-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalisations.lyx
559 lines (428 loc) · 13.3 KB
/
normalisations.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language british
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style british
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
Normalise:
\end_layout
\begin_layout Itemize
times to the electron-electron collision time
\begin_inset Formula $\tau_{ref}=\tau_{ee}(n_{ref},T_{ref})$
\end_inset
\end_layout
\begin_layout Itemize
densities to reference density
\begin_inset Formula $n_{ref}=10^{19}m^{-3}$
\end_inset
\end_layout
\begin_layout Itemize
mass to electron mass
\begin_inset Formula $m_{e}$
\end_inset
\end_layout
\begin_layout Itemize
energy to
\begin_inset Formula $T_{ref}$
\end_inset
\end_layout
\begin_layout Itemize
pressure to
\begin_inset Formula $n_{ref}T_{ref}$
\end_inset
\end_layout
\begin_layout Itemize
electric potential to
\begin_inset Formula $T_{ref}/e$
\end_inset
\end_layout
\begin_layout Standard
Derived quantities:
\end_layout
\begin_layout Itemize
velocity to electron
\begin_inset Quotes bld
\end_inset
thermal speed
\begin_inset Quotes brd
\end_inset
\begin_inset Formula $v_{ref}=\sqrt{T_{ref}/m_{e}}$
\end_inset
\end_layout
\begin_layout Itemize
length to mean free path
\begin_inset Formula $L_{ref}=\lambda_{ref}=v_{ref}\tau_{ee}=\tau_{ee}\sqrt{T_{ref}/m_{e}}$
\end_inset
\end_layout
\begin_layout Section
Unnormalised equations
\end_layout
\begin_layout Standard
Cut-down version of Chodura 1971, dropping perpendicular gradients and also
(temporarily?) friction terms.
We will replace electron continuity equation with quasineutrality, and
neglect electron inertia to solve electron parallel momentum equation for
\begin_inset Formula $E_{\|}$
\end_inset
, assuming ambipolarity
\begin_inset Formula $V_{e}=V_{i}$
\end_inset
.
Here for brevity
\begin_inset Formula $V_{s}\equiv V_{\|s}$
\end_inset
,
\begin_inset Formula $\nabla=\nabla_{\|}$
\end_inset
.
Assume a straight, uniform magnetic field to simplify the geometric quantities
[
\begin_inset Formula $h_{\|}=1,h_{\perp}=0,\tau_{\|\|}=1,\tau_{\alpha\neq\|,\beta}=0,n_{\|\|}=0,n_{\|\perp}=n_{\perp\parallel}=0,n_{\perp\perp}=1$
\end_inset
].
Equation numbers refer to Chodura 1971
\begin_inset Newline newline
\end_inset
(1)
\begin_inset Formula
\begin{align*}
\frac{\partial\rho_{i}}{\partial t}+\nabla\left(\rho_{i}V_{i}\right) & =0
\end{align*}
\end_inset
(2)
\begin_inset Formula
\begin{align*}
\rho_{i}\frac{d_{i}V_{i}}{dt}+\nabla p_{i\|}-\rho_{i}\frac{e}{m_{i}}E_{\|} & =\cancel{\sum_{r}I_{\|}^{ir}}\\
\nabla p_{e\|}+\rho_{e}\frac{e}{m_{e}}E_{\|} & =0
\end{align*}
\end_inset
(3)
\begin_inset Formula
\begin{align*}
\frac{d_{s}p_{s\perp}}{dt}+\left(\nabla V_{s}\right)\left[p_{s\perp}+\pi_{s\|\perp}\right]+\nabla S_{s\|}^{\perp} & =\sum_{r}J_{sr\perp\perp}
