forked from czq142857/IM-NET-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
54 lines (45 loc) · 2.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import numpy as np
from modelAE import IM_AE
from modelSVR import IM_SVR
import argparse
import h5py
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", action="store", dest="epoch", default=0, type=int, help="Epoch to train [0]")
parser.add_argument("--iteration", action="store", dest="iteration", default=0, type=int, help="Iteration to train. Either epoch or iteration need to be zero [0]")
parser.add_argument("--learning_rate", action="store", dest="learning_rate", default=0.00005, type=float, help="Learning rate for adam [0.00005]")
parser.add_argument("--beta1", action="store", dest="beta1", default=0.5, type=float, help="Momentum term of adam [0.5]")
parser.add_argument("--dataset", action="store", dest="dataset", default="all_vox256_img", help="The name of dataset")
parser.add_argument("--checkpoint_dir", action="store", dest="checkpoint_dir", default="checkpoint", help="Directory name to save the checkpoints [checkpoint]")
parser.add_argument("--data_dir", action="store", dest="data_dir", default="./data/all_vox256_img/", help="Root directory of dataset [data]")
parser.add_argument("--sample_dir", action="store", dest="sample_dir", default="./samples/", help="Directory name to save the image samples [samples]")
parser.add_argument("--sample_vox_size", action="store", dest="sample_vox_size", default=64, type=int, help="Voxel resolution for coarse-to-fine training [64]")
parser.add_argument("--train", action="store_true", dest="train", default=False, help="True for training, False for testing [False]")
parser.add_argument("--start", action="store", dest="start", default=0, type=int, help="In testing, output shapes [start:end]")
parser.add_argument("--end", action="store", dest="end", default=16, type=int, help="In testing, output shapes [start:end]")
parser.add_argument("--ae", action="store_true", dest="ae", default=False, help="True for ae [False]")
parser.add_argument("--svr", action="store_true", dest="svr", default=False, help="True for svr [False]")
parser.add_argument("--getz", action="store_true", dest="getz", default=False, help="True for getting latent codes [False]")
FLAGS = parser.parse_args()
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
if FLAGS.ae:
im_ae = IM_AE(FLAGS)
if FLAGS.train:
im_ae.train(FLAGS)
elif FLAGS.getz:
im_ae.get_z(FLAGS)
else:
#im_ae.test_mesh(FLAGS)
im_ae.test_mesh_point(FLAGS)
elif FLAGS.svr:
im_svr = IM_SVR(FLAGS)
if FLAGS.train:
im_svr.train(FLAGS)
else:
#im_svr.test_mesh(FLAGS)
im_svr.test_mesh_point(FLAGS)
else:
print("Please specify an operation: ae or svr?")