From 637f8ee3d73431bf9129bbf83b5f1c23d6d9b8d9 Mon Sep 17 00:00:00 2001 From: Jordan Murphy <35613487+jordan-d-murphy@users.noreply.github.com> Date: Tue, 30 Jan 2024 01:57:52 -0600 Subject: [PATCH] Revert original change that caused some CI tests to fail and pushed a new fix --- pandas/core/groupby/generic.py | 133 ++++++++++++++++++++++++++++++--- 1 file changed, 121 insertions(+), 12 deletions(-) diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index c558179d001b2..4d76deca5691c 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -1176,24 +1176,133 @@ def nsmallest( result = self._python_apply_general(f, data, not_indexed_same=True) return result - @doc(Series.idxmin.__doc__) def idxmin( - self, - axis: Axis | lib.NoDefault = lib.no_default, - skipna: bool = True, - *args, - **kwargs, + self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True ) -> Series: + """ + Return the row label of the minimum value. + + If multiple values equal the minimum, the first row label with that + value is returned. + + Parameters + ---------- + axis : {0 or 'index'} + Unused. Parameter needed for compatibility with DataFrame. + skipna : bool, default True + Exclude NA/null values. If the entire Series is NA, the result + will be NA. + + Returns + ------- + Index + Label of the minimum value. + + Raises + ------ + ValueError + If the Series is empty. + + See Also + -------- + numpy.argmin : Return indices of the minimum values + along the given axis. + DataFrame.idxmin : Return index of first occurrence of minimum + over requested axis. + Series.idxmax : Return index *label* of the first occurrence + of maximum of values. + + Notes + ----- + This method is the Series version of ``ndarray.argmin``. This method + returns the label of the minimum, while ``ndarray.argmin`` returns + the position. To get the position, use ``series.values.argmin()``. + + Examples + -------- + >>> s = pd.Series(data=[1, None, 4, 1], + ... index=['A', 'B', 'C', 'D']) + >>> s + A 1.0 + B NaN + C 4.0 + D 1.0 + dtype: float64 + + >>> s.idxmin() + 'A' + + If `skipna` is False and there is an NA value in the data, + the function returns ``nan``. + + >>> s.idxmin(skipna=False) + nan + """ return self._idxmax_idxmin("idxmin", axis=axis, skipna=skipna) - @doc(Series.idxmax.__doc__) def idxmax( - self, - axis: Axis | lib.NoDefault = lib.no_default, - skipna: bool = True, - *args, - **kwargs, + self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True ) -> Series: + """ + Return the row label of the maximum value. + + If multiple values equal the maximum, the first row label with that + value is returned. + + Parameters + ---------- + axis : {0 or 'index'} + Unused. Parameter needed for compatibility with DataFrame. + skipna : bool, default True + Exclude NA/null values. If the entire Series is NA, the result + will be NA. + + Returns + ------- + Index + Label of the maximum value. + + Raises + ------ + ValueError + If the Series is empty. + + See Also + -------- + numpy.argmax : Return indices of the maximum values + along the given axis. + DataFrame.idxmax : Return index of first occurrence of maximum + over requested axis. + Series.idxmin : Return index *label* of the first occurrence + of minimum of values. + + Notes + ----- + This method is the Series version of ``ndarray.argmax``. This method + returns the label of the maximum, while ``ndarray.argmax`` returns + the position. To get the position, use ``series.values.argmax()``. + + Examples + -------- + >>> s = pd.Series(data=[1, None, 4, 3, 4], + ... index=['A', 'B', 'C', 'D', 'E']) + >>> s + A 1.0 + B NaN + C 4.0 + D 3.0 + E 4.0 + dtype: float64 + + >>> s.idxmax() + 'C' + + If `skipna` is False and there is an NA value in the data, + the function returns ``nan``. + + >>> s.idxmax(skipna=False) + nan + """ return self._idxmax_idxmin("idxmax", axis=axis, skipna=skipna) @doc(Series.corr.__doc__)