\end{align*}
\end_inset
(4)
\begin_inset Formula
\[
\frac{d_{s}p_{s\|}}{dt}+\left(\nabla V_{s}\right)\left[3p_{s\|}+2\pi_{s\|\|}\right]+\nabla S_{s\|}^{\|}=\sum_{r}J_{sr\|\|}
\]
\end_inset
(17) for us
\begin_inset Formula $d^{sr}$
\end_inset
vanishes as we have no
\begin_inset Formula $V_{\perp}$
\end_inset
and we assume the parallel velocities are equal
\begin_inset Formula
\[
d_{\alpha}=d_{\alpha}^{sr}=V_{s\alpha}-V_{r\alpha}=0
\]
\end_inset
(15), (24)
\begin_inset Formula
\[
\beta_{s\perp}=\frac{m_{s}}{T_{s\perp}},\quad\beta_{s\|}=\frac{m_{s}}{T_{s\|}},\quad b_{s\perp}=\frac{\beta_{s\perp}}{\beta_{s\perp}+\beta_{r\perp}},\quad b_{s\|}=\frac{\beta_{s\|}}{\beta_{s\|}+\beta_{r\|}}
\]
\end_inset
(29)
\begin_inset Formula
\begin{align*}
J_{sr\perp\perp} & =\frac{4\rho_{s}\nu_{sr}}{m_{r}+m_{s}}\left[2K_{200}^{sr}\left(T_{r\perp}-T_{s\perp}\right)+\frac{m_{r}}{\beta_{\perp rs}}\left(K_{002}^{sr}-K_{200}^{sr}\right)\right]
\end{align*}
\end_inset
(21), (20)
\begin_inset Formula
\[
\beta_{sr\|}=\frac{\beta_{s\|}\beta_{r\|}}{\left(\beta_{s\|}+\beta_{r\|}\right)},\quad\beta_{sr\perp}=\frac{\beta_{s\perp}\beta_{r\perp}}{\left(\beta_{s\perp}+\beta_{r\perp}\right)},\quad\alpha_{sr}=\frac{\beta_{sr\|}}{\beta_{sr\perp}}=\frac{\beta_{s\|}\beta_{r\|}\left(\beta_{s\perp}+\beta_{r\perp}\right)}{\left(\beta_{s\|}+\beta_{r\|}\right)\beta_{s\perp}\beta_{r\perp}}
\]
\end_inset
(30)
\begin_inset Formula
\[
J_{sr\|\|}=\frac{8\rho_{s}\nu_{sr}}{m_{r}+m_{s}}\alpha_{sr}\left[K_{002}^{sr}\left(T_{r\|}-T_{s\|}\right)+\frac{m_{r}}{\beta_{rs\|}}\left(K_{200}^{sr}-K_{002}^{sr}\right)\right]
\]
\end_inset
text, section 4
\begin_inset Formula
\[
\pi_{e}\approx0
\]
\end_inset
(62), (63)
\begin_inset Formula
\[
\pi_{i\perp\perp}=\pi_{i\perp\|}=0
\]
\end_inset
\begin_inset Formula $\pi_{i\|\|}$
\end_inset
does not seem to be given, so set (?)
\begin_inset Formula
\[
\pi_{i\|\|}=0
\]
\end_inset
(64)
\begin_inset Formula
\[
S_{s\|}^{\perp}=\frac{1}{\left(c_{\perp}e_{\|}-c_{\|}e_{\perp}\right)}\frac{p_{s\|}}{m_{s}}\left\{ e_{\|}\left(\nabla T_{s\perp}-\cancel{k_{s\|}^{\perp}}\right)-3c_{\|}\left(\nabla T_{s\|}-\cancel{k_{s\|}^{\|}}\right)\right\}
\]
\end_inset
(65)
\begin_inset Formula
\[
S_{s\|}^{\|}=\frac{1}{\left(c_{\|}e_{\perp}-c_{\perp}e_{\|}\right)}\frac{p_{s\|}}{m_{s}}\left\{ e_{\perp}\left(\nabla T_{s\perp}-\cancel{k_{s\|}^{\perp}}\right)-3c_{\perp}\left(\nabla T_{s\|}-\cancel{k_{s\|}^{\|}}\right)\right\}
\]
\end_inset
(21)
\begin_inset Formula
\[
\alpha_{sr}=\frac{\beta_{sr\|}}{\beta_{sr\perp}},\quad X_{sr}=\alpha_{sr}-1
\]
\end_inset
(36), (37)
\begin_inset Formula
\[
\psi_{s}=\left(\alpha_{s}\right)^{2}\left(K_{004}^{s}-K_{202}^{s}\right)+\frac{1}{2}\alpha_{s}\left(K_{200}^{s}-K_{002}^{s}\right),\quad\phi_{s}=4K_{220}^{s}-2K_{202}^{s}-K_{200}^{s}+K_{002}^{s}
\]
\end_inset
definitions on pp.
