forked from klbouman/hopstools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cal_apriori_pang_uvfits.py
669 lines (564 loc) · 25.9 KB
/
cal_apriori_pang_uvfits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
#!/usr/bin/env python
#hops2uvfits.py
#take data from all fringe files in a directory and put them in a uvfits file
import numpy as np
import mk4 # part of recent HOPS install, need HOPS ENV variables
import datetime
import ctypes
import astropy.io.fits as fits
import astropy.time as at
from astropy.time import Time
from argparse import Namespace
import glob
import os, sys
#import eat.hops.util
#from eat.io import util
#from eat.plots import util as putil
#from astropy.time import Time
import numpy.matlib
import scipy.interpolate
import itertools as it
from hops2uvfits import *
import pandas as pd
import datetime
from datetime import timedelta
# For Andrew:
#DATADIR_DEFAULT = '/home/achael/EHT/hops/data/3554/' #/098-0924/'
DAY=str(3600)
CALDIR_DEFAULT = '/home/achael/Desktop/imaging_workshop/HOPS_Rev1/SEFDs/SEFD_HI/'+DAY
DATADIR_DEFAULT = '/home/achael/Desktop/imaging_workshop/HOPS_Rev1/er1-hops-hi/6.uvfits_new/'+DAY
OUTDIR_DEFAULT = '/home/achael/Desktop/imaging_workshop/HOPS_Rev1/er1-hops-hi/7.apriorical'
#For Katie
#CALDIR_DEFAULT = '/Users/klbouman/Research/vlbi_imaging/software/hops/eat/SEFDs/SEFD_HI/3601'
#DATADIR_DEFAULT = '/Users/klbouman/Research/vlbi_imaging/software/hops/tmpout2' #'/Users/klbouman/Research/vlbi_imaging/software/hops/er1-hops-hi/6.uvfits/3601'
#OUTDIR_DEFAULT = '/Users/klbouman/Research/vlbi_imaging/software/hops/tmpout'
#conversion factors and data types
#station_dic = {'ALMA':'AA', 'APEX':'AP', 'SMTO':'AZ', 'JCMT':'JC', 'LMT':'LM', 'PICOVEL':'PV', 'SMAP':'SM', 'SMAR':'SR', 'SPT':'SP'}
station_dic = {'ALMA':'AA', 'A':'AA','AA':'AA',
'APEX':'AP', 'X':'AP','AP': 'AP',
'LMT':'LM','L':'LM','LM':'LM',
'PICOVEL':'PV','P':'PV','IRAM30': 'PV','PV':'PV',
'SMTO':'AZ','Z': 'AZ','SMT':'AZ','AZ':'AZ',
'SPT':'SP','Y':'SP','SP':'SP',
'JCMT':'JC','J':'JC','JC':'JC',
'SMAP':'SM','S':'SM','SMAR':'SM','SMA':'SM','SM':'SM',
'SMAR':'SR','R':'SR','SMR':'SR','SR':'SR'}
station_frot = {'PV':(1,-1,0),'AZ':(1,1,0),'SM':(1,-1,np.pi/4.),'LM': (1,-1,0),'AA':(1,0,0),'SP':(1,0,0),'AP':(1,1,0),'JC':(1,0,0),'SR':(1,-1,np.pi/4.)}
BLTYPE = [('time','f8'),('t1','a32'),('t2','a32')]
DTARR = [('site', 'a32'), ('x','f8'), ('y','f8'), ('z','f8')]
DTCAL = [('time','f8'), ('rscale','c16'), ('lscale','c16')]
DTPOL = [('time','f8'),('freq','f8'),('tint','f8'),
('t1','a32'),('t2','a32'),
('u','f8'),('v','f8'),
('rr','c16'),('ll','c16'),('rl','c16'),('lr','c16'),
('rrweight','f8'),('llweight','f8'),('rlweight','f8'),('lrweight','f8')]
EP = 1.e-5
CORRCOEFF = 10000.0
DEGREE = np.pi/180.0
HOUR = 15.0*DEGREE
C = 299792458.0
MHZ2HZ = 1e6
MJD_0 = 2400000.5
RADPERARCSEC = (np.pi / 180.) / 3600.
