diff --git a/GUI/.ipynb_checkpoints/2 - Widget Basics-checkpoint.ipynb b/GUI/.ipynb_checkpoints/2 - Widget Basics-checkpoint.ipynb index 05e2862..291374c 100644 --- a/GUI/.ipynb_checkpoints/2 - Widget Basics-checkpoint.ipynb +++ b/GUI/.ipynb_checkpoints/2 - Widget Basics-checkpoint.ipynb @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -124,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -155,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -164,26 +164,6 @@ "display(w)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Why does displaying the same widget twice work?" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "Widgets are represented in the back-end by a single object. Each time a widget is displayed, a new representation of that same object is created in the front-end. These representations are called views.\n", - "\n", - "![Kernel & front-end diagram](images/WidgetModelView.png)" - ] - }, { "cell_type": "markdown", "metadata": { @@ -204,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -215,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -244,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -256,11 +236,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "w.value" ] @@ -274,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -303,11 +294,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['_view_name',\n", + " 'orientation',\n", + " 'color',\n", + " '_view_module',\n", + " 'height',\n", + " 'disabled',\n", + " 'visible',\n", + " 'border_radius',\n", + " 'border_width',\n", + " '_model_module',\n", + " 'font_style',\n", + " 'min',\n", + " '_range',\n", + " 'background_color',\n", + " 'slider_color',\n", + " 'width',\n", + " 'version',\n", + " 'font_family',\n", + " '_dom_classes',\n", + " 'description',\n", + " '_model_name',\n", + " 'max',\n", + " 'border_color',\n", + " 'readout',\n", + " 'padding',\n", + " 'font_weight',\n", + " 'step',\n", + " 'border_style',\n", + " 'font_size',\n", + " 'msg_throttle',\n", + " '_css',\n", + " 'value',\n", + " 'margin']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "w.keys" ] @@ -332,7 +366,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -361,7 +395,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -408,7 +442,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[Index](Index.ipynb) - [Next](Widget List.ipynb)" + "# Conclusion\n", + "\n", + "You should now be beginning to have an understanding of how Widgets can interact with eachother and how you can begin to specify widget details." ] } ], diff --git a/GUI/.ipynb_checkpoints/3 - Widget Events-checkpoint.ipynb b/GUI/.ipynb_checkpoints/3 - Widget Events-checkpoint.ipynb index 2b5b243..00643f1 100644 --- a/GUI/.ipynb_checkpoints/3 - Widget Events-checkpoint.ipynb +++ b/GUI/.ipynb_checkpoints/3 - Widget Events-checkpoint.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -40,11 +40,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Register a callback to execute when the button is clicked.\n", + "\n", + " The callback will be called with one argument,\n", + " the clicked button widget instance.\n", + "\n", + " Parameters\n", + " ----------\n", + " remove : bool (optional)\n", + " Set to true to remove the callback from the list of callbacks.\n" + ] + } + ], "source": [ "import ipywidgets as widgets\n", "print(widgets.Button.on_click.__doc__)" @@ -70,11 +86,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Button clicked.\n", + "Button clicked.\n", + "Button clicked.\n", + "Button clicked.\n", + "Button clicked.\n", + "Button clicked.\n" + ] + } + ], "source": [ "from IPython.display import display\n", "button = widgets.Button(description=\"Click Me!\")\n", @@ -106,11 +135,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello\n", + "press enter\n" + ] + } + ], "source": [ "text = widgets.Text()\n", "display(text)\n", @@ -141,11 +179,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Setup a handler to be called when a trait changes.\n", + "\n", + " This is used to setup dynamic notifications of trait changes.\n", + "\n", + " Static handlers can be created by creating methods on a HasTraits\n", + " subclass with the naming convention '_[traitname]_changed'. Thus,\n", + " to create static handler for the trait 'a', create the method\n", + " _a_changed(self, name, old, new) (fewer arguments can be used, see\n", + " below).\n", + "\n", + " Parameters\n", + " ----------\n", + " handler : callable\n", + " A callable that is called when a trait changes. Its\n", + " signature can be handler(), handler(name), handler(name, new)\n", + " or handler(name, old, new).\n", + " name : list, str, None\n", + " If None, the handler will apply to all traits. If a list\n", + " of str, handler will apply to all names in the list. If a\n", + " str, the handler will apply just to that name.\n", + " remove : bool\n", + " If False (the default), then install the handler. If True\n", + " then unintall it.\n", + " \n" + ] + } + ], "source": [ "print(widgets.Widget.on_trait_change.