300bs{overflow:hidden;display:block;background-position:0 0;height:1pc;width:1pc;line-height:1pc!important}.addthis_default_style .at15t_compact,.addthis_default_style .at15t_expanded{margin-right:4px}#at_share .at_item{width:123px!important;padding:4px;margin-right:2px;border:1px solid #fff}#at16p{background:url();z-index:10000001;position:absolute;top:50%;left:50%;width:300px;padding:10px;margin:0 auto;margin-top:-185px;margin-left:-155px;font-family:arial,helvetica,tahoma,verdana,sans-serif;font-size:9pt;color:#5e5e5e}#at_share{margin:0;padding:0}#at16pt{position:relative;background:#f2f2f2;height:13px;padding:5px 10px}#at16pt a,#at16pt h4{font-weight:700}#at16pt h4{display:inline;margin:0;padding:0;font-size:9pt;color:#4c4c4c;cursor:default}#at16pt a{position:absolute;top:5px;right:10px;color:#4c4c4c;text-decoration:none;padding:2px}#at15sptx:focus,#at16pt a:focus{outline:thin dotted}#at15s #at16pf a{top:1px}#_atssh{width:1px!important;height:1px!important;border:0!important}.atm{width:10pc!important;padding:0;margin:0;line-height:9pt;letter-spacing:normal;font-family:arial,helvetica,tahoma,verdana,sans-serif;font-size:9pt;color:#444;background:url();padding:4px}.atm-f{text-align:right;border-top:1px solid #ddd;padding:5px 8px}.atm-i{background:#fff;border:1px solid #d5d6d6;padding:0;margin:0;box-shadow:1px 1px 5px rgba(0,0,0,.15)}.atm-s{margin:0!important;padding:0!important}.atm-s a:focus{border:transparent;outline:0;transition:none}#at_hover.atm-s a,.atm-s a{display:block;text-decoration:none;padding:4px 10px;color:#235dab!important;font-weight:400;font-style:normal;transition:none}#at_hover.atm-s .at_bold{color:#235dab!important}#at_hover.atm-s a:hover,.atm-s a:hover{background:#2095f0;text-decoration:none;color:#fff!important}#at_hover.atm-s .at_bold{font-weight:700}#at_hover.atm-s a:hover .at_bold{color:#fff!important}.atm-s a .at-label{vertical-align:middle;margin-left:5px;direction:ltr}.at_PinItButton{display:block;width:40px;height:20px;padding:0;margin:0;background-image:url(//s7.addthis.com/static/t00/pinit00.png);background-repeat:no-repeat}.at_PinItButton:hover{background-position:0 -20px}.addthis_toolbox .addthis_button_pinterest_pinit{position:relative}.at-share-tbx-element .fb_iframe_widget span{vertical-align:baseline!important}#at16pf{height:auto;text-align:right;padding:4px 8px}.at-privacy-info{position:absolute;left:7px;bottom:7px;cursor:pointer;text-decoration:none;font-family:helvetica,arial,sans-serif;font-size:10px;line-height:9pt;letter-spacing:.2px;color:#666}.at-privacy-info:hover{color:#000}.body .wsb-social-share .wsb-social-share-button-vert{padding-top:0;padding-bottom:0}.body .wsb-social-share.addthis_counter_style .addthis_button_tweet.wsb-social-share-button{padding-top:40px}.body .wsb-social-share.addthis_counter_style .addthis_button_google_plusone.wsb-social-share-button{padding-top:0}.body .wsb-social-share.addthis_counter_style .addthis_button_facebook_like.wsb-social-share-button{padding-top:21px}@media print{#at4-follow,#at4-share,#at4-thankyou,#at4-whatsnext,#at4m-mobile,#at15s,.at4,.at4-recommended{display:none!important}}@media screen and (max-width:400px){.at4win{width:100%}}@media screen and (max-height:700px) and (max-width:400px){.at4-thankyou-inner .at4-recommended-container{height:122px;overflow:hidden}.at4-thankyou-inner .at4-recommended .at4-recommended-item:first-child{border-bottom:1px solid #c5c5c5}}</style><style type="text/css">.at-branding-logo{font-family:helvetica,arial,sans-serif;text-decoration:none;font-size:10px;display:inline-block;margin:2px 0;letter-spacing:.2px}.at-branding-logo .at-branding-icon{background-image:url("")}.at-branding-logo .at-branding-icon,.at-branding-logo .at-privacy-icon{display:inline-block;height:10px;width:10px;margin-left:4px;margin-right:3px;margin-bottom:-1px;background-repeat:no-repeat}.at-branding-logo .at-privacy-icon{background-image:url("")}.at-branding-logo span{text-decoration:none}.at-branding-logo .at-branding-addthis,.at-branding-logo .at-branding-powered-by{color:#666}.at-branding-logo .at-branding-addthis:hover{color:#333}.at-cv-with-image .at-branding-addthis,.at-cv-with-image .at-branding-addthis:hover{color:#fff}a.at-branding-logo:visited{color:initial}.at-branding-info{display:inline-block;padding:0 5px;color:#666;border:1px solid #666;border-radius:50%;font-size:10px;line-height:9pt;opacity:.7;transition:all .3s ease;text-decoration:none}.at-branding-info span{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.at-branding-info:before{content:'i';font-family:Times New Roman}.at-branding-info:hover{color:#0780df;border-color:#0780df}</style><style id="service-icons-0"></style>
<script language="javascript">
var addthis_config = addthis_config || {};
addthis_config.data_track_addressbar = false;
addthis_config.data_track_clickback = false;
</script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
<script src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/js"></script>
<script src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/frontiers.markerclusterer.js"></script>
<link href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/font-awesome.css" rel="stylesheet">
<link href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/museo-sans.css" rel="stylesheet">
<link href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/museo-slab.css" rel="stylesheet">
<link href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/open-sans.css" rel="stylesheet">
<link href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/app" rel="stylesheet">
<style type="text/css"> .journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat 100% 10px;
}
/* Displays/Screens (e.g. 19" WS @ 1440x900) --------------- */ @media only screen and (max-width: 1649px) {
.journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat 200px 10px;
}}
/* Large Devices, Wide Screens --------- */ @media only screen and (max-width : 1250px) {
.journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat -180px 10px;
}}
/* Medium Devices, Desktops ---------- */ @media only screen and (max-width : 992px) { {
.journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat -100px -60px;
}}
/* Small Devices, Tablets ------------ */ @media only screen and (max-width : 768px) {
.journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat -400px 0px;
}}
/* Small Devices, Tablets --------- */ @media only screen and (max-width : 640px) {
.journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat -500px 0px;
}}
/* Extra Small Devices, Phones----------- */ @media only screen and (max-width : 480px) {
.journal-public-health {
background: #fff url('https://3718aeafc638f96f5bd6-d4a9ca15fc46ba40e71f94dec0aad28c.ssl.cf1.rackcdn.com/journal-public-health.gif') no-repeat -600px 0px;
}} </style>
<script id="altmetric-embed-js" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/altmetric_badges-eb187a407f01c9f3bbcda1dddf27884f.js"></script><style type="text/css">.MathJax_Hover_Frame {border-radius: .25em; -webkit-border-radius: .25em; -moz-border-radius: .25em; -khtml-border-radius: .25em; box-shadow: 0px 0px 15px #83A; -webkit-box-shadow: 0px 0px 15px #83A; -moz-box-shadow: 0px 0px 15px #83A; -khtml-box-shadow: 0px 0px 15px #83A; border: 1px solid #A6D ! important; display: inline-block; position: absolute}
.MathJax_Menu_Button .MathJax_Hover_Arrow {position: absolute; cursor: pointer; display: inline-block; border: 2px solid #AAA; border-radius: 4px; -webkit-border-radius: 4px; -moz-border-radius: 4px; -khtml-border-radius: 4px; font-family: 'Courier New',Courier; font-size: 9px; color: #F0F0F0}
.MathJax_Menu_Button .MathJax_Hover_Arrow span {display: block; background-color: #AAA; border: 1px solid; border-radius: 3px; line-height: 0; padding: 4px}
.MathJax_Hover_Arrow:hover {color: white!important; border: 2px solid #CCC!important}
.MathJax_Hover_Arrow:hover span {background-color: #CCC!important}
</style><style type="text/css">#MathJax_About {position: fixed; left: 50%; width: auto; text-align: center; border: 3px outset; padding: 1em 2em; background-color: #DDDDDD; color: black; cursor: default; font-family: message-box; font-size: 120%; font-style: normal; text-indent: 0; text-transform: none; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; z-index: 201; border-radius: 15px; -webkit-border-radius: 15px; -moz-border-radius: 15px; -khtml-border-radius: 15px; box-shadow: 0px 10px 20px #808080; -webkit-box-shadow: 0px 10px 20px #808080; -moz-box-shadow: 0px 10px 20px #808080; -khtml-box-shadow: 0px 10px 20px #808080; filter: progid:DXImageTransform.Microsoft.dropshadow(OffX=2, OffY=2, Color='gray', Positive='true')}
#MathJax_About.MathJax_MousePost {outline: none}