##################################################################################################
# Caltable object
##################################################################################################
# ANDREW TODO copied from caltable.py in ehtim
# load directly instead?
class Caltable(object):
"""
Attributes:
"""
def __init__(self, ra, dec, rf, bw, datatables, tarr, source='NONE', mjd=0, timetype='UTC'):
"""A polarimetric VLBI observation of visibility amplitudes and phases (in Jy).
Args:
Returns:
caltable (Caltable): an Caltable object
"""
if len(datatables) == 0:
raise Exception("No data in input table!")
# Set the various parameters
self.source = str(source)
self.ra = float(ra)
self.dec = float(dec)
self.rf = float(rf)
self.bw = float(bw)
self.mjd = int(mjd)
if timetype not in ['GMST', 'UTC']:
raise Exception("timetype must by 'GMST' or 'UTC'")
self.timetype = timetype
self.tarr = tarr
# Dictionary of array indices for site names
self.tkey = {self.tarr[i]['site']: i for i in range(len(self.tarr))}
# Save the data
self.data = datatables
def copy(self):
"""Copy the caltable object.
Args:
Returns:
(Caltable): a copy of the Caltable object.
"""
new_caltable = Caltable(self.ra, self.dec, self.rf, self.bw, self.data, self.tarr, source=self.source, mjd=self.mjd, timetype=self.timetype)
return new_caltable
def load_caltable_ds(datastruct, tabledir, sqrt_gains=False ):
"""Load apriori cal tables
"""
if datastruct.dtype != "EHTIM":
raise Exception("datastruct must be in EHTIM format in load_caltable!")
tarr = datastruct.antenna_info
source = datastruct.obs_info.src
mjd = int(np.min(datastruct.data['time'] - MJD_0))
ra = datastruct.obs_info.ra
dec = datastruct.obs_info.dec
rf = datastruct.obs_info.ref_freq
bw = datastruct.obs_info.ch_bw
datatables = {}
for s in range(0, len(tarr)):
site = tarr[s]['site']
filename = tabledir + "/" + source + '_' + site + '.txt'
try:
data = np.loadtxt(filename, dtype=bytes).astype(str)
except IOError:
print("NO FILE: " + filename)
continue
datatable = []
# ANDREW HACKY WAY TO MAKE IT WORK WITH ONLY ONE ENTRY
onerowonly=False
try: data.shape[1]
except IndexError:
data = data.reshape(1,len(data))
onerowonly = True
for row in data:
time = (float(row[0]) - mjd) * 24.0 # time is given in mjd
# # Maciek's old convention had a square root
# rscale = np.sqrt(float(row[1])) # r
# lscale = np.sqrt(float(row[2])) # l
if len(row) == 3:
rscale = float(row[1])
lscale = float(row[2])
elif len(row) == 5:
rscale = float(row[1]) + 1j*float(row[2])
lscale = float(row[3]) + 1j*float(row[4])
else:
raise Exception("cannot load caltable -- format unknown!")
