diff --git a/pyproject.toml b/pyproject.toml index 820ba92..790e960 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -81,7 +81,7 @@ select = [ "I", # isort, see https://beta.ruff.rs/docs/rules/#isort-i # "N", # pep8-naming, see https://beta.ruff.rs/docs/rules/#pep8-naming-n "PTH", # flake9-use-pathlib, https://beta.ruff.rs/docs/rules/#flake8-use-pathlib-pth -# "TD", # flake8-todos, https://docs.astral.sh/ruff/rules/#flake8-todos-td + "TD", # flake8-todos, https://docs.astral.sh/ruff/rules/#flake8-todos-td ] ignore = [ # pycodestyle diff --git a/src/lamberthub/universal_solvers/arora.py b/src/lamberthub/universal_solvers/arora.py index 8647ebe..b47b7bf 100644 --- a/src/lamberthub/universal_solvers/arora.py +++ b/src/lamberthub/universal_solvers/arora.py @@ -586,9 +586,8 @@ def _get_W2prime(k, W, W_prime, epsilon=2e-2): W_2prime = _get_Ws2prime(k) else: - # TODO: a minus sign before "m" is imposed in original report. However, - # if placed, it does not provide convergence. This needs further - # investigation + # TODO: a minus sign before "m" is imposed in original report + # https://github.com/jorgepiloto/lamberthub/issues/151 # W_2prime = (5 * W_prime * k + 3 * W) / -m W_2prime = (5 * W_prime * k + 3 * W) / m diff --git a/src/lamberthub/universal_solvers/gooding.py b/src/lamberthub/universal_solvers/gooding.py index f5ea14c..ad96f0c 100644 --- a/src/lamberthub/universal_solvers/gooding.py +++ b/src/lamberthub/universal_solvers/gooding.py @@ -488,9 +488,7 @@ def d8rt(x): # GOTO 3 goto3 = True - # --- THE ITERATION METHOD STARTS NOW --- - # The iterative Halley method starts now - # TODO: THIS IS THE HALLEY METHOD + # --- THE ITERATION METHOD FOR HALLEY STARTS NOW --- while True: # 5: LINE OF STATEMENT diff --git a/src/lamberthub/universal_solvers/izzo.py b/src/lamberthub/universal_solvers/izzo.py index 259e2e5..ec5bc9d 100644 --- a/src/lamberthub/universal_solvers/izzo.py +++ b/src/lamberthub/universal_solvers/izzo.py @@ -220,7 +220,6 @@ def _tof_equation_y(x, y, T0, ll, M): @jit def _tof_equation_p(x, y, T, ll): - # TODO: What about derivatives when x approaches 1? return (3 * T * x - 2 + 2 * ll**3 * x / y) / (1 - x**2)