.MathJax_Menu {position: absolute; background-color: white; color: black; width: auto; padding: 5px 0px; border: 1px solid #CCCCCC; margin: 0; cursor: default; font: menu; text-align: left; text-indent: 0; text-transform: none; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; z-index: 201; border-radius: 5px; -webkit-border-radius: 5px; -moz-border-radius: 5px; -khtml-border-radius: 5px; box-shadow: 0px 10px 20px #808080; -webkit-box-shadow: 0px 10px 20px #808080; -moz-box-shadow: 0px 10px 20px #808080; -khtml-box-shadow: 0px 10px 20px #808080; filter: progid:DXImageTransform.Microsoft.dropshadow(OffX=2, OffY=2, Color='gray', Positive='true')}
.MathJax_MenuItem {padding: 1px 2em; background: transparent}
.MathJax_MenuArrow {position: absolute; right: .5em; padding-top: .25em; color: #666666; font-size: .75em}
.MathJax_MenuActive .MathJax_MenuArrow {color: white}
.MathJax_MenuArrow.RTL {left: .5em; right: auto}
.MathJax_MenuCheck {position: absolute; left: .7em}
.MathJax_MenuCheck.RTL {right: .7em; left: auto}
.MathJax_MenuRadioCheck {position: absolute; left: .7em}
.MathJax_MenuRadioCheck.RTL {right: .7em; left: auto}
.MathJax_MenuLabel {padding: 1px 2em 3px 1.33em; font-style: italic}
.MathJax_MenuRule {border-top: 1px solid #DDDDDD; margin: 4px 3px}
.MathJax_MenuDisabled {color: GrayText}
.MathJax_MenuActive {background-color: #606872; color: white}
.MathJax_MenuDisabled:focus, .MathJax_MenuLabel:focus {background-color: #E8E8E8}
.MathJax_ContextMenu:focus {outline: none}
.MathJax_ContextMenu .MathJax_MenuItem:focus {outline: none}
#MathJax_AboutClose {top: .2em; right: .2em}
.MathJax_Menu .MathJax_MenuClose {top: -10px; left: -10px}
.MathJax_MenuClose {position: absolute; cursor: pointer; display: inline-block; border: 2px solid #AAA; border-radius: 18px; -webkit-border-radius: 18px; -moz-border-radius: 18px; -khtml-border-radius: 18px; font-family: 'Courier New',Courier; font-size: 24px; color: #F0F0F0}
.MathJax_MenuClose span {display: block; background-color: #AAA; border: 1.5px solid; border-radius: 18px; -webkit-border-radius: 18px; -moz-border-radius: 18px; -khtml-border-radius: 18px; line-height: 0; padding: 8px 0 6px}
.MathJax_MenuClose:hover {color: white!important; border: 2px solid #CCC!important}
.MathJax_MenuClose:hover span {background-color: #CCC!important}
.MathJax_MenuClose:hover:focus {outline: none}
</style><style type="text/css">.MathJax_Preview .MJXf-math {color: inherit!important}
</style><style type="text/css">.MJX_Assistive_MathML {position: absolute!important; top: 0; left: 0; clip: rect(1px, 1px, 1px, 1px); padding: 1px 0 0 0!important; border: 0!important; height: 1px!important; width: 1px!important; overflow: hidden!important; display: block!important; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none}
.MJX_Assistive_MathML.MJX_Assistive_MathML_Block {width: 100%!important}
</style><style type="text/css">#MathJax_Zoom {position: absolute; background-color: #F0F0F0; overflow: auto; display: block; z-index: 301; padding: .5em; border: 1px solid black; margin: 0; font-weight: normal; font-style: normal; text-align: left; text-indent: 0; text-transform: none; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; -webkit-box-sizing: content-box; -moz-box-sizing: content-box; box-sizing: content-box; box-shadow: 5px 5px 15px #AAAAAA; -webkit-box-shadow: 5px 5px 15px #AAAAAA; -moz-box-shadow: 5px 5px 15px #AAAAAA; -khtml-box-shadow: 5px 5px 15px #AAAAAA; filter: progid:DXImageTransform.Microsoft.dropshadow(OffX=2, OffY=2, Color='gray', Positive='true')}
#MathJax_ZoomOverlay {position: absolute; left: 0; top: 0; z-index: 300; display: inline-block; width: 100%; height: 100%; border: 0; padding: 0; margin: 0; background-color: white; opacity: 0; filter: alpha(opacity=0)}
#MathJax_ZoomFrame {position: relative; display: inline-block; height: 0; width: 0}
#MathJax_ZoomEventTrap {position: absolute; left: 0; top: 0; z-index: 302; display: inline-block; border: 0; padding: 0; margin: 0; background-color: white; opacity: 0; filter: alpha(opacity=0)}
</style><style type="text/css">.MathJax_Preview {color: #888}
#MathJax_Message {position: fixed; left: 1em; bottom: 1.5em; background-color: #E6E6E6; border: 1px solid #959595; margin: 0px; padding: 2px 8px; z-index: 102; color: black; font-size: 80%; width: auto; white-space: nowrap}
#MathJax_MSIE_Frame {position: absolute; top: 0; left: 0; width: 0px; z-index: 101; border: 0px; margin: 0px; padding: 0px}
.MathJax_Error {color: #CC0000; font-style: italic}
</style><style type="text/css">.MJXp-script {font-size: .8em}
.MJXp-right {-webkit-transform-origin: right; -moz-transform-origin: right; -ms-transform-origin: right; -o-transform-origin: right; transform-origin: right}
.MJXp-bold {font-weight: bold}
.MJXp-italic {font-style: italic}
.MJXp-scr {font-family: MathJax_Script,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-frak {font-family: MathJax_Fraktur,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-sf {font-family: MathJax_SansSerif,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-cal {font-family: MathJax_Caligraphic,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-mono {font-family: MathJax_Typewriter,'Times New Roman',Times,STIXGeneral,serif}
.MJXp-largeop {font-size: 150%}
.MJXp-largeop.MJXp-int {vertical-align: -.2em}
.MJXp-math {display: inline-block; line-height: 1.2; text-indent: 0; font-family: 'Times New Roman',Times,STIXGeneral,serif; white-space: nowrap; border-collapse: collapse}
.MJXp-display {display: block; text-align: center; margin: 1em 0}
.MJXp-math span {display: inline-block}
.MJXp-box {display: block!important; text-align: center}
.MJXp-box:after {content: " "}
.MJXp-rule {display: block!important; margin-top: .1em}
.MJXp-char {display: block!important}
.MJXp-mo {margin: 0 .15em}
.MJXp-mfrac {margin: 0 .125em; vertical-align: .25em}
.MJXp-denom {display: inline-table!important; width: 100%}
.MJXp-denom > * {display: table-row!important}
.MJXp-surd {vertical-align: top}
.MJXp-surd > * {display: block!important}
.MJXp-script-box > * {display: table!important; height: 50%}
.MJXp-script-box > * > * {display: table-cell!important; vertical-align: top}
.MJXp-script-box > *:last-child > * {vertical-align: bottom}
.MJXp-script-box > * > * > * {display: block!important}
.MJXp-mphantom {visibility: hidden}
.MJXp-munderover {display: inline-table!important}
.MJXp-over {display: inline-block!important; text-align: center}
.MJXp-over > * {display: block!important}
.MJXp-munderover > * {display: table-row!important}
.MJXp-mtable {vertical-align: .25em; margin: 0 .125em}
.MJXp-mtable > * {display: inline-table!important; vertical-align: middle}
.MJXp-mtr {display: table-row!important}
.MJXp-mtd {display: table-cell!important; text-align: center; padding: .5em 0 0 .5em}
.MJXp-mtr > .MJXp-mtd:first-child {padding-left: 0}
.MJXp-mtr:first-child > .MJXp-mtd {padding-top: 0}
.MJXp-mlabeledtr {display: table-row!important}
.MJXp-mlabeledtr > .MJXp-mtd:first-child {padding-left: 0}
.MJXp-mlabeledtr:first-child > .MJXp-mtd {padding-top: 0}
.MJXp-merror {background-color: #FFFF88; color: #CC0000; border: 1px solid #CC0000; padding: 1px 3px; font-style: normal; font-size: 90%}
.MJXp-scale0 {-webkit-transform: scaleX(.0); -moz-transform: scaleX(.0); -ms-transform: scaleX(.0); -o-transform: scaleX(.0); transform: scaleX(.0)}
.MJXp-scale1 {-webkit-transform: scaleX(.1); -moz-transform: scaleX(.1); -ms-transform: scaleX(.1); -o-transform: scaleX(.1); transform: scaleX(.1)}
.MJXp-scale2 {-webkit-transform: scaleX(.2); -moz-transform: scaleX(.2); -ms-transform: scaleX(.2); -o-transform: scaleX(.2); transform: scaleX(.2)}
.MJXp-scale3 {-webkit-transform: scaleX(.3); -moz-transform: scaleX(.3); -ms-transform: scaleX(.3); -o-transform: scaleX(.3); transform: scaleX(.3)}
.MJXp-scale4 {-webkit-transform: scaleX(.4); -moz-transform: scaleX(.4); -ms-transform: scaleX(.4); -o-transform: scaleX(.4); transform: scaleX(.4)}
.MJXp-scale5 {-webkit-transform: scaleX(.5); -moz-transform: scaleX(.5); -ms-transform: scaleX(.5); -o-transform: scaleX(.5); transform: scaleX(.5)}
.MJXp-scale6 {-webkit-transform: scaleX(.6); -moz-transform: scaleX(.6); -ms-transform: scaleX(.6); -o-transform: scaleX(.6); transform: scaleX(.6)}
.MJXp-scale7 {-webkit-transform: scaleX(.7); -moz-transform: scaleX(.7); -ms-transform: scaleX(.7); -o-transform: scaleX(.7); transform: scaleX(.7)}
.MJXp-scale8 {-webkit-transform: scaleX(.8); -moz-transform: scaleX(.8); -ms-transform: scaleX(.8); -o-transform: scaleX(.8); transform: scaleX(.8)}
.MJXp-scale9 {-webkit-transform: scaleX(.9); -moz-transform: scaleX(.9); -ms-transform: scaleX(.9); -o-transform: scaleX(.9); transform: scaleX(.9)}
.MathJax_PHTML .noError {vertical-align: ; font-size: 90%; text-align: left; color: black; padding: 1px 3px; border: 1px solid}
</style><link id="altmetric-embed-css" rel="stylesheet" type="text/css" href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/embed-2c47105b6381604898bbf8ae8a680350.css"><link type="text/css" rel="stylesheet" href="chrome-extension://pioclpoplcdbaefihamjohnefbikjilc/content.css"><script type="text/javascript" charset="UTF-8" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/common.js"></script><script type="text/javascript" charset="UTF-8" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/util.js"></script><script type="text/javascript" charset="UTF-8" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/stats.js"></script><script type="text/javascript" charset="UTF-8" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/AuthenticationService.Authenticate"></script></head>