if sqrt_gains:
rscale = rscale**.5
lscale = lscale**.5
#ANDREW THERE ARE ZERO VALS IN THE CALTABLE
if rscale==0. and lscale==0.:
continue
else:
datatable.append(np.array((time, rscale, lscale), dtype=DTCAL))
#ANDREW HACKY WAY TO MAKE IT WORK WITH ONLY ONE ENTRY
if onerowonly:
datatable.append(np.array((1.1*time, rscale, lscale), dtype=DTCAL))
datatables[site] = np.array(datatable)
if len(datatables)>0:
caltable = Caltable(ra, dec, rf, bw, datatables, tarr, source=source, mjd=mjd, timetype='UTC')
else:
caltable=False
return caltable
def xyz_2_latlong(obsvecs):
"""Compute the (geocentric) latitude and longitude of a site at geocentric position x,y,z
The output is in radians
"""
if len(obsvecs.shape)==1:
obsvecs=np.array([obsvecs])
out = []
for obsvec in obsvecs:
x = obsvec[0]
y = obsvec[1]
z = obsvec[2]
lon = np.array(np.arctan2(y,x))
lat = np.array(np.arctan2(z, np.sqrt(x**2+y**2)))
out.append([lat,lon])
out = np.array(out)
#if out.shape[0]==1: out = out[0]
return out
def apply_caltable_uvfits(caltable, datastruct, filename_out, interp='linear', extrapolate=True,frotcal=True,elev_function='astropy',interp_dt=1.,elev_interp_kind='cubic'):
"""apply a calibration table to a uvfits file
Args:
caltable (Caltable) : a caltable object
datastruct (Datastruct) : input data structure in EHTIM format
filename_out (str) : uvfits output file name
frotcal (bool): whether apply field rotation angle correction
elev_function (string): 'ehtim' for ehtim's function of calculating elevation, anything else
for astropy functions
"""
if datastruct.dtype != "EHTIM":
raise Exception("datastruct must be in EHTIM format in apply_caltable_uvfits!")
if not (caltable.tarr == datastruct.antenna_info).all():
raise Exception("The telescope array in the Caltable is not the same as in the Datastruct")
if extrapolate is True: # extrapolate can be a tuple or numpy array
fill_value = "extrapolate"
else:
fill_value = extrapolate
# interpolate the calibration table
rinterp = {}
linterp = {}
skipsites = []
#PREPARE INTERPOLATION DATA
xyz={}
latitude={}
longitude={}
ra = caltable.ra*np.pi*2./24.#rad
dec = caltable.dec*np.pi*2./360.#rad
sourcevec = np.array([np.cos(dec), 0, np.sin(dec)])
PAR={}
ELE={}
OFF={}
elevfit={}
gmst_function= lambda time_mjd: Time(time_mjd, format='mjd').sidereal_time('mean','greenwich').hour*2.*np.pi/24.
#FIND MAX RANGE OF MJD TIMES FOR INTERPOLATION
if (frotcal==True)&(interp_dt>0):
dt_mjd = interp_dt*1./24./60./60. #interp_dt in sec
mjd_max=-1
mjd_min=1e10
for s in range(0, len(caltable.tarr)):
site = caltable.tarr[s]['site']
try:
#sometimes station reported but no calibration
time_mjd = caltable.data[site]['time']/24.0 + caltable.mjd
mjd_max_foo = np.max(time_mjd)
mjd_min_foo = np.min(time_mjd)
if (mjd_max_foo > mjd_max):
mjd_max = mjd_max_foo
if (mjd_min_foo < mjd_min):
mjd_min = mjd_min_foo
except KeyError: continue
#MAKE TIME GRIDS FOR INTERPOLATION
time_mjd_fake = np.arange(mjd_min,mjd_max,dt_mjd)
gmst_fake = gmst_function(time_mjd_fake)
datetimes_fake = Time(time_mjd_fake, format='mjd').to_datetime()
strtime_fake = [str(round_time(x)) for x in datetimes_fake]
thetas_fake = np.mod((gmst_fake - ra), 2.*np.pi)
for s in range(0, len(caltable.tarr)):
site = caltable.tarr[s]['site']
xyz_foo = np.asarray((caltable.tarr[s]['x'],caltable.tarr[s]['y'],caltable.tarr[s]['z']))
xyz[site] = xyz_foo
latlong = xyz_2_latlong(xyz_foo)
latitude[site] = latlong[0][0]#rad
longitude[site] = latlong[0][1]#rad
PAR[site] = station_frot[site][0]
ELE[site] = station_frot[site][1]
OFF[site] = station_frot[site][2]
# This is only if we interpolate elevation
if (frotcal==True)&(interp_dt>0):
if elev_function=='ehtim':
elev_fake_foo = get_elev_2(earthrot(xyz[site], thetas_fake), sourcevec)#ehtim
else:
elev_fake_foo = get_elev(ra, dec, xyz[site], strtime_fake)##astropy
elevfit[site] = scipy.interpolate.interp1d(time_mjd_fake, elev_fake_foo,
kind=elev_interp_kind)
try:
caltable.data[site]
except KeyError:
skipsites.append(site)
print ("No Calibration Data for %s !" % site)
continue
time_mjd = caltable.data[site]['time']/24.0 + caltable.mjd
rinterp[site] = scipy.interpolate.interp1d(time_mjd, caltable.data[site]['rscale'],
kind=interp, fill_value=fill_value)
linterp[site] = scipy.interpolate.interp1d(time_mjd, caltable.data[site]['lscale'],
kind=interp, fill_value=fill_value)
#-------------------------------------------
# sort by baseline
data = datastruct.data
idx = np.lexsort((data['t2'], data['t1']))
bllist = []
for key, group in it.groupby(data[idx], lambda x: set((x['t1'], x['t2'])) ):
bllist.append(np.array([obs for obs in group]))
bllist = np.array(bllist)
# apply the calibration
datatable = []
coub=0.