__doc__)" ] @@ -217,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -228,30 +297,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "# Create Caption\n", "caption = widgets.Latex(value = 'The values of slider1 and slider2 are synchronized')\n", - "sliders1, slider2 = widgets.IntSlider(description='Slider 1'),\\\n", - " widgets.IntSlider(description='Slider 2')\n", - "l = traitlets.link((sliders1, 'value'), (slider2, 'value'))\n", - "display(caption, sliders1, slider2)" + "\n", + "# Create IntSlider\n", + "slider1 = widgets.IntSlider(description='Slider 1')\n", + "slider2 = widgets.IntSlider(description='Slider 2')\n", + "\n", + "# Use trailets to link\n", + "l = traitlets.link((slider1, 'value'), (slider2, 'value'))\n", + "\n", + "# Display!\n", + "display(caption, slider1, slider2)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "# Create Caption\n", "caption = widgets.Latex(value = 'Changes in source values are reflected in target1')\n", - "source, target1 = widgets.IntSlider(description='Source'),\\\n", - " widgets.IntSlider(description='Target 1')\n", + "\n", + "# Create Sliders\n", + "source = widgets.IntSlider(description='Source')\n", + "target1 = widgets.IntSlider(description='Target 1')\n", + "\n", + "# Use dlink\n", "dl = traitlets.dlink((source, 'value'), (target1, 'value'))\n", "display(caption, source, target1)" ] @@ -265,12 +346,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "# May get an error depending on order of cells being run!\n", "l.unlink()\n", "dl.unlink()" ] @@ -291,30 +373,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "# NO LAG VERSION\n", "caption = widgets.Latex(value = 'The values of range1 and range2 are synchronized')\n", - "range1, range2 = widgets.IntSlider(description='Range 1'),\\\n", - " widgets.IntSlider(description='Range 2')\n", + "\n", + "range1 = widgets.IntSlider(description='Range 1')\n", + "range2 = widgets.IntSlider(description='Range 2')\n", + "\n", "l = widgets.jslink((range1, 'value'), (range2, 'value'))\n", "display(caption, range1, range2)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "# NO LAG VERSION\n", "caption = widgets.Latex(value = 'Changes in source_range values are reflected in target_range1')\n", - "source_range, target_range1 = widgets.IntSlider(description='Source range'),\\\n", - " widgets.IntSlider(description='Target range 1')\n", + "\n", + "source_range = widgets.IntSlider(description='Source range')\n", + "target_range1 = widgets.IntSlider(description='Target range ')\n", + "\n", "dl = widgets.jsdlink((source_range, 'value'), (target_range1, 'value'))\n", "display(caption, source_range, target_range1)" ] @@ -342,7 +430,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[Index](Index.ipynb) - [Back](Widget List.ipynb) - [Next](Widget Styling.ipynb)" + "# Conclusion\n", + "You should now feel comfortable linking Widget events!" ] } ], diff --git a/GUI/.ipynb_checkpoints/4 - Widget List-checkpoint.ipynb b/GUI/.ipynb_checkpoints/4 - Widget List-checkpoint.ipynb index 4256a44..a356456 100644 --- a/GUI/.ipynb_checkpoints/4 - Widget List-checkpoint.ipynb +++ b/GUI/.ipynb_checkpoints/4 - Widget List-checkpoint.ipynb @@ -29,13 +29,58 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[ipywidgets.widgets.widget_string.Text,\n", + " ipywidgets.widgets.widget_box.Box,\n", + " ipywidgets.widgets.widget_controller.Axis,\n", + " ipywidgets.widgets.widget_bool.Checkbox,\n", + " ipywidgets.widgets.widget_int.IntRangeSlider,\n", + " ipywidgets.widgets.widget_selection.RadioButtons,\n", + " ipywidgets.widgets.widget_string.HTML,\n", + " ipywidgets.widgets.widget_float.FloatRangeSlider,\n", + " ipywidgets.widgets.widget_box.PlaceProxy,\n", + " ipywidgets.widgets.widget_selection.ToggleButtons,\n", + " ipywidgets.widgets.widget_int.IntText,\n", + " ipywidgets.widgets.widget_selection.Dropdown,\n", + " ipywidgets.widgets.widget_bool.Valid,\n", + " ipywidgets.widgets.widget_bool.ToggleButton,\n", + " ipywidgets.widgets.widget_float.FloatSlider,\n", + " ipywidgets.widgets.widget_int.IntProgress,\n", + " ipywidgets.widgets.widget_selection.SelectMultiple,\n", + " ipywidgets.widgets.widget_float.FloatProgress,\n", + " ipywidgets.widgets.widget_string.Latex,\n", + " ipywidgets.widgets.widget_box.FlexBox,\n", + " ipywidgets.widgets.widget_string.Textarea,\n", + " ipywidgets.widgets.widget_float.BoundedFloatText,\n", + " ipywidgets.widgets.widget_controller.Button,\n", + " ipywidgets.widgets.widget_selection.Select,\n", + " ipywidgets.widgets.widget_selectioncontainer.Accordion,\n", + " ipywidgets.widgets.widget_float.FloatText,\n", + " ipywidgets.widgets.widget_image.Image,\n", + " ipywidgets.widgets.widget_button.Button,\n", + " ipywidgets.widgets.widget_int.BoundedIntText,\n", + " ipywidgets.widgets.widget_box.Proxy,\n", + " ipywidgets.widgets.widget_selectioncontainer.Tab,\n", + " ipywidgets.widgets.widget_int.IntSlider,\n", + " ipywidgets.widgets.widget_controller.Controller]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import ipywidgets as widgets\n", + "\n", + "# Show all available widgets!