<body class="journal-public-health section-public-health-policy v2 ibar-frontiers"><div id="MathJax_Message" style="display: none;"></div>
<link href="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/frontiers.header.v3.css" rel="stylesheet"><div class="header-compact v2 ibar-frontiers">
<div class="navbar navbar-fixed-top">
<div class="row container">
<div class="navbar-header">
<div class="col-xs-6 header-left-container">
<ul class="navbar-toggle inline-list navbar-mobile" data-toggle="collapse" data-target="#">
<li class="no-left-margin">
<a class="brand home" href="https://www.frontiersin.org/">
<img class="header-logo" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/thin-header-logo.png">
</a>
</li>
<li class="clickable no-left-margin">
<div class="journal-dropdown-responsive" ssd-id="2">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</div><div id="ssd-dropdown-2" class="ssd-dropdown" style="margin-left: -9px; width: 200px; top: -11px;"><div id="ssd-container-2" class="ssd-container" style="margin-left: 0px;"><table><tbody><tr id="ssd-dropdown-2-tr-1"><td><div class="ssd-dropdown_container ssd-dropdown_container_small" id="sdd-dropdown-2-container-level-1" style="height: auto;"><ul class="ssd-menu-list ssd-dropdown_ul"><li><a class="sdd-link" href="https://www.frontiersin.org/" data-header-tracking="{"category":"Header_Action","action":"link", "label": "click_header_home" }" data-test-id="home">Home</a></li><li><a class="sdd-link" href="https://www.frontiersin.org/AboutFrontiers.aspx" data-header-tracking="{"category":"Header_Action","action":"link", "label": "click_header_about" }" data-test-id="about">About</a></li><li data-test-id="journals"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Journals</li><li><a class="sdd-link" href="https://www.frontiersin.org/researchtopic" data-header-tracking="{ "category": "Header_Action", "action": "link", "label": "click_header_rt" }" data-test-id="research_topics">Research Topics</a></li><li><a class="sdd-link" href="https://www.frontiersin.org/Submission/SubmissionInfo.aspx" data-header-tracking="{"category":"Header_Action","action":"link", "label": "click_header_submit" }" data-test-id="submit">Submit</a></li></ul></div></td></tr></tbody></table></div></div><div id="ssd-dropdown-indicator-2" class="ssd-dropdown-indicator" style="top: 0px; left: 5px;"></div>
</li>
</ul>
<ul class="inline-list navbar-collapse collapse navbar-desktop">
<li class="header-inline-element no-left-margin">
<a class="brand home" href="https://www.frontiersin.org/" onclick="FRHeader.trackOutboundLink('Header_Action', 'link', 'click_header_home', 'https://www.frontiersin.org');return false;">
<img class="header-logo" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/thin-header-logo.png">
</a>
</li>
<li class="no-left-margin">
<a class="home" href="https://www.frontiersin.org/" onclick="FRHeader.trackOutboundLink('Header_Action', 'link', 'click_header_home', 'https://www.frontiersin.org');return false;">
Home
</a>
</li>
<li class="no-left-margin">
<a class="about" href="https://www.frontiersin.org/AboutFrontiers.aspx" onclick="FRHeader.trackOutboundLink('Header_Action', 'link', 'click_header_about', 'https://www.frontiersin.org/AboutFrontiers.aspx');return false;">
About
</a>
</li>
<li class="submit-container">
<a class="submit" href="https://www.frontiersin.org/Submission/SubmissionInfo.aspx" onclick="FRHeader.trackOutboundLink('Header_Action', 'link', 'click_header_submit', 'https://www.frontiersin.org/Submission/SubmissionInfo.aspx');return false;">
Submit
</a>
</li>
<li class="no-padding-right journal-drop highlight">
<a class="byjournal bysubjects" data-test-id="journal-bydropdown" ssd-id="1">
<span>Journals</span><img class="drop-down-arrow" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/header-arrow-down.png" alt="">
</a><div id="ssd-dropdown-1" class="ssd-dropdown" style="margin-left: -9px; width: 200px; top: 56px;"><div id="ssd-container-1" class="ssd-container" style="margin-left: 0px;"><table><tbody><tr id="ssd-dropdown-1-tr-1"><td><div class="ssd-dropdown_container ssd-dropdown_container_small" id="sdd-dropdown-1-container-level-1" style="height: auto;"><ul class="ssd-menu-list ssd-dropdown_ul"><li><a class="sdd-link" href="https://www.frontiersin.org/AboutFrontiers.aspx?stage=journalseries" data-test-id="journals_a-z">Journals A-Z</a></li><li class="ssd-label-li"><span class="ssd-label">By Subject</span></li><li data-test-id="science"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Science</li><li data-test-id="health"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Health</li><li data-test-id="engineering"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Engineering</li><li data-test-id="humanities_and_social_sciences"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Humanities and Social Sciences</li><li data-test-id="young_minds_"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Young Minds </li><li data-test-id="sustainability"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/nav-arrow-right-v2.png">Sustainability</li></ul></div></td></tr></tbody></table></div></div><div id="ssd-dropdown-indicator-1" class="ssd-dropdown-indicator" style="top: 51px; left: 65px;"></div>
</li>
<li class="journalAZ hidden highlight">
<a class="bysubjects" href="https://www.frontiersin.org/AboutFrontiers.aspx?stage=journalseries" data-test-id="journal-atoz">
Journals A-Z
</a>
</li>
<li class="research-topic-container">
<a class="research-topic" href="https://www.frontiersin.org/research-topics" onclick="FRHeader.trackOutboundLink('Header_Action', 'link', 'click_header_rt', 'https://www.frontiersin.org/research-topics');return false;">
Research Topics
</a>
</li>
</ul>
</div>
<div class="header-search">
<div class="search-swappable hidden-xs">
<a class="search-icon-container" data-test-id="search-icon">
<img class="search-icon" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/header-search.png">
</a>
<form class="search-bar-container hide" style="display: none;">
<input data-test-id="search-field" placeholder="Search for articles, people, events and more." class="header-search-field">
<input data-test-id="search-btn" type="button" class="header-search-btn" value="" style="left: 363px;">
</form>
</div>
</div>
<div class="col-xs-6 pull-right unlogged-user">
<ul class="inline-list pull-right">
<li>
<a class="login-container popover-login-trigger" data-test-id="login-link" data-header-tracking="{ "category": "Header_Action", "action": "link", "label": "click_header_login" }">
<span>Login</span>
</a>
</li>
<li>
<a class="register-container" data-test-id="register-link" href="http://www.frontiersin.org/Registration/Register.aspx" onclick="FRHeader.trackOutboundLink('Header_Action', 'link', 'click_header-register', 'http://www.frontiersin.org/Registration/Register.aspx');return false;">
<span>Register</span>
</a>
</li>
</ul>
<div class="popover-wrapper popover-login" style="display: none">
<div class="popover-menu login-popover">
<form action="https://www.frontiersin.org/Login.aspx" name="login-form" method="POST" class="login-form">
<div class="third-party-signin-row row-inside-column">
<h1>Login using</h1>
<div class="third-party-buttons">
<div class="third-party-button-wrapper" id="third-party-btn-for-linkedin">
<a data-type="3">
<div class="radius">
<div class="third-party-icon linkedin-icon-wrapper">
<div class="linkedin-icon"></div>
</div>
</div>
<div class="third-party-name">LinkedIn</div>
</a>
</div><div class="third-party-button-wrapper" id="third-party-btn-for-twitter">
<a data-type="2">
<div class="radius">
<div class="third-party-icon twitter-icon-wrapper">
<div class="twitter-icon"></div>
</div>
</div>
<div class="third-party-name">Twitter</div>
</a>
</div>
<div class="third-party-button-wrapper" id="third-party-btn-for-facebook">
<a data-type="1">
<div class="radius">
<div class="third-party-icon facebook-icon-wrapper">
<div class="facebook-icon"></div>
</div>
</div>
<div class="third-party-name">Facebook</div>
</a>
</div>
<div class="info-button-wrapper" id="third-party-information-button">
<a class="popover-login-info-trigger">
<div class="info-button">i</div>
</a>
<div class="popover-wrapper popover-login-info" style="display: none">
<div class="popover-menu">
<h1 class="popover-title">You can login by using one of your existing accounts.</h1>
<span style="float: none; display: inline">
We will be provided with an authorization token (please note: passwords are not shared with us) and will sync your accounts for you. This means that you will not need to remember your user name and password in the future and you will be able to login with the account you choose to sync, with the click of a button.