657-658 - for electrons
\begin_inset Formula
\begin{align*}
c_{e\perp} & =-4\nu_{ee}\left(6\alpha K_{202}+\frac{\phi_{e}}{2}\right)+4\alpha\nu_{ei}\left(-32K_{222}+4K_{204}+10K_{202}-2K_{004}-K_{002}\right)\\
c_{e\|} & =2\nu_{ee}\psi_{e}+4\alpha^{2}\nu_{ei}\left(-\frac{8}{3}\alpha K_{204}+\frac{2}{3}\alpha K_{006}+4K_{202}-\left(1-\frac{\alpha}{3}\right)K_{004}-\frac{1}{2}K_{002}\right)\\
e_{e\perp} & =12\nu_{ee}\phi_{e}+12\nu_{ei}\left(16\alpha K_{222}-4\alpha K_{204}-2\left(2\alpha-1\right)K_{202}+2\alpha K_{004}-K_{002}\right)\\
e_{e\|} & =-12\nu_{ee}\psi_{e}+4\nu_{ei}\alpha\left(4\alpha^{2}K_{204}-2\alpha^{2}K_{006}-6\alpha K_{202}+4\alpha K_{004}-\frac{3}{2}K_{002}\right)\\
\boldsymbol{k}_{e}^{\perp} & \propto\boldsymbol{d}_{\|}=0\\
\boldsymbol{k}_{e}^{\|} & \propto\boldsymbol{d}_{\|}=0
\end{align*}
\end_inset
and for ions
\begin_inset Formula
\begin{align*}
c_{i\perp} & =-4\nu_{ii}\left(6\alpha_{i}K_{202}^{i}+\frac{1}{2}\phi_{i}\right)-4\nu_{ie}\left(2K_{002}^{e}+\alpha_{e}K_{002}^{e}\right)\\
c_{i\|} & =2\psi_{i}\nu_{ii}\\
e_{i\perp} & =12\phi_{i}\nu_{ii}\\
e_{i\|} & =-12\psi_{i}\nu_{ii}-12\nu_{ie}\alpha_{e}K_{002}^{e}\\
\boldsymbol{k}_{i}^{\perp} & =\boldsymbol{k}_{i}^{\|}=0
\end{align*}
\end_inset
\end_layout
\begin_layout Section
Normalised equations
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
\frac{\partial\hat{n}_{i}}{\partial\hat{t}}+\hat{\nabla}\left(\hat{n}_{i}\hat{V}_{i}\right) & =0
\end{align*}
\end_inset
(2)
\begin_inset Formula
\begin{align*}
\frac{n_{ref}v_{ref}}{\tau_{ref}}\hat{n}_{i}\left(\frac{\partial\hat{V}_{i}}{\partial\hat{t}}+\hat{V}_{i}\hat{\nabla}\hat{V}_{i}\right)+\frac{n_{ref}T_{ref}}{m_{e}\lambda_{ref}}\frac{1}{\hat{m}_{i}}\hat{\nabla}\hat{p}_{i\|}-\frac{e}{m_{e}}n_{ref}\frac{T_{ref}}{e}\frac{1}{\lambda_{ref}}\hat{n}_{i}\frac{1}{\hat{m}_{i}}\hat{E}_{\|} & =0\\
\frac{n_{ref}T_{ref}}{m_{e}\lambda_{ref}}\hat{n}_{i}\left(\frac{\partial\hat{V}_{i}}{\partial\hat{t}}+\hat{V}_{i}\hat{\nabla}\hat{V}_{i}\right)+\frac{n_{ref}T_{ref}}{m_{e}\lambda_{ref}}\frac{1}{\hat{m}_{i}}\hat{\nabla}\hat{p}_{i\|}-\frac{n_{ref}T_{ref}}{m_{e}\lambda_{ref}}\hat{n}_{i}\frac{1}{\hat{m}_{i}}\hat{E}_{\|} & =0\\
\frac{\partial\hat{V}_{i}}{\partial\hat{t}}+\hat{V}_{i}\hat{\nabla}\hat{V}_{i}+\frac{1}{\hat{m}_{i}\hat{n}_{i}}\hat{\nabla}\hat{p}_{i\|}-\frac{1}{\hat{m}_{i}}\hat{E}_{\|} & =0