for bl_obs in bllist:
t1 = bl_obs['t1'][0]
t2 = bl_obs['t2'][0]
coub=coub+1
print('Calibrating {}-{} baseline, {}/{}'.format(t1,t2,coub,len(bllist)))
time_mjd = bl_obs['time'] - MJD_0 #dates are in mjd in Datastruct
if frotcal==True:
gmst = gmst_function(time_mjd)
thetas = np.mod((gmst - ra), 2*np.pi)
hangle1 = gmst + longitude[t1] - ra #HOUR ANGLE FIRST TELESCOPE
hangle2 = gmst + longitude[t2] - ra #HOUR ANGLE SECOND TELESCOPE
par1I_t1 = np.sin(hangle1)
par1I_t2 = np.sin(hangle2)
par1R_t1 = np.cos(dec)*np.tan(latitude[t1]) - np.sin(dec)*np.cos(hangle1)
par1R_t2 = np.cos(dec)*np.tan(latitude[t2]) - np.sin(dec)*np.cos(hangle2)
parangle1 = np.angle(par1R_t1 + 1j*par1I_t1 ) #PARALACTIC ANGLE T1
parangle2 = np.angle(par1R_t2 + 1j*par1I_t2 ) #PARALACTIC ANGLE T2
if interp_dt<=0:
if elev_function=='ehtim':
elev1 = get_elev_2(earthrot(xyz[t1], thetas), sourcevec)
elev2 = get_elev_2(earthrot(xyz[t2], thetas), sourcevec)
else:
datetimes = Time(time_mjd, format='mjd').to_datetime()
strtime = [str(round_time(x)) for x in datetimes]
elev1 = get_elev(ra, dec, xyz[t1], strtime) #ELEVATION T1
elev2 = get_elev(ra, dec, xyz[t2], strtime) #ELEVATION T2
else:
elev1 = elevfit[t1](time_mjd)
elev2 = elevfit[t2](time_mjd)
fran1 = PAR[t1]*parangle1 + ELE[t1]*elev1 + OFF[t1]
fran2 = PAR[t2]*parangle2 + ELE[t2]*elev2 + OFF[t2]
fran_R1 = np.exp(1j*fran1)
fran_L1 = np.exp(-1j*fran1)
fran_R2 = np.exp(1j*fran2)
fran_L2 = np.exp(-1j*fran2)
if t1 in skipsites:
rscale1 = lscale1 = np.array(1.)
else:
if frotcal==False:
rscale1 = rinterp[t1](time_mjd)
lscale1 = linterp[t1](time_mjd)
else:
rscale1 = rinterp[t1](time_mjd)*fran_R1
lscale1 = linterp[t1](time_mjd)*fran_L1
if t2 in skipsites:
rscale2 = lscale2 = np.array(1.)