</span>
</div>
</div>
</div>
</div>
</div>
<div class="clear"></div>
<div class="or-row" id="or-circle-divider">
<div class="or-divider or-divider-inside-column">
<div class="or-circle">OR</div>
</div>
</div>
<div class="loginForm">
<div class="form-field-label">Email *</div>
<div class="form-field">
<input runat="server" tabindex="5" name="txtLoginEmail" type="text">
<div class="form-field-error-msg">
<div class="error-icon-small"></div>
Please fill in this field
<div class="clear"></div>
</div>
</div>
<div class="form-field-label">Password *</div>
<div class="form-field">
<input runat="server" tabindex="6" name="txtLoginPassword" type="password">
<div class="form-field-error-msg">
<div class="error-icon-small"></div>
Please fill in this field
<div class="clear"></div>
</div>
</div>
<div id="rememberMeWrapper">
<div class="checkbox-remember-container">
<input runat="server" tabindex="7" name="chkLoginRememberMe" type="checkbox">
</div>
<div class="checkbox-remember-label">Remember me</div>
<div class="forgot-password">
<a href="https://registration.frontiersin.org/people/forgot-password">Forgot Password?</a>
</div>
</div>
<div class="login-page-submit" id="formSubmitWrapper">
<div>
<input name="hdnIsPopupLogin" runat="server" value="1" type="hidden">
<button type="submit" tabindex="8" class="btn btn-loginlogout-blue btn-flat input-block-level">Login</button>
</div>
</div>
</div>
</form>
</div>
</div>
</div>
<div class="col-xs-6 pull-right logged-user hidden">
<ul class="logged navbar-toggle inline-list pull-right navbar-mobile" data-toggle="collapse" data-target="#LefttHeader">
<li>
<div id="myfrontierssponsive" class="clickable profile-dropdown-responsive hidden">
<a class="myfrontiersmobile">
<p class="frontiers-letter">
Frontiers
</p>
</a>
</div>
</li>
<li class="myofficecontainer">
<div id="myoffice" class="clickable profile-dropdown-responsive">
<p class="frontiers-letter">
Frontiers
</p>
<em class="down-arrow-rhs"></em>
</div>
<div id="myofficeresponsive" class="clickable profile-dropdown-responsive hidden">
<p class="frontiers-letter">
Office
</p>
<em class="down-arrow-rhs"></em>
</div>
</li>
<li class="no-left-margin profile-container-responsive">
<a href="javascript:void(0)">
<img class="profile-pic responsive lo_sensitive">
</a>
</li>
</ul>
<ul class="logged inline-list pull-right navbar-collapse collapse navbar-desktop">
<li class="myfrontiers-container">
<a>
<span>My frontiers</span>
<em></em>
</a>
</li>
<li class="myfrontiersbeta-container hidden">
<a class="myfrontiersbeta">
<span>My Frontiers</span>
</a>
</li>
<li class="myoffice-container hidden">
<a>
<span>Office</span>
<em></em>
</a>
</li>
<li class="myhome-container">
<a class="myhome" title="" data-placement="left" data-header-tracking="{ "category": "Header_Action", "action": "link", "label": "click_header_loop" }" data-original-title="My Home">
<i class="fromSprite loop-logo"></i>
</a>
</li>
<li class="no-left-margin impact-container">
<a class="popover-impact-disabled" title="" data-placement="left" data-header-tracking="{ "category": "Header_Action", "action": "link", "label": "click_header_impact" }" data-original-title="My Impact">
<i class="fromSprite impactLogo"></i>
</a>
</li>
<li class="no-left-margin notification-container">
<a class="popover-notification-trigger" title="" data-placement="left" data-header-tracking="{ "category": "Header_Action", "action": "link", "label": "click_header_alerts" }" data-original-title="Notifications">
<i class="fromSprite bellLogo"></i>
<div class="notifications-count hidden">0</div>
</a>
</li>
<li class="no-left-margin username-container">
<a class="username lo_sensitive" data-header-tracking="{ "category": "Header_Action", "action": "link", "label": "click_header_user" }"></a>
</li>
<li class="no-left-margin profile-container">
<a class="popover-profile-trigger">
<img class="profile-pic desktop lo_sensitive">
</a>
</li>
</ul>
<div class="popover-wrapper popover-impact" style="display: none">
<em></em>
<div class="popover-menu impact-popover"></div>
</div>
<div class="popover-wrapper popover-notification" style="display: none">
<em></em>
<input id="hdnLastNotificationId" type="hidden">
<div class="popover-menu notifications-popover"></div>
</div>
</div>
</div>
</div>
</div>
</div>
<!--[if lte IE 8]>
<div class="row">
<div class="col-md-16">
<div style="margin-bottom: 15px;"><h2>Warning!</h2><p>You are using an <strong>outdated</strong> browser. This page doesn't support Internet Explorer 6, 7 and 8.<br />Please <a class="blue" href="http://browsehappy.com/">upgrade your browser</a> or <a class="blue" href="http://www.google.com/chromeframe/?redirect=true">activate Google Chrome Frame</a> to improve your experience.</p></div>
</div>
</div>
<![endif]-->
<div class="page-container">
<header>
<a href="https://blog.frontiersin.org/2017/06/28/frontiers-top-quality-journals-impact-factors-citations-analysis/?utm_source=F-EDP&utm_medium=WBAN&utm_campaign=CCO_CORPO_20170628_IM17-summary" target="_blank" data-tracking="{ "category": "AP_Action", "action": "link", "label": "goto-marketing-banner" }">
<div class="marketing no-impact">
<span class="message">
<p>Frontiers reaches <strong>6.4 on Journal Impact Factors</strong></p>
</span>
</div>
</a>
<div id="journal-header" class="journal-home" style="position: relative;">
<div class="container-fluid main-container-xxl">
<table id="logo-table" style="width:100%">
<tbody><tr>
<td width="50%" valign="bottom" align="right" class="left-cell">
<h1>
<a href="https://www.frontiersin.org/journals/609" data-test-id="journal-link" data-tracking="{ "category": "AP_Action", "action": "navigation", "label": "goto-journal-home" }">
<span>Frontiers </span>in Public Health
</a>
</h1>
</td>
<td class="right-cell" width="50%" style="vertical-align: bottom">
<h2>
<a href="https://www.frontiersin.org/journals/609/sections/652" data-test-id="section-link" class="btn btn-link" data-tracking="{ "category": "AP_Action", "action": "navigation", "label": "goto-journal-section" }">
Public Health Policy
</a>
</h2>
</td>
</tr>
</tbody></table>
</div>
</div>
<div id="journal-nav">
<div class="container-fluid main-container-xxl">
<div class="row">
<div class="col-md-12">
<div class="nav-wrapper">
<nav class="navbar navbar-default">
<!-- Brand and toggle get grouped for better mobile display -->
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#journal-navbar-collapse">
<span class="sr-only">Toggle navigation</span>
<span class="pull-left">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</span>
<span class="pull-right hidden-xs">Section</span>
</button>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse no-transition journal-nav-bar" id="journal-navbar-collapse">
<ul class="nav navbar-nav">
<li class="tab-overview icon icon-left">
<a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_home" }"><span class="sr-only">(current)</span><i class="fa fa-home"></i>Section</a>
</li>
<li class="tab-about">
<a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#about" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_about" }">About</a>
</li>
<li class="tab-archive active">
<a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#articles" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_articles" }">Articles</a>
</li>
<li class="tab-research-topics">
<a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#research-topics" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_rt" }">Research topics</a>
</li>
<li class="dropdown">
<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_authinfo" }">For authors <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<li><a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#why-submit" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_authinfo_why_submit" }">Why submit?</a></li>
<li><a href="https://www.frontiersin.org/about/publishing-fees" target="_blank" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_authinfo_fees" }">Fees</a></li>
<li><a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#article-types">Article types</a></li>
<li><a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#author-guidelines">Author guidelines</a></li>
<li><a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#review-guidelines" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_authinfo_rev_guidelines" }">Review guidelines</a></li>
<li><a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#submission-checklist" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_authinfo_sub_check" }">Submission checklist</a></li>
<li><a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#contact-editorial-office" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_authinfo_contact" }">Contact editorial office</a></li>
<li><a href="https://www.frontiersin.org/submission/submissioninfo.aspx" onclick="FRTracking.trackOutboundLink('JP_Action', 'navigation', 'submit_paper', 'https://www.frontiersin.org/submission/submissioninfo.aspx');return false;" class="action-link">Submit your manuscript</a></li>
</ul>
</li>
<li class="tab-editorial-board">
<a href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy#editorial-board" data-tracking="{ "category": "JP_Action", "action": "navigation", "label": "nav_eb" }">Editorial board</a>
</li>
</ul>
</div><!-- /.navbar-collapse -->
<ul class="list-inline follow-us nav navbar-nav">
<li class="twitter icon button">
<a data-test-id="twitter-link" href="https://twitter.com/@FrontPubHealth" onclick="FRTracking.trackOutboundLink('JP_Action', 'button', 'follow_twitter', 'https://twitter.com/@FrontPubHealth');return false;">
<i class="fa fa-twitter"></i>
</a>
</li>
<li class="rss icon button">
<a data-test-id="rss-link" href="https://www.frontiersin.org/journals/public-health/sections/public-health-policy/rss" onclick="FRTracking.trackOutboundLink('JP_Action', 'button', 'follow_rss', 'https://www.frontiersin.org/journals/public-health/sections/public-health-policy/rss');return false;">