\end{align*}
\end_inset
\begin_inset Formula
\begin{align*}
\frac{n_{ref}T_{ref}}{\lambda_{ref}}\hat{\nabla}\hat{p}_{e\|}+m_{e}\frac{n_{ref}T_{ref}}{e\lambda_{ref}}\hat{n}_{i}\frac{e}{m_{e}}\hat{E}_{\|} & =0\\
\hat{E}_{\|} & =-\frac{1}{\hat{n}_{i}}\hat{\nabla}\hat{p}_{e\|}
\end{align*}
\end_inset
(3)
\begin_inset Formula
\begin{align*}
\frac{n_{ref}T_{ref}}{\tau_{ref}}\left(\frac{\partial\hat{p}_{s\perp}}{\partial\hat{t}}+\hat{V}_{s}\hat{\nabla}\hat{p}_{s\perp}\right)+\frac{v_{ref}n_{ref}T_{ref}}{\lambda_{ref}}\left(\hat{\nabla}\hat{V}_{s}\right)\left[\hat{p}_{s\perp}\right]+\frac{S_{ref}}{\lambda_{ref}}\hat{\nabla}\hat{S}_{s\|}^{\perp} & =J_{ref}\sum_{r}\hat{J}_{sr\perp\perp}\\
\left(\frac{\partial\hat{p}_{s\perp}}{\partial\hat{t}}+\hat{V}_{s}\hat{\nabla}\hat{p}_{s\perp}\right)+\left(\hat{\nabla}\hat{V}_{s}\right)\left[\hat{p}_{s\perp}\right]+\hat{\nabla}\hat{S}_{s\|}^{\perp} & =\sum_{r}\hat{J}_{sr\perp\perp}
\end{align*}
\end_inset
with
\begin_inset Formula $S_{ref}=n_{ref}v_{ref}T_{ref}$
\end_inset
and
\begin_inset Formula $J_{ref}=n_{ref}T_{ref}/\tau_{ref}$
\end_inset
\begin_inset Newline newline
\end_inset
(4) is similar to (3) dimension-wise -
\begin_inset Formula $S^{\|}$
\end_inset
is normalised like
\begin_inset Formula $S^{\perp}$
\end_inset
and
\begin_inset Formula $J_{\|\|}$
\end_inset
like
\begin_inset Formula $J_{\perp\perp}$
\end_inset
\begin_inset Formula
\[
\left(\frac{\partial\hat{p}_{s\|}}{\partial\hat{t}}+\hat{V}_{s}\hat{\nabla}\hat{p}_{s\|}\right)+\left(\hat{\nabla}\hat{V}_{s}\right)\left[3\hat{p}_{s\|}\right]+\hat{\nabla}\hat{S}_{s\|}^{\|}=\sum_{r}\hat{J}_{sr\|\|}
\]
\end_inset
Noting that the
\begin_inset Formula $K$
\end_inset
's are dimensionless, as are
\begin_inset Formula $\alpha_{sr}$
\end_inset
,
\begin_inset Formula $\psi_{s}$
\end_inset
,
\begin_inset Formula $\phi_{s}$
\end_inset
, we find that
\begin_inset Formula $c_{e\perp}=\frac{1}{\tau_{ref}}\hat{c}_{e\perp}$
\end_inset
,
\begin_inset Formula $c_{e\|}=\frac{1}{\tau_{ref}}\hat{c}_{e\|}$
\end_inset
,
\begin_inset Formula $e_{e\perp}=\frac{1}{\tau_{ref}}\hat{e}_{e\perp}$
\end_inset
,
\begin_inset Formula $e_{e\|}=\frac{1}{\tau_{ref}}\hat{e}_{e\|}$
\end_inset
.
