-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval.py
135 lines (123 loc) · 4.58 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# python imports
import argparse
import os
import glob
import time
from pprint import pprint
# torch imports
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
# our code
from libs.core import load_config
from libs.datasets import make_dataset, make_data_loader
from libs.modeling import make_meta_arch
from libs.utils import valid_one_epoch, ANETdetection, fix_random_seed
################################################################################
def main(args, dataset='test_split', printInfo=True):
"""0. load config"""
# sanity check
if os.path.isfile(args.config):
cfg = load_config(args.config)
else:
raise ValueError("Config file does not exist.")
assert len(cfg[dataset]) > 0, "Test set must be specified!"
if ".pth.tar" in args.ckpt:
assert os.path.isfile(args.ckpt), "CKPT file does not exist!"
ckpt_file = args.ckpt
else:
assert os.path.isdir(args.ckpt), "CKPT file folder does not exist!"
if args.epoch > 0:
ckpt_file = os.path.join(
args.ckpt, 'epoch_{:03d}.pth.tar'.format(args.epoch)
)
else:
ckpt_file_list = sorted(glob.glob(os.path.join(args.ckpt, '*.pth.tar')))
ckpt_file = ckpt_file_list[-1]
assert os.path.exists(ckpt_file)
if args.topk > 0:
cfg['model']['test_cfg']['max_seg_num'] = args.topk
if printInfo:
pprint(cfg)
"""1. fix all randomness"""
# fix the random seeds (this will fix everything)
_ = fix_random_seed(0, include_cuda=True)
"""2. create dataset / dataloader"""
val_dataset = make_dataset(
cfg['dataset_name'], False, cfg[dataset], **cfg['dataset']
)
# set bs = 1, and disable shuffle
val_loader = make_data_loader(
val_dataset, False, None, 1, cfg['loader']['num_workers']
)
"""3. create model and evaluator"""
# model
model = make_meta_arch(cfg['model_name'], **cfg['model'])
# not ideal for multi GPU training, ok for now
model = nn.DataParallel(model, device_ids=cfg['devices'])
"""4. load ckpt"""
if printInfo:
print("=> loading checkpoint '{}'".format(ckpt_file))
# load ckpt, reset epoch / best rmse
checkpoint = torch.load(
ckpt_file,
map_location = lambda storage, loc: storage.cuda(cfg['devices'][0])
)
# load ema model instead
if printInfo:
print("Loading from EMA model ...")
model.load_state_dict(checkpoint['state_dict_ema'])
del checkpoint
# set up evaluator
det_eval, output_file = None, None
if not args.saveonly:
val_db_vars = val_dataset.get_attributes()
det_eval = ANETdetection(
val_dataset.json_file,
val_dataset.split[0],
tiou_thresholds = val_db_vars['tiou_thresholds'],
printInfo=printInfo
)
else:
output_file = os.path.join(os.path.split(ckpt_file)[0], 'eval_results.pkl')
"""5. Test the model"""
if printInfo:
print("\nStart testing model {:s} ...".format(cfg['model_name']))
start = time.time()
mAP, AD, F = valid_one_epoch(
val_loader,
model,
-1,
evaluator=det_eval,
output_file=output_file,
ext_score_file=cfg['test_cfg']['ext_score_file'],
tb_writer=None,
print_freq=args.print_freq,
printInfo=printInfo,
decodeSetting=cfg['setting']
)
end = time.time()
if printInfo:
print("All done! Total time: {:0.2f} sec".format(end - start))
return mAP, AD, F
################################################################################
if __name__ == '__main__':
"""Entry Point"""
# the arg parser
parser = argparse.ArgumentParser(
description='Train a point-based transformer for action localization')
parser.add_argument('config', type=str, metavar='DIR',
help='path to a config file')
parser.add_argument('ckpt', type=str, metavar='DIR',
help='path to a checkpoint')
parser.add_argument('-epoch', type=int, default=-1,
help='checkpoint epoch')
parser.add_argument('-t', '--topk', default=-1, type=int,
help='max number of output actions (default: -1)')
parser.add_argument('--saveonly', action='store_true',
help='Only save the ouputs without evaluation (e.g., for test set)')
parser.add_argument('-p', '--print-freq', default=10, type=int,
help='print frequency (default: 10 iterations)')
args = parser.parse_args()
main(args)