<i class="fa fa-rss"></i>
</a>
</li>
<li class="alerts icon button">
<a data-test-id="alert-link" href="http://connect.frontiersin.org/subscriptions/subscribe?item=1&field=70" onclick="FRTracking.trackOutboundLink('JP_Action', 'button', 'follow_alerts', 'http://connect.frontiersin.org/subscriptions/subscribe?item=1&field=70');return false;">
<i class="fa fa-bell" style="width: auto; padding-right: 7px; padding-left: 7px;"><span class="article-alert-text" style="font-family: MuseoSans, 'Helvetica Neue', Helvetica, Arial, sans-serif; margin-left: 6px; font-weight: 700; letter-spacing: 0px; font-size: 13px;">Article alerts</span></i>
</a>
</li>
</ul>
</nav>
</div><!-- / .nav-wrapper -->
</div>
</div>
</div>
</div>
</header>
<div class="journal-actions article-actions">
<div class="container-fluid main-container-xxl">
<div class="row">
<div class="col-lg-6 col-md-6 col-lg-push-6 col-md-push-6 col-research-topic">
<div class="research-topic-container">
<div class="research-topic-data">
<h5 class="topic-title">
<span>This article is part of</span> the Research Topic
</h5>
<p style="margin-bottom:0;">
<a href="https://www.frontiersin.org/research-topics/4526" data-test-id="relatedRT-link" class="topic-link-trim" data-tracking="{ "category": "AP_Action", "action": "button", "label": "goto-rt" }">
Precision Public Health
</a>
</p>
</div>
</div>
</div>
<section class="col-lg-4 col-lg-offset-2 col-md-6 col-md-offset-0 col-lg-pull-6 col-md-pull-6">
<a href="https://www.frontiersin.org/journals/609/sections/652#articles" class="archive-link hidden-sm hidden-xs" data-test-id="archive-link" data-tracking="{ "category": "AP_Action", "action": "navigation", "label": "goto-articles" }">
<i class="fa fa-angle-left"></i> Articles
</a>
</section>
</div>
</div>
</div>
<aside id="anchors" class="pull-left table-of-contents side-article">
<div class="side-people hidden-sm hidden-xs">
<section class="side-article-editors">
<header><h5 class="like-h4">Edited by</h5></header>
<a class="authors" href="https://loop.frontiersin.org/people/224113/overview">
<img alt=" " class="pr5 pull-left" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/24">
<h6 class="author-link-aside">Hugh J. Dawkins</h6>
</a>
<div class="clearfix"></div>
<p><span class="notes">Government of Western Australia Department of Health, Australia</span></p>
</section>
<section class="side-article-editors">
<header><h5 class="like-h4"> Reviewed by</h5></header>
<a class="authors" href="https://loop.frontiersin.org/people/160433/overview">
<img alt=" " class="pr5 pull-left" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/24(1)">
<h6 class="author-link-aside">Emmanuel D. Jadhav</h6>
</a>
<div class="clearfix"></div>
<p><span class="notes">Ferris State University, United States</span></p>
<a class="authors" href="https://loop.frontiersin.org/people/202120/overview">
<img alt=" " class="pr5 pull-left" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/24(2)">
<h6 class="author-link-aside">Gareth Baynam</h6>
</a>
<div class="clearfix"></div>
<p><span class="notes">Genetic Services of Western Australia, Australia</span></p>
<a class="authors" href="https://loop.frontiersin.org/people/202260/overview">
<img alt=" " class="pr5 pull-left" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/24(3)">
<h6 class="author-link-aside">Ori Gudes</h6>
</a>
<div class="clearfix"></div>
<p><span class="notes">University of New South Wales, Australia</span></p>
<a class="authors" href="https://loop.frontiersin.org/people/374826/overview">
<img alt=" " class="pr5 pull-left" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/24(4)">
<h6 class="author-link-aside">David Preen</h6>
</a>
<div class="clearfix"></div>
<p><span class="notes">University of Western Australia, Australia</span></p>
<p class="disclaimer">The editor and reviewers' affiliations are the latest provided on their Loop research profiles and may not reflect their situation at the time of review.</p>
</section>
</div>
<nav>
<header><h5 class="like-h4" style="padding-top: 14px; padding-left: 6px; margin-bottom: 6px;">TABLE OF CONTENTS</h5></header>
<ul class="nav nav-list list-unstyled contents">
<li>
<ul class="flyoutJournal">
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h1">Abstract</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h2">Introduction</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h3">Methods</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h4">Precision Public Health</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h5">Big Data in Healthcare and Public Health</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h6">Big Data in Precision Public Health</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h7">Performing Disease Surveillance and Signal Detection</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h8">Predicting Risk</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h9">Targeting Treatment Interventions</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h10">Understanding Disease</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h11">Contributions of Big Data</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h12">Risks</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h13">Conclusion</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h14">Author Contributions</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h15">Conflict of Interest Statement</a></li>
<li><a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#h16">References</a></li>
</ul> </li>
</ul>
</nav>
</aside>
<div id="article" class="boxed white no-padding">
<div class="container-fluid main-container-xxl">
<div class="side-article-mrk hidden-md hidden-lg top clearfix">
<style type="text/css"><!--
.spotlight-title:hover,
.spotlight-title:focus {
color: #555 !important;
}
.spotlight-link {
color: #f2b12f !important;
}
.spotlight-link:hover,
.spotlight-link:focus {
color: #e5a812 !important;
}
--></style>
<div class="spotlight"><a href="https://blog.frontiersin.org/2016/11/25/second-annual-frontiers-spotlight-award-announced-for-2018/" target="_blank"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/article-marketing-message-cbd91558-e517-4b02-9a0c-98fd19c36511.jpeg" alt=""></a>
<h3 style="font-weight: 500;"><a class="spotlight-title" tabindex="0" href="https://blog.frontiersin.org/2016/11/25/second-annual-frontiers-spotlight-award-announced-for-2018/" target="_blank">Win $100,000 to host your own conference.</a></h3>
<a class="spotlight-link" href="https://blog.frontiersin.org/2016/11/25/second-annual-frontiers-spotlight-award-announced-for-2018/" target="_blank">Submit your Research Topic</a></div>
</div>
<div class="row">
<aside class="a col-xs-12 col-sm-12 col-lg-2 col-md-3 pull-right side-article right-container">
<button type="button" class="navbar-toggle navbar-download collapsed" data-toggle="collapse" data-target=".show" aria-expanded="false">
<span class="icon"><i class="fa fa-download"></i></span>
</button>
<button type="button" class="navbar-toggle navbar-share collapsed" data-toggle="collapse" data-target=".show" aria-expanded="false">
<span class="icon"><i class="fa fa-share-alt"></i></span>
</button>
<div class="side-article-download show collapse clearfix">
<ul class="list-unstyled list-inline clearfix">
<li class="dropdown text-center paper open">
<a data-target="#" class="dropdown-toggle" data-test-id="download-button" data-tracking="{ "category": "AP_Action", "action": "button", "label": "open-downloads" }" data-toggle="dropdown" role="button" aria-expanded="true">
<span class="icon icon-article"><i class="fa fa-file-pdf-o"></i></span>
<span class="icon-label">Download Article</span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a class="download-files-pdf action-link" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/pdf" data-test-id="article-downloadpdf" data-tracking="{ "category": "AP_Action", "action": "button", "label": "download-pdf" }">
Download PDF
</a>
</li>
<li>
<a class="download-files-readcube" href="http://www.readcube.com/articles/10.3389/fpubh.2018.00068" data-test-id="article-viewenhancedpdf" data-tracking="{ "category": "AP_Action", "action": "button", "label": "download-readcube" }">
ReadCube
</a>
</li>
<li>
<a class="download-files-epub" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/epub" data-test-id="article-epub" data-tracking="{ "category": "AP_Action", "action": "button", "label": "download-epub" }">
EPUB
</a>
</li>
<li>
<a class="download-files-nlm" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/xml/nlm" data-test-id="article-nlm" data-tracking="{ "category": "AP_Action", "action": "button", "label": "download-xml" }">
XML (NLM)
</a>
</li>
<li class="disable">
<span class="supplemental-data-disabled">
Supplementary
<br>
Material
</span>
</li>
</ul>
</li>
<li class="dropdown text-center citation">
<a data-target="#" class="dropdown-toggle" data-test-id="citation-button" data-tracking="{ "category": "AP_Action", "action": "button", "label": "open-export-citation" }" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="icon icon-citation"><i class="fa fa-quote-left"></i></span>
<span class="icon-label">Export citation</span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a data-test-id="article-endnote" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/endNote" data-tracking="{ "category": "AP_Action", "action": "button", "label": "export-citation-endnote" }">
EndNote
</a>
</li>
<li>
<a data-test-id="article-referencemanager" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/reference" data-tracking="{ "category": "AP_Action", "action": "button", "label": "export-reference-manager" }">
Reference Manager
</a>
</li>
<li>
<a data-test-id="article-simpletextfile" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/text" data-tracking="{ "category": "AP_Action", "action": "button", "label": "export-citation-text" }">