\begin_inset Formula $\beta_{s\perp}=\frac{1}{v_{ref}^{2}}\hat{\beta}_{s\perp}$
\end_inset
,
\begin_inset Formula $\beta_{s\|}=\frac{1}{v_{ref}^{2}}\hat{\beta}_{s\|}$
\end_inset
,
\begin_inset Formula $\beta_{sr\perp}=\frac{1}{v_{ref}^{2}}\hat{\beta}_{sr\perp}$
\end_inset
, and
\begin_inset Formula $\beta_{sr\|}=\frac{1}{v_{ref}^{2}}\hat{\beta}_{sr\|}$
\end_inset
.
Using these, we can check that the expressions above for
\begin_inset Formula $S_{s\|}^{\perp}$
\end_inset
and
\begin_inset Formula $S_{s\|}^{\|}$
\end_inset
should have dimensions
\begin_inset Formula
\[
\tau_{ref}^{2}n_{ref}T_{ref}\frac{1}{m_{ref}}\frac{1}{\tau_{ref}}\frac{1}{\lambda_{ref}}T_{ref}=\frac{\tau_{ref}n_{ref}T_{ref}^{2}}{m_{ref}\lambda_{ref}}=\frac{n_{ref}T_{ref}^{2}}{m_{ref}v_{ref}}=\frac{n_{ref}T_{ref}m_{ref}v_{ref}^{2}}{m_{ref}v_{ref}}=n_{ref}T_{ref}v_{ref}
\]
\end_inset
confirming our
\begin_inset Formula $S_{ref}$
\end_inset
above, and
\begin_inset Formula $J_{\perp\perp}$
\end_inset
,
\begin_inset Formula $J_{\|\|}$
\end_inset
should have dimensions
\begin_inset Formula
\[
m_{e}n_{ref}\frac{1}{\tau_{ref}}\frac{1}{m_{e}}T_{ref}=\frac{n_{ref}T_{ref}}{\tau_{ref}}.
\]
\end_inset
Finally note that (neglecting any difference between
\begin_inset Formula $\ln\Lambda_{ee}$
\end_inset
,
\begin_inset Formula $\ln\Lambda_{ei}$
\end_inset
and
\begin_inset Formula $\ln\Lambda_{ii}$
\end_inset
)
\begin_inset Formula
\begin{align*}
\hat{\nu}_{ee} & =\hat{\nu}_{ei}=\frac{\hat{n}_{i}}{\hat{T}_{e}^{3/2}}\\
\hat{\nu}_{ii} & =\frac{1}{\sqrt{\hat{m}_{i}}}\frac{\hat{n}_{i}}{\hat{T}_{i}^{3/2}}\\
\hat{\nu}_{ie} & =\frac{1}{\hat{m}_{i}}\frac{\hat{n}_{i}}{\hat{T}_{e}^{3/2}}
\end{align*}
\end_inset
\end_layout
\end_body
\end_document