-
Notifications
You must be signed in to change notification settings - Fork 3
/
06-telegrambot.py
65 lines (45 loc) · 2.24 KB
/
06-telegrambot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
'''
pip install python-telegram-bot langchain faiss-cpu tiktoken
'''
import os
import logging
from dotenv import load_dotenv
from telegram import Update
from telegram.ext import ApplicationBuilder, ContextTypes, CommandHandler
from langchain.document_loaders import TextLoader, PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
import requests
load_dotenv()
DATABASE = None
logging.basicConfig(
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO
)
async def start(update: Update, context: ContextTypes.DEFAULT_TYPE):
await context.bot.send_message(chat_id=update.effective_chat.id, text="I'm a bot, please talk to me!")
async def load(update: Update, context: ContextTypes.DEFAULT_TYPE):
# loader = TextLoader('state_of_the_union.txt')
url = "https://www.ehu.eus/documents/340468/2334257/Normativa_TFG_cas/d85cae6b-7940-47ed-9c08-c1585648efc4" # TFG Normativa
loader = PyPDFLoader(url)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
global DATABASE
DATABASE = FAISS.from_documents(docs, OpenAIEmbeddings())
await context.bot.send_message(chat_id=update.effective_chat.id, text="Document loaded!")
async def query(update: Update, context: ContextTypes.DEFAULT_TYPE):
docs = DATABASE.similarity_search(update.message.text, k=2)
chain = load_qa_chain(llm=OpenAI(), chain_type="stuff")
results = chain({'input_documents':docs, "question":update.message.text}, return_only_outputs=True)
text = results['output_text']
await context.bot.send_message(chat_id=update.effective_chat.id, text=text)
if __name__ == "__main__":
application = ApplicationBuilder().token(
os.getenv('TELEGRAM_BOT_TOKEN')).build()
application.add_handler(CommandHandler('start', start))
application.add_handler(CommandHandler('load', load))
application.add_handler(CommandHandler('query', query))
application.run_polling()