Simple TEXT file
</a>
</li>
<li>
<a data-test-id="article-bibtex" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/bibTex" data-tracking="{ "category": "AP_Action", "action": "button", "label": "export-citation-bibtext" }">
BibTex
</a>
</li>
</ul>
</li>
</ul>
</div>
<div class="side-article-impact">
<ul class="nav">
<li class="impact-data" title="" data-original-title="The total view count is updated once a day, so not to worry if you don't see immediate results.">
<span class="title-number">3,590</span>
<span class="title-text">total views</span>
</li>
<li class="hidden-sm hidden-xs">
<div class="altmetric-icon">
<div class="altmetric-embed" data-badge-type="1" data-doi="10.3389/fpubh.2018.00068" data-link-target="new" data-uuid="68532c96-e00a-b6f6-ae69-a2be42e5f84a"><a target="new" href="https://www.altmetric.com/details.php?domain=www.frontiersin.org&citation_id=34043661" style="display:inline-block;">
<img alt="Article has an altmetric score of 400" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/400.png" width="110px" height="20px" style="border:0; margin:0; max-width: none;">
</a></div>
</div>
</li>
</ul>
<a type="button" class="btn btn-default hidden-sm hidden-xs btn-impact " data-tracking="{ "category": "AP_Action", "action": "button", "label": "view-impact" }" data-test-id="view-article-impact" href="http://loop-impact.frontiersin.org/impact/article/297813#views" target="_blank">
<span class="icon-impact"><i class="fa fa-line-chart"></i></span> View Article Impact
</a>
</div>
<div class="side-article-mrk hidden-sm hidden-xs clearfix">
<style type="text/css"><!--
.spotlight-title:hover,
.spotlight-title:focus {
color: #555 !important;
}
.spotlight-link {
color: #f2b12f !important;
}
.spotlight-link:hover,
.spotlight-link:focus {
color: #e5a812 !important;
}
--></style>
<div class="spotlight"><a href="https://blog.frontiersin.org/2016/11/25/second-annual-frontiers-spotlight-award-announced-for-2018/" target="_blank"><img src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/article-marketing-message-cbd91558-e517-4b02-9a0c-98fd19c36511.jpeg" alt=""></a>
<h3 style="font-weight: 500;"><a class="spotlight-title" tabindex="0" href="https://blog.frontiersin.org/2016/11/25/second-annual-frontiers-spotlight-award-announced-for-2018/" target="_blank">Win $100,000 to host your own conference.</a></h3>
<a class="spotlight-link" href="https://blog.frontiersin.org/2016/11/25/second-annual-frontiers-spotlight-award-announced-for-2018/" target="_blank">Submit your Research Topic</a></div>
</div>
<div class="side-article-share show collapse">
<h5 class="like-h4">SHARE ON</h5>
<ul class="share-media clearfix" style="padding: 0;">
<li class="social_block">
<div class="atButton">
<a class="addthis_button_facebook at300b" addthis:title="Big Data’s Role in Precision Public Health" addthis:description="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts." addthis:url="https://www.frontiersin.org/article/10.3389/fpubh.2018.00068" title="Facebook" data-tracking="{ "category": "AP_Action", "action": "button", "label": "addthis-click" }" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#"><span class="at-icon-wrapper" style="background-color: rgb(59, 89, 152); line-height: 16px; height: 16px; width: 16px;"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 32 32" version="1.1" role="img" aria-labelledby="at-svg-facebook-1" title="Facebook" alt="Facebook" style="width: 16px; height: 16px;" class="at-icon at-icon-facebook"><title id="at-svg-facebook-1">Facebook</title><g><path d="M22 5.16c-.406-.054-1.806-.16-3.43-.16-3.4 0-5.733 1.825-5.733 5.17v2.882H9v3.913h3.837V27h4.604V16.965h3.823l.587-3.913h-4.41v-2.5c0-1.123.347-1.903 2.198-1.903H22V5.16z" fill-rule="evenodd"></path></g></svg></span></a>
</div>
<a><span class="facebook_count">0</span></a>
</li>
<li class="social_block">
<div class="atButton">
<a class="addthis_button_twitter at300b" addthis:title="Big Data’s Role in Precision Public Health" addthis:description="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts." addthis:url="https://www.frontiersin.org/article/10.3389/fpubh.2018.00068" title="Tweet" data-tracking="{ "category": "AP_Action", "action": "button", "label": "addthis-click" }" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#"><span class="at-icon-wrapper" style="background-color: rgb(29, 161, 242); line-height: 16px; height: 16px; width: 16px;"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 32 32" version="1.1" role="img" aria-labelledby="at-svg-twitter-2" title="Twitter" alt="Twitter" style="width: 16px; height: 16px;" class="at-icon at-icon-twitter"><title id="at-svg-twitter-2">Twitter</title><g><path d="M27.996 10.116c-.81.36-1.68.602-2.592.71a4.526 4.526 0 0 0 1.984-2.496 9.037 9.037 0 0 1-2.866 1.095 4.513 4.513 0 0 0-7.69 4.116 12.81 12.81 0 0 1-9.3-4.715 4.49 4.49 0 0 0-.612 2.27 4.51 4.51 0 0 0 2.008 3.755 4.495 4.495 0 0 1-2.044-.564v.057a4.515 4.515 0 0 0 3.62 4.425 4.52 4.52 0 0 1-2.04.077 4.517 4.517 0 0 0 4.217 3.134 9.055 9.055 0 0 1-5.604 1.93A9.18 9.18 0 0 1 6 23.85a12.773 12.773 0 0 0 6.918 2.027c8.3 0 12.84-6.876 12.84-12.84 0-.195-.005-.39-.014-.583a9.172 9.172 0 0 0 2.252-2.336" fill-rule="evenodd"></path></g></svg></span></a>
</div>
<a><span class="twitter_count">0</span></a>
</li>
<li class="social_block">
<div class="atButton">
<a class="addthis_button_google at300b" addthis:title="Big Data’s Role in Precision Public Health" addthis:description="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts." addthis:url="https://www.frontiersin.org/article/10.3389/fpubh.2018.00068" title="Google" data-tracking="{ "category": "AP_Action", "action": "button", "label": "addthis-click" }" target="_blank" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#"><span class="at-icon-wrapper" style="background-color: rgb(66, 133, 244); line-height: 16px; height: 16px; width: 16px;"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 32 32" version="1.1" role="img" aria-labelledby="at-svg-google-3" title="Google Bookmark" alt="Google Bookmark" style="width: 16px; height: 16px;" class="at-icon at-icon-google"><title id="at-svg-google-3">Google Bookmark</title><g><path d="M16.213 13.998H26.72c.157.693.28 1.342.28 2.255C27 22.533 22.7 27 16.224 27 10.03 27 5 22.072 5 16S10.03 5 16.224 5c3.03 0 5.568 1.09 7.51 2.87l-3.188 3.037c-.808-.748-2.223-1.628-4.322-1.628-3.715 0-6.745 3.024-6.745 6.73 0 3.708 3.03 6.733 6.744 6.733 4.3 0 5.882-2.915 6.174-4.642h-6.185V14z" fill-rule="evenodd"></path></g></svg></span></a>
</div>
<a><span class="googleplus_count">0</span></a>
</li>
<li class="social_block">
<div class="atButton">
<a class="addthis_button_linkedin at300b" addthis:title="Big Data’s Role in Precision Public Health" addthis:description="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts." addthis:url="https://www.frontiersin.org/article/10.3389/fpubh.2018.00068" title="LinkedIn" data-tracking="{ "category": "AP_Action", "action": "button", "label": "addthis-click" }" target="_blank" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#"><span class="at-icon-wrapper" style="background-color: rgb(0, 119, 181); line-height: 16px; height: 16px; width: 16px;"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 32 32" version="1.1" role="img" aria-labelledby="at-svg-linkedin-4" title="LinkedIn" alt="LinkedIn" style="width: 16px; height: 16px;" class="at-icon at-icon-linkedin"><title id="at-svg-linkedin-4">LinkedIn</title><g><path d="M26 25.963h-4.185v-6.55c0-1.56-.027-3.57-2.175-3.57-2.18 0-2.51 1.7-2.51 3.46v6.66h-4.182V12.495h4.012v1.84h.058c.558-1.058 1.924-2.174 3.96-2.174 4.24 0 5.022 2.79 5.022 6.417v7.386zM8.23 10.655a2.426 2.426 0 0 1 0-4.855 2.427 2.427 0 0 1 0 4.855zm-2.098 1.84h4.19v13.468h-4.19V12.495z" fill-rule="evenodd"></path></g></svg></span></a>
</div>
<a><span class="linkedin_count">0</span></a>
</li>
<li class="social_block">
<div class="atButton">
<a class="addthis_button_more at300b" addthis:title="Big Data’s Role in Precision Public Health" addthis:description="Abstract: Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous sub-populations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts." addthis:url="https://www.frontiersin.org/article/10.3389/fpubh.2018.00068" title="View more services" data-tracking="{ "category": "AP_Action", "action": "button", "label": "addthis-click" }" target="_blank" href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#"><span class="at-icon-wrapper" style="background-color: rgb(255, 101, 80); line-height: 16px; height: 16px; width: 16px;"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 32 32" version="1.1" role="img" aria-labelledby="at-svg-addthis-5" title="More" alt="More" style="width: 16px; height: 16px;" class="at-icon at-icon-addthis"><title id="at-svg-addthis-5">Addthis</title><g><path d="M18 14V8h-4v6H8v4h6v6h4v-6h6v-4h-6z" fill-rule="evenodd"></path></g></svg></span></a>
</div>
<a><span class="total_count">New</span></a>
</li>
</ul>
</div>
</aside>
<main class="b col-xs-12 col-sm-12 col-lg-8 col-lg-push-2 col-md-7 col-md-push-2 pull-left">
<div class="article-section">
<div class="article-container" data-html="True">
<div class="abstract-container">
<div class="article-header-container">
<!-- Start CrossMark Snippet v2.0 -->
<!-- the external CrossMark script to load the crossmark logo responsive JPB-5562 -->
<script src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/widget.js"></script>
<a data-target="crossmark" class="crossmark pull-right" style="padding: 3px 0px 13px; cursor: pointer;"><img id="crossmark-icon" style="border: 0; width:64px; height:64px;" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/CROSSMARK_Color_square.svg" title="" alt=""></a>
<!-- End CrossMark Snippet -->
<div class="header-bar-one">
<h2>Review ARTICLE
</h2>
</div>
<div class="header-bar-three">
