-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
437 lines (345 loc) · 15.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import argparse
import math
import shutil
import time
import warnings
import os
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.distributed as dist
import torch.utils.data
import torchvision.models as torchvision_models
import models
from dataloader.spatio_temporal_dataset import SpatioTemporalDataset
from models.spatial_stream import SpatialStream
from models.temporal_stream import TemporalStream
from models.two_stream_fusion import TwoStreamFusion
try:
from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import amp, optimizers
from apex.multi_tensor_apply import multi_tensor_applier
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this code.")
"""
Based on:
https://github.com/pytorch/examples/blob/master/imagenet/main.py
and
https://github.com/NVIDIA/apex/blob/master/examples/imagenet/main_amp.py
"""
def get_model_names(models):
return [name for name in models.__dict__ if name.islower() and not name.startswith('__')
and callable(models.__dict__[name])]
model_names = sorted(get_model_names(models) + get_model_names(torchvision_models))
train_modes = ['spatio_temporal', 'spatial', 'temporal']
parser = argparse.ArgumentParser(description='UCF101 Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--data_split', default='01',
help='Data split csv file')
parser.add_argument('-a', '--arch', metavar='ARCH', default='vgg16_bn', choices=model_names,
help='backbone architecture: ' + ' | '.join(model_names) + ' (default: vgg16_bn)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=120, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts')
parser.add_argument('-b', '--batch-size', default=8, type=int, metavar='N',
help='mini-batch size (default:64) is the total batch size of all GPUs on the'
'current node when using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float, metavar='LR',
help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight decay', default=1e-4, type=float, metavar='W',
help='weight decay (default:1e-4)', dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N',
help='print frequency (default:10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to the latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model', default=True)
parser.add_argument('--mode', default='spatio_temporal', type=str,
help='Train two-stream network fusion or only one stream.')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--opt-level', default='O1', type=str)
parser.add_argument('--keep-batchnorm-fp32', type=str, default=None)
parser.add_argument('--loss-scale', type=str, default=None)
best_acc1 = 0
def main():
args = parser.parse_args()
# benchmark mode will look for the optimal set of algorithms for a particular configuration
# it might lead to faster runtime unless the input size changes at each iteration
cudnn.benchmark = True
if args.local_rank == 0:
print('\nCUDNN VERSION: {}\n'.format(torch.backends.cudnn.version()))
main_worker(args)
def main_worker(args):
global best_acc1
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
# if args.gpu is not None:
# print("User GPU: {} for training".format(args.gpu))
args.gpu = 0
args.world_size = 1
if args.distributed:
args.gpu = args.local_rank
torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
args.world_size = torch.distributed.get_world_size()
assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."
model_zoo = models if args.arch in models.__dict__ else torchvision_models
if args.pretrained:
if args.local_rank == 0:
print("=> using pre-trained model '{}'".format(args.arch))
model = model_zoo.__dict__[args.arch](pretrained=True)
else:
if args.local_rank == 0:
print("=> creating model '{}'".format(args.arch))
model = model_zoo.__dict__[args.arch]()
if args.mode == 'spatial':
spatial_stream = SpatialStream(model, args.arch, num_classes=101)
model = spatial_stream
elif args.mode == 'temporal':
temporal_stream = TemporalStream(model, args.arch, num_classes=101)
model = temporal_stream
elif args.mode == 'spatio_temporal':
two_stream_fusion = TwoStreamFusion(101, model, args.arch)
model = two_stream_fusion
model.cuda()
# Scale learning rate based on global batch size
args.lr = args.lr * float(args.batch_size * args.world_size) / 256.
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# Initialize Amp. Amp accepts either values or strings for the optional override arguments,
# for convenient inter-operation with argparse.
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.opt_level,
keep_batchnorm_fp32=args.keep_batchnorm_fp32,
loss_scale=args.loss_scale
)
if args.distributed:
model = DDP(model, delay_allreduce=True)
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
# Optionally resume from a checkpoint
if args.resume:
# Use a local scope to avoid dangling references
def resume():
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage.cuda(args.gpu))
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
resume()
train_dataset = SpatioTemporalDataset(args.data, 'trainlist{}.csv'.format(args.data_split))
val_dataset = SpatioTemporalDataset(args.data, 'vallist{}.csv'.format(args.data_split))
train_sampler = None
val_sampler = None
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, sampler=val_sampler)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
# if args.benchmark:
#
# validate(val_loader, model, criterion, args)
# return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
# train(spatial_train_loader, model, criterion, optimizer, epoch, args)
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict()
}, is_best, args.arch)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1,
top5, prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (spatial, temporal, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
adjust_learning_rate(optimizer, epoch, i, len(train_loader), args)
if args.gpu is not None and (args.mode == 'spatial' or args.mode == 'spatio_temporal'):
spatial = spatial.cuda(non_blocking=True)
if args.gpu is not None and (args.mode == 'temporal' or args.mode == 'spatio_temporal'):
temporal = temporal.cuda(non_blocking=True)
target = target.cuda()
# compute output
if args.mode == 'spatial':
output = model(spatial)
elif args.mode == 'temporal':
output = model(temporal)
else:
output = model(spatial, temporal)
loss = criterion(output, target)
# compute gradient and do SGD step
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
# measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args)
acc1 = reduce_tensor(acc1, args)
acc5 = reduce_tensor(acc5, args)
else:
reduced_loss = loss.data
losses.update(to_python_float(reduced_loss), spatial.size(0))
top1.update(to_python_float(acc1), spatial.size(0))
top5.update(to_python_float(acc5), spatial.size(0))
torch.cuda.synchronize()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 and args.local_rank == 0:
progress.print(i)
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5, prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (spatial, temporal, target) in enumerate(val_loader):
if args.gpu is not None and (args.mode == 'spatial' or args.mode == 'spatio_temporal'):
spatial = spatial.cuda(non_blocking=True)
if args.gpu is not None and (args.mode == 'temporal' or args.mode == 'spatio_temporal'):
temporal = temporal.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
if args.mode == 'spatial':
output = model(spatial)
elif args.mode == 'temporal':
output = model(temporal)
else:
output = model(spatial, temporal)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data, args)
acc1 = reduce_tensor(acc1, args)
acc5 = reduce_tensor(acc5, args)
else:
reduced_loss = loss.data
losses.update(to_python_float(reduced_loss), spatial.size(0))
top1.update(to_python_float(acc1), spatial.size(0))
top5.update(to_python_float(acc5), spatial.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 and args.local_rank == 0:
progress.print(i)
return top1.avg
def save_checkpoint(state, is_best, arch):
filename = 'checkpoint_{}.pth.tar'.format(arch)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best_{}.pth.tar'.format(arch))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, *meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def print(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def adjust_learning_rate(optimizer, epoch, step, len_epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
# if epoch < 5:
# lr = args.lr * float(1 + step + epoch * len_epoch) / (5. * len_epoch)
# else:
number_batches = args.epochs * len_epoch
# current_batch = (epoch - 5) * len_epoch + step
current_batch = epoch * len_epoch + step
lr = 0.5 * (1 + math.cos(current_batch * math.pi / number_batches)) * args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def reduce_tensor(tensor, args):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= args.world_size
return rt
if __name__ == '__main__':
main()