else:
if frotcal==False:
rscale2 = rinterp[t2](time_mjd)
lscale2 = linterp[t2](time_mjd)
else:
rscale2 = rinterp[t2](time_mjd)*fran_R2
lscale2 = linterp[t2](time_mjd)*fran_L2
# if force_singlepol == 'R':
# lscale1 = rscale1
# lscale2 = rscale2
# if force_singlepol == 'L':
# rscale1 = lscale1
# rscale2 = lscale2
rrscale = rscale1 * rscale2.conj()
llscale = lscale1 * lscale2.conj()
rlscale = rscale1 * lscale2.conj()
lrscale = lscale1 * rscale2.conj()
bl_obs['rr'] = (bl_obs['rr']) * rrscale
bl_obs['ll'] = (bl_obs['ll']) * llscale
bl_obs['rl'] = (bl_obs['rl']) * rlscale
bl_obs['lr'] = (bl_obs['lr']) * lrscale
bl_obs['rrweight'] = (bl_obs['rrweight']) / (np.abs(rrscale)**2)
bl_obs['llweight'] = (bl_obs['llweight']) / (np.abs(llscale)**2)
bl_obs['rlweight'] = (bl_obs['rlweight']) / (np.abs(rlscale)**2)
bl_obs['lrweight'] = (bl_obs['lrweight']) / (np.abs(lrscale)**2)
if len(datatable):
datatable = np.hstack((datatable, bl_obs))
else:
datatable = bl_obs
# put in uvfits format datastruct
# telescope arrays
tarr = datastruct.antenna_info
tkeys = {tarr[i]['site']: i for i in range(len(tarr))}
tnames = tarr['site']
tnums = np.arange(1, len(tarr) + 1)
xyz = np.array([[tarr[i]['x'],tarr[i]['y'],tarr[i]['z']] for i in np.arange(len(tarr))])
# uvfits format output data table
bl_list = []
for i in xrange(len(datatable)):
entry = datatable[i]
t1num = entry['t1']
t2num = entry['t2']
if tkeys[entry['t1']] > tkeys[entry['t2']]: # reorder telescopes if necessary
#print entry['t1'], tkeys[entry['t1']], entry['t2'], tkeys[entry['t2']]
entry['t1'] = t2num
entry['t2'] = t1num
entry['u'] = -entry['u']
entry['v'] = -entry['v']
entry['rr'] = np.conj(entry['rr'])
entry['ll'] = np.conj(entry['ll'])
entry['rl'] = np.conj(entry['rl'])
entry['lr'] = np.conj(entry['lr'])
datatable[i] = entry
bl_list.append(np.array((entry['time'],entry['t1'],entry['t2']),dtype=BLTYPE))
_, unique_idx_anttime, idx_anttime = np.unique(bl_list, return_index=True, return_inverse=True)
_, unique_idx_freq, idx_freq = np.unique(datatable['freq'], return_index=True, return_inverse=True)
# random group params
u = datatable['u'][unique_idx_anttime]
v = datatable['v'][unique_idx_anttime]
t1num = [tkeys[scope] + 1 for scope in datatable['t1'][unique_idx_anttime]]
t2num = [tkeys[scope] + 1 for scope in datatable['t2'][unique_idx_anttime]]
bls = 256*np.array(t1num) + np.array(t2num)
jds = datatable['time'][unique_idx_anttime]
tints = datatable['tint'][unique_idx_anttime]
# data table
nap = len(unique_idx_anttime)
nsubchan = 1
nstokes = 4
nchan = datastruct.obs_info.nchan
outdat = np.zeros((nap, 1, 1, nchan, nsubchan, nstokes, 3))
outdat[:,:,:,:,:,:,2] = -1.0
vistypes = ['rr','ll','rl','lr']
for i in xrange(len(datatable)):
row_freq_idx = idx_freq[i]
row_dat_idx = idx_anttime[i]
for j in range(len(vistypes)):
outdat[row_dat_idx,0,0,row_freq_idx,0,j,0] = np.real(datatable[i][vistypes[j]])
outdat[row_dat_idx,0,0,row_freq_idx,0,j,1] = np.imag(datatable[i][vistypes[j]])
outdat[row_dat_idx,0,0,row_freq_idx,0,j,2] = datatable[i][vistypes[j]+'weight']
# package data for saving
obsinfo_out = datastruct.obs_info
antennainfo_out = Antenna_info(tnames, tnums, xyz)
uvfitsdata_out = Uvfits_data(u,v,bls,jds, tints, outdat)
datastruct_out = Datastruct(obsinfo_out, antennainfo_out, uvfitsdata_out)
# save final file
save_uvfits(datastruct_out, filename_out)
return
def get_elev(ra_source, dec_source, xyz_antenna, time):
#this one is by Michael Janssen
"""
given right ascension and declination of a sky source [ICRS: ra->(deg,arcmin,arcsec) and dec->(hour,min,sec)]
and given the position of the telescope from the vex file [Geocentric coordinates (m)]
and the time of the observation (e.g. '2012-7-13 23:00:00') [UTC:yr-m-d],
returns the elevation of the telescope.
Note that every parameter can be an array (e.g. the time)
"""
from astropy import units as u
from astropy.coordinates import EarthLocation, AltAz, ICRS, Angle
#angle conversions:
ra_src = Angle(ra_source, unit=u.rad)
dec_src = Angle(dec_source, unit=u.rad)
source_position = ICRS(ra=ra_src, dec=dec_src)
antenna_position = EarthLocation(x=xyz_antenna[0]*u.m, y=xyz_antenna[1]*u.m, z=xyz_antenna[2]*u.m)
altaz_system = AltAz(location=antenna_position, obstime=time)
trans_to_altaz = source_position.transform_to(altaz_system)
elevation = trans_to_altaz.alt
return elevation.rad
def round_time(t,round_s=1.):
"""rounding time to given accuracy
Args:
t: time
round_s: delta time to round to in seconds
Returns:
round_t: rounded time
"""
t0 = datetime.datetime(t.year,1,1)
foo = t - t0
foo_s = foo.days*24*3600 + foo.seconds + foo.microseconds*(1e-6)
foo_s = np.round(foo_s/round_s)*round_s
days = np.floor(foo_s/24/3600)
seconds = np.floor(foo_s - 24*3600*days)
microseconds = int(1e6*(foo_s - days*3600*24 - seconds))
round_t = t0+datetime.timedelta(days,seconds,microseconds)
return round_t
def earthrot(vecs, thetas):
"""Rotate a vector / array of vectors about the z-direction by theta / array of thetas (radian)
"""
if len(vecs.shape)==1:
vecs = np.array([vecs])
if np.isscalar(thetas):
thetas = np.array([thetas for i in range(len(vecs))])
# equal numbers of sites and angles
if len(thetas) == len(vecs):
rotvec = np.array([np.dot(np.array(((np.cos(thetas[i]),-np.sin(thetas[i]),0),(np.sin(thetas[i]),np.cos(thetas[i]),0),(0,0,1))), vecs[i])
for i in range(len(vecs))])
# only one rotation angle, many sites
elif len(thetas) == 1:
rotvec = np.array([np.dot(np.array(((np.cos(thetas[0]),-np.sin(thetas[0]),0),(np.sin(thetas[0]),np.cos(thetas[0]),0),(0,0,1))), vecs[i])
for i in range(len(vecs))])
# only one site, many angles
elif len(vecs) == 1:
rotvec = np.array([np.dot(np.array(((np.cos(thetas[i]),-np.sin(thetas[i]),0),(np.sin(thetas[i]),np.cos(thetas[i]),0),(0,0,1))), vecs[0])
for i in range(len(thetas))])
else:
raise Exception("Unequal numbers of vectors and angles in earthrot(vecs, thetas)!")