\n", "widgets.Widget.widget_types.values()" ] }, @@ -70,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -94,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -123,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -151,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -178,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -217,7 +262,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -242,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -265,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": true }, @@ -307,13 +352,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from IPython.display import display\n", + "\n", "w = widgets.Dropdown(\n", " options=['1', '2', '3'],\n", " value='2',\n", @@ -324,12 +370,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'1'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ + "# Show value\n", "w.value" ] }, @@ -342,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -351,18 +409,29 @@ "w = widgets.Dropdown(\n", " options={'One': 1, 'Two': 2, 'Three': 3},\n", " value=2,\n", - " description='Number:',\n", - ")\n", + " description='Number:')\n", + "\n", "display(w)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "w.value" ] @@ -380,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "collapsed": false }, @@ -452,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "collapsed": true }, @@ -460,8 +529,8 @@ "source": [ "w = widgets.SelectMultiple(\n", " description=\"Fruits\",\n", - " options=['Apples', 'Oranges', 'Pears']\n", - ")\n", + " options=['Apples', 'Oranges', 'Pears'])\n", + "\n", "display(w)" ] }, @@ -507,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -528,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "collapsed": false }, @@ -553,14 +622,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "widgets.Latex(\n", - " value=\"$$\\\\frac{n!}{k!(n-k)!} = \\\\binom{n}{k}$$\",\n", + " value=\"$$\\\\frac{n!}{k!(n-k)!}$$\",\n", ")" ] }, @@ -573,7 +642,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "collapsed": false }, @@ -597,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "collapsed": false }, @@ -610,7 +679,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[Index](Index.ipynb) - [Back](Widget Basics.ipynb) - [Next](Widget Events.ipynb)" + "# Conclusion\n", + "\n", + "Use this as a future reference for yourself!" ] } ], diff --git a/GUI/.ipynb_checkpoints/5 - Widget Styling-checkpoint.ipynb b/GUI/.ipynb_checkpoints/5 - Widget Styling-checkpoint.ipynb index 65ba713..d4fda70 100644 --- a/GUI/.ipynb_checkpoints/5 - Widget Styling-checkpoint.ipynb +++ b/GUI/.ipynb_checkpoints/5 - Widget Styling-checkpoint.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 18, "metadata": { "collapsed": false }, @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 19, "metadata": { "collapsed": false }, @@ -87,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 21, "metadata": { "collapsed": false }, @@ -99,7 +99,7 @@ " height='2em', # em is valid HTML unit of measurement.\n", " color='lime', # Colors can be set by name,\n", " background_color='#0022FF', # and also by color code.\n", - " border_color='red')\n", + " border_color='cyan')\n", "display(button)" ] }, @@ -123,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 23, "metadata": { "collapsed": false }, @@ -161,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 24, "metadata": { "collapsed": false }, @@ -204,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 25, "metadata": { "collapsed": false }, diff --git a/GUI/.ipynb_checkpoints/6 - Custom Widget-checkpoint.ipynb b/GUI/.ipynb_checkpoints/6 - Custom Widget-checkpoint.ipynb index 94faf0b..71eebbd 100644 --- a/GUI/.ipynb_checkpoints/6 - Custom Widget-checkpoint.ipynb +++ b/GUI/.ipynb_checkpoints/6 - Custom Widget-checkpoint.ipynb @@ -4,7 +4,62 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Custom Widget" + "# Custom Widget\n", + "## Exploring the Lorenz System of Differential Equations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this Notebook we explore the Lorenz system of differential equations:\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "\\dot{x} & = \\sigma(y-x) \\\\\n", + "\\dot{y} & = \\rho x - y - xz \\\\\n", + "\\dot{z} & = -\\beta z + xy\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as the parameters ($\\sigma$, $\\beta$, $\\rho$) are varied." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we import the needed things from IPython, [NumPy](http://www.numpy.org/), [Matplotlib](http://matplotlib.org/index.html) and [SciPy](http://www.scipy.org/). Check out the class [Learning Python for Data Analysis and Visualization]() if your interested in learning more about this part of Python!" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from ipywidgets import interact, interactive\n", + "from IPython.display import clear_output, display, HTML" ] }, { @@ -13,738 +68,126 @@ "metadata": { "collapsed": false }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from scipy import integrate\n", + "\n", + "from matplotlib import pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from matplotlib.colors import cnames\n", + "from matplotlib import animation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Computing the trajectories and plotting the result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define a function that can integrate the differential equations numerically and then plot the solutions. This function has arguments that control the parameters of the differential equation ($\\sigma$, $\\beta$, $\\rho$), the numerical integration (`N`, `max_time`) and the visualization (`angle`)." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):\n", + "\n", + " fig = plt.figure();\n", + " ax = fig.add_axes([0, 0, 1, 1], projection='3d');\n", + " ax.axis('off')\n", + "\n", + " # prepare the axes limits\n", + " ax.set_xlim((-25, 25))\n", + " ax.set_ylim((-35, 35))\n", + " ax.set_zlim((5, 55))\n", + " \n", + " def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):\n", + " \"\"\"Compute the time-derivative of a Lorenz system.\"\"\"\n", + " x, y, z = x_y_z\n", + " return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]\n", + "\n", + " # Choose random starting points, uniformly distributed from -15 to 15\n", + " np.random.seed(1)\n", + " x0 = -15 + 30 * np.random.random((N, 3))\n", + "\n", + " # Solve for the trajectories\n", + " t = np.linspace(0, max_time, int(250*max_time))\n", + " x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n", + " for x0i in x0])\n", + " \n", + " # choose a different color for each trajectory\n", + " colors = plt.cm.jet(np.linspace(0, 1, N));\n", + "\n", + " for i in range(N):\n", + " x, y, z = x_t[i,:,:].T\n", + " lines = ax.plot(x, y, z, '-', c=colors[i])\n", + " plt.setp(lines, linewidth=2)\n", + "\n", + " ax.view_init(30, angle)\n", + " _ = plt.show();\n", + "\n", + " return t, x_t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points, called attractors. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, "outputs": [ { "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('
');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " fig.waiting = false;\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " this.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '
');\n", - " var titletext = $(\n", - " '
');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('
');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var rubberband = $('');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width);\n", - " canvas.attr('height', height);\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('
')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('
');\n", - " var button = $('');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Close figure', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FGXXh+/t6T10EgIJoffeexcBkWZHED8URbEiNhRE\neQXFjgULTUERkI70EnoJgQCBkATSe7LJZtt8fzwhRVqABAh57uuaa2ZnZmcmm935zTnPKSpFUZBI\nJBKJpKKgvtsXIJFIJBLJnUQKn0QikUgqFFL4JBKJRFKhkMInkUgkkgqFFD6JRCKRVCik8EkkEomk\nQqG9wXaZ6yCRSCSS8ojqWhukxSeRSCSSCoUUPolEIpFUKKTwSSQSiaRCIYVPIpFIJBUKKXwSiUQi\nqVBI4ZNIJBJJhUIKn0QikUgqFFL4JBKJRFKhkMInkUgkkgqFFD6JRCKRVCik8EkkEomkQiGFTyKR\nSCQVCil8EolEIqlQSOGTSCQSSYVCCp9EIpFIKhRS+CQSiURSoZDCJ5FIJJIKhRQ+iUQikVQopPBJ\nJBKJpEIhhU8ikUgkFQopfBKJRCKpUEjhk0gkEkmFQnu3L0AiudMoCmRlgckEFsv1J7sdPD3B1xd8\nfECvv9tXL5FIbhcpfJL7DrsdEhIgKqr4dOFC4XJ29q0d281NCOBlIbw8r1YNGjcWU+XKpfrnSCSS\nUkalKMr1tl93o0Ryt7HZICwMdu8W08GDQuDy8q7/PicnMel0159UKkhLg6QkSE4W57sRlSpBkyaF\nU+PG0KABODiUyp8skUhKhuqaG6TwScoT2dmwb1+h0IWEQGbmlft5e4O/f+FUq1bx156eQtRuBrsd\nMjIKRbDoPCoKQkPFdLXr0Wigbl3o1An69YOePcHd/ZY+AolEUjKk8EnKJzYb7NwJK1bArl1w7NiV\nVpe/P3TsKKZ27YTAuLjcnetVFIiOhuPHxRQaKuanTwvhvIxGI661b18hhC1aiHUSiaTUkMInKT8o\nCuzfD0uWwB9/QFxc4TaNBpo3hw4dCsWuevW7d60lxWQSArh5M2zYAHv2gNVauN3bG3r3FkI4eDB4\ned29a5VI7hOk8EnubRRFWEdLl4opMrJwW0AAjBwJffpAmzbg7Hz757Ngx4gZI5b8SSznYUOPpmAy\nFFm+/NoJLYbbjAvLzIQtW4QIrl8vxiUvo9fDkCEwdiz06iUtQYnkFpHCJ7k3OX8eFi0S1t2pU4Xr\nq1YVYjdqlBC7mx2Py8ZMNJnEFJmSycGIhWwsmClBlMp1cMdAFZypjDNVcKFywbIz3jihufZv7goU\nBc6eFSK4erWwCi//LGvUgCeegCefhMDA27pkiaSiIYVPcm9x+DB89BH8+WfhTd7bG4YPh9GjRRBI\nSSwdGwrnSOMcacSQWSB2aZiu+z4NKpzR4Yw+fy6WDWgwYyuY8oosX35txIIV+zWPrUVFVVypjzf1\n8KY+PlTDBVUJxTAmBn79FRYsgHPnCtd37iyswOHD794YpkRSjpDCJ7n7KAps3y4Eb+NGsU6vhxEj\nYMwY4dbT6W58nHiMHCWeoyRwjESMWK7Yx4CGmrgVmyrjjGu+0BnQlFiI/osdhTRMxJNNPEYS8qd4\nsknASOpVRNcNPfXwoX6+EAbiiZ7rK7uiiMCen36CZcsgJ0esd3eHF16AF18UDwsSieSqSOGT3D3s\nduHCmzVLpB+AGKd79ll46aUbB6dkYyaUJI6SwBHiicdYbHsVnGmIL35FRM4XJ9S3KGy3Sx5WIsng\nFMmEk8IpkkmneGKhFjXNqEQHatCGarhhuO4xs7KE+P34owiMAWH1TZwIL78sk+YlkqsghU9y57FY\nRKDKxx+LJHMQFsoLL8Dzz18/cjEPK7u5yL9cIIxk7EW+is7oaEolmlGFZlSmCqUQ7VKGKCgkYORU\nvgieIoVoMgr+IjUqmlCJDlSnHdXx4PqZ7rt3w4cfiqAYAEdHeOYZePXV8hHhKpHcIaTwSe4ciiLy\n7qZMKYxWrFEDXnkFxo27dlSmgkIEaWwikh1Ek4OI99egIhhvmlGZ5lQmEK+bCh65F0nDxD4usYdL\nHCexQNjVQAN86UANuuKHK9cuDnrgAMyYAStXitd6vRgDfOMNkdsokVRwpPBJ7gyRkTBpEqxZI14H\nB8Prr8Mjj1y7wHMWZrYRxSYiuUBGwfq6eNGbADpRE2dKMPhXTskkj/3EsoeLHCUBa/7PTo+Gbvgx\niCBqce0yL8eOCQFcvlw8dDg4CPF77TVhDUokFRQpfJKyxWyGTz+FDz6A3FxRzHnmTDGOd63ozHBS\nWM1Z9nKpIErSFT098KcXAfhf52Z/v5KNmQPEsY0ojpBQsL4xvgwkkLZUQ3ONbmKnTsH06cK9DCL/\n8fPP4YEH7sSVSyT3HFL4JGXH9u3wf/9XmIc3erQQwapVr77/OdJYxAkOEg+Ib2czKtObANpSDd0N\noh0rChfJYg0RbOECufluX1+cGEAdehNwzYCYHTvEGGpoqHg9cKAQwDp17tSVSyT3BFL4JKVPYqII\nqPj1V/E6KAi+/lqkJVyNKDJYTBh7uQSAI1oGEkh/6uCL0x266vJHDhb+5QJriCAW0U/JES1DqMuD\n1MXpKm5gqxW++greeUdUiTEYhOvzjTdEVwqJpAIghU9SeigK/PyzCF5JSxM31alTxY31aq13Ysli\nCSfZQTQKoEfNQAIZRj3cbxDGLynEjsIREljFmQI3qDsGRlCfftS+qqUcHy/GWC8/nAQEwMKFotap\nRHKfI4VPUjrk5orcsZ9/Fq/79BGWxdXKaSViZCkn2UIUdhS0qOhLHYZTD29k1MXtcIIkfiWUcFIA\nqIQTj9CILvhdNeJ11y547jlRKFujEZbg1Kmgla2oJfcvUvgkt8/58/DQQ3D0qIgW/OYbePzxK+to\n2lBYzVkWEooZO2pU9KIWI6hPpXs85648oaCwnzh+I5RoRBNAf9x4kqa0pMoV+5vN8Pbb8Mkn4nWn\nTsL6k6kPkvsUKXyS22PtWnj0UeHaDAwUNTabNLlyv4tkMo+DBZZIZ2ryCI2ohiwuWVbYUNhGFIsJ\nIwlR16wrfoyj2VVdyZs3iweWuDhR/mz+fFE2TiK5z5DCJ7k17HYRIj99uhjbGzwYfvkFPDyK72fD\nzt+cYTFhWLDjhQPP0ZLWVLs7F14BsWBjNREsJgwzNlzRM45mdMPvirqkycnw9NOwapV4/eST8MUX\nsvi15L5CCp/k5klNhcceE9aeWi3KZL3+ulguShQZzOMAZ0kDoCe1eJqmuFyn6oik7Igjm684xHES\nAWhJFf6PFle4mRUFvvtO1Es1mYQFv3o1+PndjauWSEodKXySm+PIETGeFxkp6msuWSI6hBfFip2/\nOM1SwrCi4IMjz9HqquNLkjuLgsJmLvATxzBiwQENj9OEAdS5onj3yZMwbBicPi2KXa9aJXogSiTl\nHCl8kpKzYwcMGABGI7RqJcbz/msFpGHiI/YUjOX1pTZP0eSqOWWSu0cqucznCHvycyfbUI3JtL7C\nGk9LE33+tmwRKSm//goPP3w3rlgiKTWk8ElKxpYtosRVTo6owPLTT1fm5p0nnQ/ZRTK5+ODIC7Sm\nGbIvzr3MHi7yBQcxYqEyzrxOewLxLLaPxSJSHr7/Xrz+8EOR8vDfqF2JpJwghU9yYzZtEsErJpMI\ndvjhhyvrbO7hInPZTx42gvFiKh3xvEEbHcm9QTxGPmEvEaShRc0zNKMvtYsFvigKzJkjKvIoioj+\nnD9fFCmQSMoZUvgk12fdOhg6FPLyYPx4+Pbb4kEsCgrLCGchJwDojj/P0fKGXcQl9xZmbPzIMdZx\nDoBu+DGRljhQPJN91SoYM0a4uwcMEO7uq1XlkUjuYaTwSa7N6tVifMdsFsWmv/yyuOjlYWMeB9hJ\nDCrgCZowlLpXhMjfDyiKmOwK2OygVoHuPqxusp1ovuQgedjwx5136YTPf+qlHj4MffuK1Id+/USP\nRSl+knKEFD7J1VmxQiQvW62iM/pnnxUf00khl5ns5ixpOKLlFdqWu9w8RYFLaXA0Gi6kQFw6xKZD\nXIZYjsuAtBwhdFf7ObgYwNcVfFzz5y5QyQ3qVoaG1aFBNfAoh4Wfo8lkFnu4SBY+OPIenfH7Tyuo\n0FDo2ROSkkR5ur//lj3+JOUGKXySK1m2TASw2Gyi4PTs2cVFL4kc3mQrieRQGWem0fGe75GnKBCZ\nBAcvwOEoOBItpqSskh9DpRKWnlpVaPndiGoeQgQbVYdOQdA1GLzLQTJ4FmZmsJuTJOOMjml0pCG+\nxfYJC4MePUQ3jl69RMd32eFBUg6Qwicpzo4d4kneahWtambOvNLSe5OtxGOkLl68Q6dr9n+725gs\nsP00rDkGa0PhXOKV+3g4QQt/YaVV84CqHlDVvXDZyxk0aiF2RT8HRYHMXEjOFuKZnCWWY9PhVByc\njBXzXHPx86lU0LQmdAuG7vWEELrfo2KRh41P2UcIl9ChZgpt6UCNYvucPCnELyFBzFetAmdZdlVy\nbyOFT1JIVBS0bi3cV5Mniyi+ojf7NEy8xTYukkUdPPiArvdcFZbUbFh2ENYch39PQk4R4fFyhg6B\n0Nwvf/IHf++yC8u32SEqGcJihZW57TTsjYA8a+E+Og30awyj2sDgZuByj42V2VD4niOs5RwqYDzN\nGUTxlhvh4dC9u2h11K+fED+dTNuU3LtI4ZMIjEZRlf/oUTFms3Zt8ZSFTPJ4i21EkYk/7syg6z1j\n6SkK7DwD3++AZQeKC0szPxjYBAY0gba1hfV2N8k1Q8g52BoOW07B3nPCbQrgqIdBTWBkG3igGejv\nkeCZ/0bujqMZgwkqts/p0+L7k5wson+/+07m+UnuWaTwSYRwjBoFf/whOizs3w+eRXKYszEzje2c\nJ50auDKTbnjcAzl6yVnwy24heKfjC9f3bggjWkP/xlDd89rvvxdIyIDlB2Hpfth1tnB9FXeY2B0m\ndBMBM/cC6znH1xwGYCIt6UftYtv37hXuTpNJuMjffPNuXKVEckOk8EnETeqtt8DVFfbtg/r1C7fl\nYOEddnCGVKriwky63fVmsXHpMHMNzN8O5nzrrqo7jO0MT3eGAN/rv/9eJSYV/tgPP++GE6KSGAYt\njGkHL/aCpvdAkeh/OMt8jqICJtOG7hRv2vfnn6KkmaLAokUi508iuceQwlfRWb0aHnxQLK9cKcqS\nXSYPG++yg5MkUwknPqI7vty9SIykTPh4HXy1RQSugLDqnukq3Jn3S16doghX6Geb4J9jhakU/RvD\nzIeE+/Zu8ifh/EIoauAV2tGJmsW2z50LL78Mer2o+tOly925TonkGkjhq8icOgVt20JWFsyYIeov\nFmUeB9jMBXxwZCbdqXKXuqSnZsP/NsC8zWDME+uGtoD3h0DjGtd/b3knIgG+/Bd+3AnZ+X/76LYw\nfQgE3sUyqIsJYykn0aBiKh2K5XAqCrz4oujj5+kJBw9C7drXOZhEcmeRwldRycgQHRYiIkSi+tKl\nxYMRNnKeLzmEHjWz6UkAHtc+WBmhKPDrHnh5KaQaxbqBTWD6UJGCUJFIzoKP1sCXW4R7V6uBcZ2F\nAPrehTFABYVfCOUvTuOAho/pUew7YrOJUnerV0PLlrB7t6zrKblnkMJXUZkwQRQZbtpU3JSK5l5F\nkMbrbMGCncm0pge17vj1RSbBhF9hU5h43b0ezBgG7QOv/777negUeG+lCOqxKyJF49OR8ETHOx9F\nqaDwGQfYShQ+OPIpvYoVJk9LgxYt4MIFeP55YQFKJPcAUvgqItu3Q7duItfq6FFo0KBwWyZ5vMxm\nEsmhH7WZSMs7em1Wm3Bpvr1C5OB5OcNno+HR9jI8vignL8GLS2DzSfG6ez347gkIusPuTzM2prGd\ncFIIxosZdCtWoPzAAejYUbQ2+uMP2ctPck8gha+ikZsLTZoIF+d778G77xZus6MwnV0cJp66ePER\n3dDdwS4LZ+LhkfmirBiIsazPRt874fz3GooCC/cKV3BytogAfe9BeLX/nc1XTMPEK/xLEjl0xY+X\naVOsUPkXX4h6r66uosB1YAW32iV3HSl8FY0334RZs6BhQ3ET0hcpvLKEMJZwElf0fEbvOxrBufII\nPP6DKANW0wu+eQwGNr1jpy/XJGfBK38I9ydAz/qw8BmRC3iniCSd19mCCRtP0JiHqFewTVHEOPLy\n5dC8OYSEFP/eSSR3GCl8FYkjR0RJMrsd9uyBdu0Ktx0inunsBOA9OtOcKnfkmmx2eO9v+PAf8Xp4\nK/jxKXCTlf5vmvWh4uEhKUtYyQvHi2T+O0UIl5jJHtSomEV36uFdsC0jQ4z3nT8vvAzvvXfnrksi\n+Q/XFL67XNhJUtpYrTBunIi2mzSpuOgZsTCPAyjAGBreMdFLzYZBnwnRU6vgk4fhj/+Toner9GsM\nx96HHvUhMRP6zoG3/hQPOneCdlRnKHWxo/A/QsimsFCquzssWCCWZ8yA48fvzDVJJDeDFL77jLlz\nhWvT31/ceIqykBOkYaIe3jxM/asfoJQJj4PWH8D6E6JNz8YpYmxKBrDcHlU9xGc5fYh4rJ25Bh76\nqjD/sax5lMYE4kkiOXzDYZQizqEuXWDiRPEQNnasmEsk9xLS1XkfEREBjRuLGorr1okK+pc5Syqv\n8C8qVMyl1x3J1zsWDb0/FS65Fv7w13Pg71Pmp71lFAXsgA2wKuLL76S690X635Mw/GtIz4GW/rD6\nRSGMZU0sWbzEZnKxMolW9CagYFtWFjRqBNHR8PHH8NprZX89Esl/kGN8FYHhw0UNxUcfhd9+K1xv\nQ+FV/iWCNIZSl6co+2iSg5HQZw6kGaFvIyF6Tnc5sdmmwFkzHDfB8Ty4YIE4C8TbxDztKq5CDeCh\nAU8NeKqhlh6CikxNHcDlHvCbhMfBgLkQmSyChv55EZrUvPH7bpetRDGX/RjQMI8+VKWw++6GDeLh\ny2CAY8cgOLjsr0ciKYIUvvud0FCRvmAwiMCCaoWVpfiHCOZzBB8c+Yp+OFK2xS73RED/uSJyc3Az\nMZ5nuAt92/LssCcXNmXDlhw4ZgJTCb7ROkCrEl/+G+2vBpo4QHtHMfV2gSp3qZZoUiYM+VJ8/h5O\nsGkKtAq48ftul/8Rwg5iaEolptOlWIrDU0/Bzz9D//6iBZZEcgeRwne/8/DDIoz8hRfg888L16eQ\ny0TWk4uVqXSgHdXL9Dq2hcOgz8VY08OtYNEzd7aodKYN/sqC3zNgew7k/ucb7KeDJgYhVkF6qKoV\nUxUteGtA85+filmBdBuk2SDZBufNEGEWlmN4vvVo+881tHWEB1zgQVdodIe7OpksMPpb+PsIuDvC\nhpehbZ2yPWcGeUxkPVmYeek/nRySkkQ+X2YmrF8PffuW7bVIJEWQwnc/c+KEGNu7mrU3mxB2EkMb\nqjGNjmV6HYcuQJdZohLLY+3hp7Gi1mRZY1NgfTYszIC/s4pbaU0M0MtZWGLtHIXbsjTJscPBXNib\nCztyYIux+PmbOcDTHvCIu3CX3gksVhgzX/T/c3WAdS9Bx6Abv+92+JcLfM4B3NDzNf2KNS+ePVuM\n8TVoIFye2vuku4bknkcK3/3MiBGwbJlIX5g3r3D9URJ4hx0Y0PAVfalUhl0XLqZCmw8gLkOUHfvl\naVCX8dhXrh1+SYf/pcA5S+H6Lk7wqDs84Hrn3Y5GO2w2wuosWJEFqfnmoEEFD7vBq97C2ixrrDZ4\n7HvR+NbZAFtfg9Zl6PZUUJjGdkJJogf+TKZNwba8PCF658/DV1+JiE+J5A4ghe9+5cQJMban04kb\nS/V8T6aCwutsJZwUHqURI8owfSHbBJ0+gmMx0DVYhNnry1BwsmwwL1VMifnCEqCDcfmWlf89Ui0k\nzw4rs+DHdNhkLPwxDXSBN3ygUxkXzLHa4IkfYXEI+LrCnqll2+IoliwmsRELdmbRnQYUhvD++acI\nvvL2FtHHHne+CYik4iET2O9XPvhAhOE/80yh6AGEkUw4Kbig4wHKzs9ls8Po74ToBVWGP58rO9Gz\nK/BTGgRFwLQkIXotHOD36nAmEKb63juiB2BQwwh32OAP5wPhBS9wVMGabOh8AfpHQZip7M6v1cDP\nY6FPQ5FS0ncOJGSU3fmq4cowROjmzxwvlts3bJjI70tJgc8+K7trkEhKghS+ckxYmHBx6vXw+uvF\nt/3BKQAeIKhMozhf+V10D/dyhjWTRZJ6WbDTCK0i4ek4SLCJ8brNfnAwQIiL9h7Ptaulh8+rQFQQ\nvO0DbmpYb4Qm52FCLCSWUZK3TgvLJ4r8vvNJMPCzsk1yH0ow7hgIJ4W9XCpYr1KJhzQQwVeZmWV3\nDRLJjZDCV46ZMUNYe+PHQ40iHcrPkspREnBEy6AytPb+OgSfbQKdBv56vmxa5eTY4fk46BIFR0xQ\nQwuLqsOeWtDT5d5PLv8vvlqYXgkiAmGip/DFzE+H+ufgt3Tx/yxtXB3FQ0mdSnAoCsb/XDbnAXBC\nx2hE4dBfCMVCYXJkly5iSk+HL78sm/NLJCVBCl85JSVFpC+o1Vdae8vyrb3+1MGVsvH9xaXDM7+I\n5U9HirG90uZALjQ/D1+lidy6d3zgdCCMcS9/gvdffLXwVVUIrQO9nUUQzOOxMDAGYiw3fv/NUtkd\nVk0SgS5L9oleiGVFHwKojitxZLOBc8W2vfOOmM+ZA9nZZXcNEsn1kMJXTlmyRDT97NMHahap0BFF\nBiHEokPNg9Qtk3MrCjy9AFKyxfjRcz1K//izkqF9JJwxQwMD7AuA9yuB0332ja1vgA1+sKAaeKhh\nXTY0PSeiQkubBtVhwVix/MofsPNM6Z8DQIuaJ2gMwHLCsRTJdOzRA9q3Fw9u335bNueXSG7EfXYb\nqTj8km9tPfFE8fXLCQegNwF4UjZx899tg3Wh4OkscvVKM20h1w6PXII3E0Vi+MtecCgAmt/HnRxU\nKnjSA07WgQEuonTa4Bh4JR4speySfLg1vNpPRHyO+Eb0+CsL2lKNWriTiol/iSpYr1LBtGlied48\nWcBacneQ6QzlkJMnRYNZd3eIiwPHfFGIx8izrEWFiu/oXyZ5e2fiofl7Ikn992dhRJsbvqXExFpg\nSAwcMIn6l4uri1y8MkNRwJ6MYosiN/scxqwoTDnpKHYjKlUeiqJHq3PGwdEdR+eaODjXQqX1A3WN\nMvO12hWYkwJv5At/Vyf4qyZ4lWLyu9UGPWYLi294K1FSriz+nJ3EMJsQquDMN/RDk/+cbbdD/fpw\n5gz89RcMHVr655ZIuE46g6yhUA65bO2NGFEoegBbuYAd6ErNMhE9RRHjejlmkaRemqJ3Og96RsEl\nK9TSweqaZVDuS8kjN2ML8dFrsJoO4usRjodrBirACXDSwzWHRPPyJyAn14nUrEDUhuZ4V+2HwbUX\nqEun7YRaBa/4QAcnGH5RlF1rHwlr/CCwlIZrtRpRYKDJO6K6y6IQ8f8sbTpQg6q4EEc2u7hIV/wA\n4SGYOBEmTxYJ7VL4JHcaafGVM2w28POD2FjYtQs65lchU1D4P9YTSzbvl1Fn9b8Pw9AvRcrC2Y+E\nq7M0OJUHPaIg3gqdHIWF41taj2T2LOIuLMCYvJTqvodwdDAX25yZpScy2pNL8Z6kZnhhV1ywWB0w\nW3TodFZUmNCosvFwS6NqpQwC/NKo5JNzxWniU4LROD+Eb80nQVs6kbQxFhgULTpJeGtgvR+0KkWX\n7087xVituyOEfiC6OpQ2GznPlxwiAHc+o3dBAev0dBGJbDQKD0b9O9MeUlKxkJVb7hcut3oJDBSu\nossuqjP5/fY8MLCAQQVupdLCbIWG0yAiEb54BJ7vWTrHPZkHPS6I3LweTrDar3QCWLJStnHp7Mf4\nV95STOyOhlXh+OnG2NStcffpQA3/pgQH++Dufn3zUlEUEhONnD2bSlTkaZLj9qKxH6R+nRN0bBWN\ng0NhAEdCan2cfCfh6vsEqG6vPEuWDUZeEkEvbmpY5yeswdJAUcSDzMojMKylKD5Q2liwMZY1ZJDH\nx3SnfpFqLs8+C999B88/D198UfrnllR4pPDdL4wZIyI6p0+Ht98uXP89R1hNBIMJYhzNSv28n2+C\nyUsguAqETi+djgsRZugYKSqw9HKGlTVvU/QUhYSYZWTGvk+Q/8mC1XsO1iI8qj/VAkbRsUtbXF0N\nV7yPzAyIj4XUFDDniQKTOh04OYOLK1StDp5eVwyGpaXlsnnTSWIi/qKa1zr6dz+Ju5vwiRpznclV\njcfH/63bcoVaFBHwsywTnFWw1g+6lJK1fSkN6k2F7DyR6zegSekctyi/EMqfhNMNP16mbcH6o0eh\neXNRxiwuTnzcEkkpIoXvfiA7G3x9RYf1yEioVUust2HnSf4hgzzm0ItAPEv1vKnZEPimaCq7+gUY\nVAq6mmorTFfonS96jrchegkXt5J96Tnq+IkcxrR0B9bt6IVX9efp0acXen1+dIjdDqdOwO5tEHoE\nJew42adPkZGdS4Ydsu1gQYiNCtCpRA6hixrcnB3wrBWAc4tW0KgZtO0ITVsWtBvIzbWwds1xLpya\nT8fma2jXUlQuMeUZyGECXn7TQe1+S3+fVYGnYkUHClc1bPcvvUjXORtgyu8Q4ANhH4JjKad+xmNk\nAmvRomYBgwo6NyiK6CoSFgarV8OgQaV7XkmFRwrf/cDatTBwILRtCyEhhesPEc/77KQ6rnxN32KN\nQEuDKUthzkboWR82vXL7EYBmBfpFwdYc0TZoVy1wvcWoRbMpgdMHn6RxnfUAJCQ5s2X/Q7Ts9B51\n6+W3IzCbYdsm+Pt37JvXcjEhhXMWEUgTZ4Wcm/yWO6ugshZqaiHA3ZnqPXuiHTIS+j4AriIMNTw8\nmZXLFtC0zvf0634WgMxsDzQeM3H2mQAqtRiwTUsFY7aYcoyFy8aiy9lgysWuUrMiV8sxqxaDTscE\nXy0+Bq0wlTT5c60WdHrw8gZvX/DxFXOD4Zp/j8UKLadD6EWYPgTeHnzz/4cb8T47OUQ8T9GEoRRW\nO/joI5g6FUaNEp4MiaQUkcJ3P/DKK/Dpp+JGMWNG4fpP2cd2onmEhoykQameM80INaaISM7D70Jz\n/xu/53rPNhgyAAAgAElEQVQoCoyPEx0LqmhhfwDUvEUX1+njC/DWvIiPVxZ5eRrW7RhEw7ZzCQrO\nF7wL5+HHr7Av/okLyekczxPNY/P+8612cNPjVdsR9+oqnCvZ0Dta0DmCYldhzdOQZzSQnagmM8ZO\nyvkszDnFA2T0KgjWQX1nLXWHPYRm/CRo1griLpF4NJzdvy+imcdaAgzpkADmWCd0aW6oEpKE+N0J\nXFwLRbCoIHr7Qg0/Dqjr0m15EBoXZ87NAl+30j19CJeYyR78cecL+hSsj4oSngtHR0hIKHhukEhK\nA5nOcD+wZYuY9yhSKcWElX35xYAvh4uXJvO3C9Hr3fD2RQ9gUYYQPUcVrKp5a6Jnt+VyfNdImtVd\nDcC+I4GYnb5jyOP5H8ypE/Dxu+St/ovDJthngozCkpF413GkTtc8/NvbqdYE3GuYUanMVznTZQpr\naykKZFyE2OMQtc+byK02ks6lE2qGULMV559+p9mi32ntAO4aqAT8N1pfTw6QHxnq6SVEydlFjCc6\nuxRORV87OQk3rdWK2WJhUYqVFJOF2morQxytqK0WsFlFOZ88kxirTEmC5CRITYbsLDFdOH/Vv7A1\nYARiHGqQdrQuvh2DoU5dCMyf1/S/rQ6yLamCMzqiyCCaDPwQLl9/f+jUSUQor1kjLD+JpKyRwldO\nSE0VwQB6PXToULj+BEmYsFEXL6pQuq0RLFb44l+x/HKf6+9bEiLNMDFeLH9RBVrfwhhVeuo54sL6\n0qzuOUwmDev3jKPfsHk4OOoh9iJ88CbmZQvZmwN7TYXWnYefniYPmWkyDLzr5IqV2vqgawPaBqCp\nA5qaoPYClTuoNIAd7EZQUsAWD9knUR3aiceBw3iEXaLBuRTIglQPOGUWaQeJNthtEuduYoDOjuDl\n5QGjn0KpWo095zPJ0S2l90NnoRIkmtpSKWjJTY396YGeFmh9XpzvJS+Yc73sFUWBjHQhgilJxQUx\nKRGiI+HcGeznI6hpughnLsKZLcWPodNBQKAQwaYtoXV7aNEGXEtmGurQ0JEabCSSHcTwKIV/75Ah\nQvhWr5bCJ7kzSFdnOWHFCtHTrFs32Lq1cP0CjrOC0wynHo/n10csLRaHwCPzoX5VEfRwO2N7VgW6\nXoA9ufCQKyy7heInMee3YzAOppJPJjGxHkRn/UzHbg8Kd+GPX6F8OJXQNCObcyAr38Lza6uh40Qb\nQT1BpXEDh8FgGASGPqAuHgRkxU42ZrKxoKCgjo/HZf8BnPftR7N/L6rQI1fW2FIhzNY6FpQ6cFEN\n+/d5E7Y1FUVRUAOtHaDrwD44zp0PNf2Jikrnp6/eYsq4H3BzNZOa6Ydn7X9R6QJv6vPYlSNSQSwI\n6/m2q9xYrUz+JIrTu88wrtppHvI4A+fOQMRp8VDxX1QqqN8IWrWHVu2EGNape80adsdI5G22UwVn\nvqN/wVj0mTMQHAyenpCYeFuGpURSFDnGV96ZNEm0cvlvGsMUNnOWtFJPWlcUaD1dtLGZ/wSM73p7\nx5uVLOpvVtfC8To3X4Lr5LHVVHMYiYdbLgePB1K1wXqq16wDF6Nhwhiy9u5mdTacze9sULWJmj7v\n2qnVHtB3AacJ4DAUVMLMTCGXkyRzKiua6BNHyTh1Bvu5GKocOY/X+XjcEtJxzMlDpxJuWTc1uGlV\naOv7o+7SHqeWHalcvx2aoAbg4ACWfZC7AHJ+A3JJjYSdn1fm6LIEUMQx+nsZaDTrf6jGTsSmwNzZ\nv9Gn9Ws0aZBIttEVh+pr0Dp2vqnP5dMUeCVBJLgfqw3VbzMl4MRFaPwOOOggajZUumzQGY0QGQGn\nT8LhfXBgL4QeEa7Vonh4ChFs1f4Kq9CGwlj+IQ0Tn9ObAArbsAcHCwHcvl20LpJISgEpfOWdhg1F\nhYudO8WYCEAOFsawEoAlDCnVhrP7zkG7GeDjAtH/u70Q9xgL1IsQ0ZMb/aD3TXpkTx1bQQ3nUbg6\nm9lzuCWNOm3Bzd0N1q2CSU9yJjGNFUYVJruCg7uKPu8qNBsBKscHwGUq6NsBIqx+i+Ush7esI2ft\nTly3ncTpeNQNzn4lNjdHsjvVw9S9MTUeHECXoA60pioGtGBPAeO3YPwUlDTiT8D6ab5E7U8CRBDM\n4EG9cfp+MXj78PeKAziYHqVftzPkmfXguQKD24ASX4tdgQHRsMEo0kI2+N1+1O3gebD6KEwdCDMe\nus6OJhMcPyxE8OBeMY+PLb6PWi0EsO8D0GcQ84KNbFZF8RiNeJjCci2XA7deew0+/vj2rl8iyUcK\nX3kmPh6qVhXxDWlpYpwP4BBxvM8ugvFiNqVUSiWfl5aIJrMv9YE5tznuMvIi/JEJD7vBHzVuvH9R\nwo5toYbDQNzdTOw80JF2/Taj0xngi9ko77/OjlzYlj9kF9QTHpgNrjWag9scMHRDQeEg8aw8tpb0\nb5bi+cdetGnGguNrAF+NmNw14KoCgxo0Li4ofgGY1RpyNXrSbDYScnNJjo0nLym12DXmNPYj86me\nNH3sUR7waU11XMGeDtmzwfgpipLHkaVObHzbRl5OHq4qeCjAF/8/10GzluzZE8m5QyN4bPhBzBYt\neCxH7/ZgwfFtNjtms+2KSafT4OioJUOnpXWsjlS7igXVRKeH22FvBHSYCV7OcPHTm3joURS4FJMv\nhCFCDI8fLmYVmvz92Ni3IQl9uzO+/YsFX+bLFYnatIF9+27v+iWSfKTwlWeWLoXRo6FvX1i/vnD9\nzxznL07zEME8QemV3LDbwe9VUdUj5C1oW+fWj7XFKIpPO6ogPBD8bsIVdzEqDFVqR6pXySDkaBta\n9tyJTquFNyZh+/FrVmXDcTOggh5vQKfn9ajcPgTnl1FUag4Rz+Lti1C/9zOu28IKjuurgfp6qK0T\nrlftTVpImXoHLlSrzSmVjrOnI7BlCSG1G3SkPNWNmq88w5g6faiJG1gjIOM5MG8k4xIsH+/JxaNp\nqIE+blpihr7DLo/W7NgRyZPDfuaFp/djMml4cOwT7Aipjdlsw24vwc/wgSYwayhkmvB+8idcTGac\nnHR4eztRpYoLVao4U7myS/6yC5UrO+fPXQqT+4vQ6n3h5v7laXi84819PsXIyoJtG2HDati0BlKS\nCzYpLq6oevSFvg+Q3W4AHnVEdZu0NJnWICkVpPCVZ958E2bNEt2r33+/cP0r/MsZUnmXzrQsxfG9\nXWeg8yzw94bIT27ddaYo0DISjpjgQ194y7fk783MyODiscY0CIoh9HRdgtsfQq9zgpfGY134E8tz\n1Jw22dE5wcPzIahPffBYDroGxJLNt6f/Juf5T3DdHAqAQSWiLFsZoFIJPcLJdkeSFScu2tyIVVzx\n0NtoYUiihjmxYB+bAmeq1yEEHdGhoheiotWQPL4nmlFjMWz3IupEOk0CV/Li2GU46c38/rIjZ5YL\nM7WdA/xpH8j35taAwlcz1zDxyYNkZunpMuwpjoVVRaUCg0GLXq8pmHQ6NRaLHZPJSm6uhdxcK3w7\nBjoHwV9H4O1VJf6sq1RxoV49H4KDvQvmx03VeGO1M21rQ8i0Eh/q+thscHg/2zZ8Sa0NO6l1KqZw\nm0rFMUN7FqcMpv+Pj9BtzE26BiSSK5HCV54ZNkxEdS5eLCw/KD6+t5gHcaL0Ch1OWgRf/isaln4y\n4taPsyYLBsWIRPXzgSUvSaYoCut/70f/rhuJjvXBLeAoHp7VYMqz2H+Zz7IcNeEmOw4e8MhCqNFh\nOLj/hKJ2YZXlFLtefRXXL9ah2BUMKmjvAG0dwOE2i1/H2V3YZKnNDos/FjT0dYjkQf1pnO0mAKJw\nZLHFm7ysS6gUBauHM1FTR7F5bz3iVhipF5jE3wv+ILhOEnt/0bNpqgVFUWhmgCpjppD68ASio9Nw\nsz/N6CEnSMv0wS3gGBp9tRJ9ZiezbTSP0WAFVhiyCDSZSErKIT4+m4SEbOLjs4mPNxZ7nZhoxGa7\nys9co4VRL4PekV7GjbSrq6VVq2q0a1eDypVvL21mKSdZTBijo50YveE8bPwHdm0tcInaVWrUPfvC\nI0+LsUF9KddQk1QUpPCVZy4Hthw6BC1aiHXHSWQa2wnCk0/pVWrnstlFpZb4DDj4DrSsdWvHURTo\ncAFCcuF/lWGKd8nfu+Hvj+jbdip5Zg2Jto3UrN0D5sxAmTGNNSYNh3JsOLjDE8uhSpuXwXU2Rqws\nWzKd9BfmkpEiksObG6CX05WFr5fmNeSEUgXnoDr4t29EUOeGBDeqhpu7gzBvszJFkEZ8LESdhyMH\nUA7vR5WeVnCMLEXPn3n1+TavFbXVaTzvsJ8OOhHyf8LixF9qD5R0EeiR0a8ZLv97jwm+3anmDaqM\nMZC3hoitOn5/UsFqsdLMAIO/+QbVU8+yadNJnHP70aF1DCmZTfGuux9UJbv5v5YAs1Ogs5Oo53kj\na91msxMTk0l4eDKnTyfnz1MID08mrlZXqNcKQnfDwc0F7wkI8KBduxq0b1+Ddu1q0LRplau6S6/F\n5e9uAB58Tu/8DzSLvbM2cnHeUoY4rESn5I8L+vjCw4/Bo09DcOlWJZLc90jhK6/YbCKoxWwWwyUu\n+Q/b6zjHNxymJ7V4kdaldr7LgQ21fSFi1q27OS+P7Xlr4EKQKPJcEsJPnsLb3gpf7xwOR0ylRecZ\nsHIZPD2CEJOIXtQY4LGl4N/zQ3B+k7RNf3HqzcnsPHoJkwLuahjiIhraXua9nK58bWpNzeZBjB/f\ngpEjG+LpWTyD3maxYExMJDs+HlNaGhqDAZNNw95DKWw7nEPMjqO0ST7AcMNJWmrjCt632RzALFMn\nrIqa2c6baK2NRVEgrIo/K2PTsKZnYq7miXXpO7zS+Rl8FT1kPgc584kK0bBwJFgtNto4QP8Vq6Df\nA8z/di39Wo3Gr3omKaZn8Q74pkSfX4YNakeIIuC3EkFblA1HzfSbp8fLYGac2w4OHLjE/v2XMBqL\npzAYDBpatqxG+/Y16NChJj17Bly3zVMeVkbzNzYUFvEgLvndfyMjoXZtCPZJ5tT0hagW/yiq8Fym\nVTsYMxaGjpKDgJKSIIWvvHLunOi9V6MGxBQZEvmBo6ziLI/TmOHUK7XzfbwW3lgOE7rBt4/f+nEG\nRsPabPjAF6aVcGzPbldYv7QjA7rv5dS5xtTveAwizkDPFsRk5PBzthq73c7wb6HhyDdhTxvyZr9L\n+MHjrMwWX9a6OhjqUujWHJg5hrWWunTu7Md773Wje/daqPLVPO38eSLWr+fC1q3EHjpEemTkta8N\nFSl4k6arimNwc9p0bcODpiNU2rgUVY4Ibtnp1JSnL3WmuTaeuZ5bqWZNIVNnYIlLVeIjLqCoVSR9\nPo5Jz39EPcULsl4G42ec36Fj8SM2bDY7A70MtNpzGKVufd6fNou3JkxDp7NjdvkHvevAEn2OHyfD\nG4nQxgFCAm794cVuhzpvwIVk2P46dAkGq9VOWFgiISEXCQm5REjIRcLDk4u9T6tV06mTHwMGBDJg\nQBANGvgWfOaXuZx/+iFdaUIlQHgJvLxEk9qLF6F6NQWOHICFP8JfS0TJNRBPgg+OEK7Qth1vP39D\ncr8iha+8crkjQ8+esLnQ28R0dnKQeN6kA+2pXmrnG/gZrD0Oi56BMe1u7RiXLOB3VqQKxNYFnxIG\nk/zz13cMav8suSYtVs9juDrWgf4dyDt6mK/NjmQac2n3DPQdPgg+joejBzlggrX52QkdHaCnk7gP\nfm9pzYuZvfGp6cO8ef158MFgVCoVZqOR4wsXcuTHH4k9cKDY+RWVmmzFCSPO5OKIBht6zBgw46HK\nQKXYi+1fqXFjGg8bSkutDccf5kF2FjaNli/ozvtJLfjUeSNjDUewK/Bv1UD2hEUAkPj+KP7v7c9p\nhC9kTIDc7zn6hzMrJxtRA48HV8c/JJQsjRPf/G84rz37D2mZlfAMOgfqG5twRjvUPivKmf3rDz1u\no3ffa3/A7PXXT