Front. Public Health, 07 March 2018
| <a href="https://doi.org/10.3389/fpubh.2018.00068">https://doi.org/10.3389/fpubh.2018.00068</a>
</div>
</div>
<div class="JournalAbstract">
<a id="h1" class="reset-hash-position"></a><h1>Big Data’s Role in Precision Public Health</h1>
<div class="authors">
<a style="text-decoration:none;line-height:1.3em;" href="http://www.frontiersin.org/people/u/419625" class="user-id-419625"><img class="pr5" src="./Frontiers _ Big Data’s Role in Precision Public Health _ Public Health_files/24(5)" onerror="this.src='https://f96a1a95aaa960e01625-a34624e694c43cdf8b40aa048a644ca4.ssl.cf2.rackcdn.com/Design/Images/newprofile_default_profileimage_new.jpg'" alt="image">Shawn Dolley</a>*
</div>
<ul class="notes">
<li class="pl0">Cloudera, Inc., Palo Alto, CA, United States</li>
</ul>
<p>Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous subpopulations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.</p>
<div class="clear"></div>
</div>
<div class="JournalFullText">
<a id="h2" class="reset-hash-position"></a><h2>Introduction</h2>
<p class="mb0">This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts. This article focuses on surveying current practice, with a breadth of examples. The article does not include a critical review of the methods included in the big data and precision public health published research. It is hoped this article may pave the way for future researchers to measure the strengths and weaknesses, robustness, and validity of individual studies, interventions and outcomes. With the breadth of practice defined here, such follow-on in-depth critical review could identify precision public health best practices in design, methods, implementation, and analysis.</p>
<a id="h3" class="reset-hash-position"></a><h2>Methods</h2>
<p class="mb15">The terms “big data” and “precision public health”—two relatively new disciplines—often do not appear in the nomenclature of contemporary public health interventions and studies. Searching for the terms “big data” or “precision public health” returns a small fraction of the actual activity. Based on the lack of existing reviews and the complexity in identifying the intersection of precision public health and big data, the rationale of this narrative review article is to find examples of the use of big data in implementations of precision public health published in peer-reviewed academic journals. The author (a) reviewed a large number of public health studies to look for precision and big data, as well as related and follow-on studies, (b) identified and searched for specific types of big data being applied to public health, and (c) searched for uses of data in precision public health to identify big vs. small data—always using the definition of these terms rather than relying on the presence of the terms “big data” or “precision public health.”</p>
<p class="mb15">Searches were performed using Google Scholar and Google. Examples of public health implementations—with and without big data—and precision public health implementations—with and without big data—only qualified for this article if they were published in peer-reviewed journals. In the presence of multiple qualifying examples, best attempts were made to limit examples to a single citation. In the presence of multiple examples, to reduce risk of bias and attempt to identify the most robust examples, the examples selected were those with the (a) most clearly identifiable public health use case, (b) clearest use of big data, (c) most “precision,” (d) in journals with the highest impact factor, that were (e) the most recent—and in that order of priority. Searches were concluded by July 20, 2017.</p>
<p class="mb15">Search terms used were as follows:</p>
<p class="mb0" style="margin-left:1.2em; text-indent:-1.2em;">1. For identifying implementations using big data volume, the term “public health” and each of the following: “big data,” “gene-wide,” “genome,” “genomic,” “germline,” “GWAS,” “imaging,” “molecular,” “multi-omic,” “pan-omic,” “phenome,” “PWAS,” “translational,” “video,” “whole exome,” and “whole genome.”</p>
<p class="mb0" style="margin-left:1.2em; text-indent:-1.2em;">2. For identifying implementations using big data variety, the term “public health” and each of the following: “big data,” “drone,” “Facebook,” “Instagram,” “IoT,” “internet of things,” “linked,” “linked data,” “patient-centered,” “patient generated,” “mobile,” “mobile phone,” “registry,” “registries,” “secondary use,” “semantic,” “sensors,” “social media,” “surveys,” “Twitter,” “UAV,” “unmanned aerial vehicle,” “variety,” and “wearable.”</p>
<p class="mb0" style="margin-left:1.2em; text-indent:-1.2em;">3. For identifying implementations using big data velocity, the term “public health” and each of the following: “big data,” “continuous,” “monitor,” “real-time,” “sensor,” “streams,” “streaming,” “velocity,” and “video.”</p>
<p class="mb0" style="margin-left:1.2em; text-indent:-1.2em;">4. For identifying public health implementations—including programs, trials, innovations and experiments—using big data, the term “big data” and each of the following: “adverse drug event,” “ADE,” “adverse event,” “cohort,” “epidemic,” “epidemiology,” “health intervention,” “health risk,” “heterogeneous,” “homogeneous,” “human movement,” “outcomes,” “pandemic,” “pharmaco-epidemiology,” “population health,” “precision public health,” “prevention,” “public health,” “signal detection,” “surveillance,” “targeted intervention,” “tracking,” “vaccine,” “vector,” and “virus.”</p>
<p class="mb15">Google Scholar also provides lists of more recent studies which have cited the current study. These lists were reviewed to identify if more recent studies existed that provided better examples of pertinent characteristics.</p>
<p class="mb0">This method has a number of limitations. Google Scholar has limitations, including relying on the end user to discriminate which studies returned are from peer-reviewed journals. No review protocol exists independent of this review article. No study selection or summary measures were collected, and no meta-analysis was performed. No study characteristics were collected. No assessment of the validity of included studies was performed beyond their inclusion in peer-reviewed academic journals. No assessment of cumulative level bias risk was performed. No additional analysis methods were used. The selection of studies included was not independently reviewed. The scope of this narrative review precludes enumerating additional limitations. Limitations aside, the result of these methods is a collection of studies or programs where big data and precision public health—as these terms are defined in this article—are being used together. Through implementing these methods, this review article is the first to identify the scope and scale of big data’s role in precision public health, highlight classes of innovation, and identify the risks of using big data in this field.</p>
<a id="h4" class="reset-hash-position"></a><h2>Precision Public Health</h2>
<p class="mb15">“Precision public health is a new field driven by technological advances that enable more precise descriptions and analyzes of individuals and population groups, with a view to improving the overall health of populations” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B1">1</a>). The term was coined in Australia by Dr. Tarun Weeramanthri in 2013, and first found in print in 2014 (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B2">2</a>). Dr. Muin Khoury and Dr. Sandro Galea describe precision public health as “improving the ability to prevent disease, promote health, and reduce health disparities in populations by applying emerging methods and technologies for measuring disease, pathogens, exposures, behaviors, and susceptibility in populations; and developing policies and targeted implementation programs to improve health” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B3">3</a>). Precision public health leverages big data and its enabling technologies to achieve a previously impossible level of targeting or speed (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B4">4</a>). The Bill & Melinda Gates Foundation adds that precision public health “requires robust primary surveillance data, rapid application of sophisticated analytics to track the geographical distribution of disease, and the capacity to act on such information” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B5">5</a>). Precision public health works because “more-accurate methods for measuring disease, pathogens, exposures, behaviors, and susceptibility could allow better assessment of population health and development of policies and targeted programs for preventing disease” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B4">4</a>). Arnett & Claas add “Precision public health is characterized by discovering, validating, and optimizing care strategies for well-characterized population strata” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B6">6</a>). As for the size of the strata, Colijn et al. state “precision approaches must act at the right scale, which will often be intermediate—between “one size fits all” medicine and fully individualized therapies” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B7">7</a>).</p>
<p class="mb0">The prominence of the term “precision” in the new practices of precision medicine and precision public health will invariably raise questions about their similarity. While precision medicine requires genetic, lifestyle, and environmental data to meet goals of more customized and potentially individualized clinical treatments, precision public health is about increased accuracy and granularity in defining public cohorts and delivering target interventions of many types (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B4">4</a>–<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B6">6</a>). Precision medicine and precision public health are independent.</p>