return rotvec
def get_elev_2(obsvecs, sourcevec):
"""Return the elevation of a source with respect to an observer/observers in radians
obsvec can be an array of vectors but sourcevec can ONLY be a single vector
"""
if len(obsvecs.shape)==1:
obsvecs=np.array([obsvecs])
anglebtw = np.array([np.dot(obsvec,sourcevec)/np.linalg.norm(obsvec)/np.linalg.norm(sourcevec) for obsvec in obsvecs])
el = 0.5*np.pi - np.arccos(anglebtw)
return el
##################################################################################################################################
########################## Main FUNCTION ########################################################################################
##################################################################################################################################
def main(datadir=DATADIR_DEFAULT, caldir=CALDIR_DEFAULT, outdir=DATADIR_DEFAULT,
interp='linear', extrapolate=True, ident='',sqrt_gains=False, frotcal=True,elev_function='astropy',interp_dt=1.,elev_interp_kind='cubic'):
print("********************************************************")
print("*********************CALUVFITS**************************")
print("********************************************************")
print("Applying calibration tables from directory", caldir)
print("to uvfits files in directory: ", datadir)
print(' ')
uvfitsfiles = glob.glob(datadir + '/*.uvfits')
for uvfitsfile in sorted(uvfitsfiles):
print(' ')
print("A priori calibrating: ", uvfitsfile)
datastruct_ehtim = load_and_convert_hops_uvfits(uvfitsfile)
source = datastruct_ehtim.obs_info.src
tarr = datastruct_ehtim.antenna_info
caltable = load_caltable_ds(datastruct_ehtim, caldir,sqrt_gains=sqrt_gains)
if caltable==False:
print("couldn't find caltable in " + caldir + " for " + source + "!!")
continue
outname = outdir + '/hops_' + os.path.basename(os.path.normpath(datadir)) + '_' + source + ident + '.apriori.uvfits'
apply_caltable_uvfits(caltable, datastruct_ehtim, outname, interp=interp, extrapolate=extrapolate,frotcal=frotcal,elev_function=elev_function,interp_dt=interp_dt,elev_interp_kind=elev_interp_kind)
print("Saved calibrated data to ", outname)
print("---------------------------------------------------------")
print("---------------------------------------------------------")
print("---------------------------------------------------------")
print(' ')
return 0
if __name__=='__main__':
if len(sys.argv) == 1:
datadir = DATADIR_DEFAULT
else: datadir = sys.argv[-1]
if datadir[0] == '-': datadir=DATADIR_DEFAULT
if ("-h" in sys.argv) or ("--h" in sys.argv):
print("usage: caluvfits.py datadir \n" +
"options: \n" +
" --caldir caldir : specify directory with cal tables \n" +
" --outdir outdir : specifiy output directory for calibrated files \n" +
" --ident : specify identifying tag for uvfits files \n"
" --interp : specify interpolation order \n" +
" --no-extrapolate : specify to not calibrate outside interval in cal tables \n"
" --sqrt_gains : specify to take sqrt of gains before applying")
sys.exit()
frotcal = True
if "--no-frotcal" in sys.argv: frotcal = None
extrapolate = True
if "--no-extrapolate" in sys.argv: extrapolate = None
sqrt_gains = False
if "--sqrt_gains" in sys.argv: sqrt_gains = True
elev_function = 'astropy'
if "--elev_function" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--elev_function'):
elev_function = (sys.argv[a+1])
interp_dt = 1.
if "--interp_dt" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--interp_dt'):
interp_dt = float(sys.argv[a+1])
interp = "linear"
if "--interp" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--interp'):
interp = (sys.argv[a+1])
elev_interp_kind='cubic'
if "--elev_interp_kind" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--elev_interp_kind'):
elev_interp_kind = (sys.argv[a+1])
ident = ""
if "--ident" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--ident'):
ident = "_" + sys.argv[a+1]
caldir = CALDIR_DEFAULT
if "--caldir" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--caldir'):
caldir = sys.argv[a+1]
outdir = datadir
if "--outdir" in sys.argv:
for a in range(0, len(sys.argv)):
if(sys.argv[a] == '--outdir'):
outdir = sys.argv[a+1]
else:
outdir = OUTDIR_DEFAULT
main(datadir=datadir, outdir=outdir, caldir=caldir, ident=ident, interp=interp, extrapolate=extrapolate,sqrt_gains=sqrt_gains,frotcal=frotcal,elev_function=elev_function,interp_dt=interp_dt,elev_interp_kind=elev_interp_kind)