<a id="h5" class="reset-hash-position"></a><h2>Big Data in Healthcare and Public Health</h2>
<p class="mb15">Big data has recently become a ubiquitous approach to driving insights, innovation and new interventions across economic sectors (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B8">8</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B9">9</a>). The United States National Institute of Standards and Technology defines big data as follows: “Big Data consists of extensive datasets—primarily in the characteristics of volume, variety, velocity, and/or variability—that require a scalable architecture for efficient storage, manipulation, and analysis,” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B10">10</a>). Decreases in costs of technology enabled the big data phenomenon to emerge (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B11">11</a>). Data of “such a high volume, velocity and variety to require specific technology and analytical methods for its transformation into value” has a symbiotic relationship with the technology innovation on which it relies; the term big data often conflates the actual physical data with the unique technologies required to use it (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B12">12</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B13">13</a>).</p>
<p class="mb15">In patient-specific healthcare, big data technology has helped enable greater scales of volume, variety and velocity (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B14">14</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B15">15</a>). Usable data <i>volume</i> has significantly increased in areas such as genomics (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B16">16</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B17">17</a>), molecular research (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B18">18</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B19">19</a>), medical image mining (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B20">20</a>), and population health (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B21">21</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B22">22</a>). Enabling a <i>variety</i> of data to be integrated, for a more complete view of patient or population, has occurred in areas including air quality (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B23">23</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B24">24</a>), wearables (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B25">25</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B26">26</a>), patient generated content <i>via</i> the web (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B27">27</a>), patient or physician movement (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B28">28</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B29">29</a>), medical studies (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B30">30</a>), and critical care (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B31">31</a>). Big data enabling increased <i>velocity</i> in healthcare was one of the earliest uses, in areas such as clinical prediction (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B32">32</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B33">33</a>), and diagnostics (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B15">15</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B33">33</a>). Current examples and future vision for use of big data exists in multiple and varying pathologies, including cancer (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B34">34</a>), cardiology (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B35">35</a>), epilepsy (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B36">36</a>), family medicine (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B37">37</a>), gastroenterology (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B38">38</a>), nursing (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B39">39</a>), pediatric ophthalmology (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B40">40</a>), psychiatry (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B41">41</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B42">42</a>), and women’s health (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B43">43</a>) as examples.</p>
<p class="mb0">Barrett et al. state succinctly: “Big data can play a key role in both research and intervention activities and accelerate progress in disease prevention and population health” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B44">44</a>). Big data shows utility across the entire spectrum of public health disciplines. This capability ranges from “monitoring population health in real-time” to building “definitive extents and databases on the occurrence of many diseases” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B45">45</a>). Public health subject areas that include examples of the use of big data include community health (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B46">46</a>), environmental health science (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B24">24</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B47">47</a>), epidemiology (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B48">48</a>), infectious disease (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B45">45</a>), maternal and child health (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B49">49</a>), occupational health and safety (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B50">50</a>), and nutrition (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B51">51</a>). There is optimism and evidence for big data’s value in public health, both in research and in intervention (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B52">52</a>).</p>
<a id="h6" class="reset-hash-position"></a><h2>Big Data in Precision Public Health</h2>
<p class="mb0">Today, use of big data has been shown to improve precision in select disciplines of public health. These areas include performing disease surveillance and signal detection (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B53">53</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B54">54</a>), predicting risk (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B55">55</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B56">56</a>), targeting interventions (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B6">6</a>), and understanding disease (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B57">57</a>). Research and proofs-of-concept with this data for these applications have been performed around the world. With the pace of technology innovation, and the speed at which precision health practitioners have embraced big data, there will likely be more public health disciplines, practices, approaches, and interventions implemented in the future or that are beyond the scope of this article (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B58">58</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B59">59</a>).</p>
<a id="h7" class="reset-hash-position"></a><h2>Performing Disease Surveillance and Signal Detection</h2>
<p class="mb15">Disease surveillance and signal detection are among the most commonly cited and revolutionary of the big data use cases in precision public health (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B45">45</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B60">60</a>–<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B62">62</a>). Precision signal detection or disease surveillance using big data has shown efficacy in air pollution (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B23">23</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B24">24</a>), antibiotic resistance (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B63">63</a>), cholera (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B64">64</a>), dengue (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B65">65</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B66">66</a>), drowning (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B67">67</a>), drug safety (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B68">68</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B69">69</a>), electromagnetic field exposure (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B70">70</a>), Influenza A H1N1 (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B71">71</a>), Lyme disease (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B72">72</a>), monitoring food intake (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B73">73</a>), and whooping cough (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B74">74</a>).</p>
<p class="mb15">Disease surveillance often includes tracking affected individuals, i.e., human carriers, patients, or victims (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B75">75</a>). Stoddard et al. stated in 2009: “Human movement is a critical, understudied behavioral component underlying the transmission dynamics of many vector-borne pathogens” (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B76">76</a>). In the effort to track disease spread by human vectors, a premium is placed on information that is more recent and granular (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B77">77</a>, <a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B78">78</a>). Thus, access to huge volumes of streaming real-time data generated by humans seems at once an ideal signal repository for identifying and tracking affected individuals, and definitionally big data (<a href="https://www.frontiersin.org/articles/10.3389/fpubh.2018.00068/full#B78">78</a>).</p>