2tJS8tl375L7N0bw7ZtUezeHV1s3NDPz71ABHv0CMDZWc/XHGI95xlLU4ZQt2Df\nHj1EZaI1a2BA0XRGoxH++VOI4N4dhesbNIaX3oLBw0Fziy0+JPcrUvjKK3PmwJQpMHEifPVV4foJ\nrCOObL6kT0HB39vFZgevSZCZK5LWa3rd2nFmJMG0JBjuCstqluw9KclGLhyqT8smMYReeI7G7b+E\nGW/B3Jn8o3LlUHIW1RrA2CZeaDaJPLpjefB3fv3o3k7QwREsai1PZTzAInNTnn66OXPm9MXNzYA5\nO5t9X3zBntmzMaWJsTqtkzMxDvU5kFqVi9QgGR/sXP3mqcVCNV0q7WvnUU97Hm3kQWw54uQ6Jyea\njRxJB8WIxz/LQFGI8q1P9zO9aaGNY4HHWlxtRg5XqsXq09Fgt5M8eRDj5vxAU7whbTDkrWPD226E\n/JiJkwrGD+iKx+qthOyLQp/ZnhaN40nOHY9P7fkl+jw/TIK3k6CfM6y7jeLilyN861SCsx+VzLhK\nTzexceM51q49y7p1ESQmFuZNGgwaunWrRfM3qxHWNYWu+DGlSHPaiRPhm2/gs8/gxRevcYJzZ2Hx\nT7DkZ0jML/5apy5MfhOGPyI72kouI4WvvDJhAsyfD59/Di+8INZZsPMwf6GgsIxh6K9xs75ZjkZD\n8/eglo9IY7gV7AoERcB5C6z3g74lHGP67fv3eGzQ+6Smu+NZ9yKqiGjo1oyoXAs/Z4gCIBM8yXeK\nwXkzLMoCO9C7hjcdclPI1jjRN3UUh7W1mT9/EI891hSAk8uXs37yZLIuiS4Wav+GLIsK5hT1sRaJ\nhtWprQR7pzCkpwfuTjYcNBayzAbOxGo5ek7F0fNqLv+WNFjpWCWRnq5HUc7uB0Dr4EDHMaPouG8T\nuvhLWB2cedQ0kiNpTmzyWoKfkkKYe2WWx6SAxUri1GG8OON76tr1kNIVu+kwi0Z6cn5vGn5aeHK+\nCHaZ+f5nvDb2ZdRqUPnsRWUoFIprkWIVVneOAifrQP1rt+O7LjY7VJkMydkQ9gE0uEnngt2ucPhw\nHGvWnGHt2ggOHLiEooBHawc6768NUQpjjzRhwIAg9HoNc+fCyy9f+aB3VfLyYOkvMG8WROW7qWv6\nw6TXYcxTopScpCIjha+80q2bqF+4fr1IYAe4SBYTWU8lnPiBko37lIR5m+DFJfB4B/hl3K0dY2+O\niOasqYXIINCUwEJITMgm6VQgDYMTuJD2IbXqT4UHu6Ps3s73eQbijHl0cYTuTmL/dBt8lwkmO7Rr\n0Yi+USfI0jjTLeURLrjXYfXq0XToUBNTRgZrJ04kdPFiACy+gSxO6kAkAYAKrdpGN78LPNslhoEN\nYjFkn0dlt17zOu1OlUjQNyYkIYCZq6pw8Kzw4dbQp/BE7VB04dsA8PDzY2iDWvgd2IGi0TDTcwxf\nnKnEBq+lNOUSZ9wrsSQqGWx2kuY/x3vjP8HHlgpJTchJSePrjg4YM0z089TT9tgZ0lwqsfCbAUx6\nahspmfXwrhsmGtnegGdi4ft0eNUbPql84//DtXh0PiwKgc9Hwwu9b/04AImJRtatO8viv09gWGHA\nlmtnrXM43l6OjBrViNq12zBlig+9esGmTSU8qNUqxgDnzoSzIpeSylVh4hR4YkJhRJikoiGFr7xS\nrx6cPg1hYdAgP5p7H7HMYDfNqcz7lF5F30fmi44M3z0Oz3S7tWNMTYCPUuAFL/i8hDn133/5MeMf\neoOUdA+86yWIO96YQZzIgz+zwUUFkzxFw1ebAl/ZHEjLMBHQKJjHYk9j0ejpmvYYZ9zqsnXrEzRp\nUpmUM2dYMngwKadPg96BNeYeHKQVCmoqOWczuXUIr3QJRWfNKLgOu6IiIjWQmKyaGM3OmGwOuOkz\nqeycgL97FF6OacWuO9WtFT+GdeCNhR7YFTX1HC/xiNdWbJciUGk09OjZhY4Ht6JSwY9VhzP5RBBb\nvRbSShXDIa/q/HP2EopGjXHNh3zQ91UccldC+nDC12v5faywRZ/t2xGvdTtZsmQ/nYN7U6NaFibH\nxTh4jL7h53r5IaSyBmLqgu4WY0AW7ISxC2BwM1j5wq0d42o8YltJlsZMdK9Ujv2b77LEF5iIr28O\nBw6Y8fe/ifprdjv88xfMnQGhR8U6L2+YMBnGPQ/ut1nLTVLekMJXXqlaVdTqvHgRque7mVZwmgUc\nZyCBTKB5qZ3rcpmqXW9Cx6BbO0bjc3AiDzb5Qa8SPGjn5FjYsbIJ/bqFczHjVWrUnQX+Lig5uXyd\nAck2GOQMLR1AUan4plkDkjaH4VjFl0nWFBwVO8OzHma9rhk7djxFixZVuXTgAIv69yc3JYUEKvEH\nI0jBB2ddHnMG7GZck/2obSLpPCypASvODOWfs4M4ntiEXKsaSAPyC4CiAdwAN+p4RtK++l4GB61i\nUOA/OOrEMUwudfjseB/eXFoJNXae8j9Mzag1ANRr0YyHoo+hVRR+rP04rx+szF6vXwgikU2eNdgT\ncRGrtytex5fyUrUBkD4ecn/gz3HunFibQYAWHvtjKQwZwcfvPM4bExeSkuGPd/C5/J6B10ZRoME5\n0XX+dtoWRaeA/6vg5ghpX1yz69BN8zpbOEUKHyhdUI4p/PbbMX777SxJSc8DJlSqjxk8OJgpU9rT\nqZPfFZGh10RRYNNaIYAH9op1rm7CAnz+VdHuXVIRkMJXXnFygtzc4jl8vxDKn4TzKI0YUaTC/e2g\nKOD+HGSZIOlz8LmFm+QFMwREgKsakoOFhXYjfl+0hoe7DcJi1WKoEQvPvQTLF3HWDIuzRDugFzxA\n7e7Oz9PGEzVhLiqrjcfrVCYgPYHZuR14PbcPq1aNZtCgusQePMiCbt2xGrM5QxDLGY4ZA70DIlgz\nbhs6o0gy//v0g8za+wb7YptSyXkX3f3X0jvwIG39E6jskIGHNh0Aq6Il3erGuXRv9kdVZ+O5LuyI\nHoJWXZMxDRfzevuPCfC4AECCSzse+KELB8470dItiqH2P7FmZ1KrQT1GxYdjUMGs6mP5+oQbB7wX\nUMmWwS+e/kSdiyKzZ2Me3riWdnhCUj1yki7yZTs9uUYzYwKrEnQyinWbzxDs2Yna/unkOf6EweOp\nG36+nyTD64kw1BX+KmGg0dWoOQUupkH4DAiueuvHKcqn7GM70bxEG7ojInAsFjvOzmCxqNHrP8Zs\nFg8XbdpUZ8qU9gwbVh+ttsQlgGDXNpjzIezMb6zrVws+nAv9H5RpEPc/1/wHl9Kzm6QssFiE6KnV\n4FwkJD0XkUBcmmXK4jOE6Hk6g/ctDolsyA/e6+NcMtEDSIz+CbUa4pJ7wCdfwPJFAISI+x1tHEAT\nVJfQDas5sXQjKquNZk3rE5CeQKiqOlNzejJtWhcGDapL9JGTfNe5J1ZjNidoyFJGYUbP5jcj2Dh6\nITrjRQ7FtaD5j4cZ9ud3+DqtZuXwFlya1I+lQz7j6Ua7aOR6Fl9dIjqVGZ3KjKM6h6r6eDpVCuPl\n1htZP2oa6a+24PsHehOWbKXut6E8veYHknO8qZwdQsgj8/hkdByHMv35xvQ4Gg9fLpwM5zc3f8wK\nvJ74G51qa3gobRh2lZrhqVHo3V1x+zeURXPfIVOtBbf/4eQNnaeIMcTNkXHYf5lPv34N+HXFEABy\nEt6F/6RXXI3H3MWPfHUWZNpu6t9ZjBb5kaGHbr6L0zXxQgSfpBZY16DTqalcWdyWdu9+nnfe6YK3\ntyP7919i5MjlBAV9weefh5CVlXfjE6hU0Lk7rPgXVm6Dhk0g+gI8PhRGDRA5opIKiRS+e5jMTDF3\ncyv+cGrMFz7nUhS+MwliHlzl1h+E94pKYXQrYd5YREQqnVrtAQvU/MYEn34AiOoj5y2gBVq09cO+\nbg+/ntuJ26b/Z++8w6Oq1rd97+kz6Z0AqRASOoTeq/SugCiICIKoKPbeOBYUj4AdFUUFKSLSMdRQ\nhFClJCRACOkhvWeSqd8fa5IAGUhA9MDvy3NdXEz27LL27Jn1rLc972nkTg7ckxqHWZIxOX8kHbsG\n8Oabffht5XE+6dwfWXkRF2jKOsahkFtJ/OgoA6TlmC0yXo18jy7L9uKi3s7hhzuwacL7jGoWh9Uq\nIyJhEK9GvsfDm35g+pavmL5lEbO2LeCxbf/lyYiFPBnxGR8cfJmj6R1RYGRi6BH2T5nDn4+EE5tj\nJmzJWZZHP4jMXM4LQUvY+/wxLpvd+KRgEgrPhqQlJrHWLRCrwchP8hVk6RrwWmk/HGUwzpa04/7G\nCr5LjgDNBFD1ptO0Mly8tGSZ4cybryKVldGp1wskpznj5pyCWV979oevUpR5mIAdpbXufl1UStcd\nT7z1c1wLd4TL8UriA/F9B9BoHHjnnX4kJz/DV18NJyTEncTEAubOjcDPbyEvv7yTtLSiul2sRx/Y\ndRzmfyZifbv+gF6tYN7LUFJy+26qHncF6onvDkahLe/C5ZoyvUqL73Y2nj1nU+AK/RtNHqJs81fX\nOoZQtm/7g/ahlzHNlSNfX12UHG2wjaWRhHbjMaJc9UhvLwOgr38DdFj5vKwTsbKGLFo0mFmzNrH8\ngem4mTLJwou13AeSxIV3DxJQsJVigyMjf93EoiPj+WLIPUROfplODdNIL/blpd3zeXLX16jcnHm5\n7+csGzmNpcNns3T4XJYMfYGvhz7H54Of4fPBc3ik7Vecy/Pixd3v89GhF8gp86Cz9wUOTp3FwkHj\neCLibR7d+g0VJhW9VZuJfmM/JTJnFuXei9zRlQsXE9nq5Isi5zJ7W0eyoLwHe8zBhBqKCW3qj0xv\nIOmF+VyUCsB5MQo19HtNPOu9mUVYVv/EsOHNWbtVdGnPSvy4Tp/zcJvbeuvfmN87/AMWn5NNqqwY\nw1XbK4mvcuGn0yl57LGOxMU9yfr1E+nZ05/Cwgo+/PBPAgMX8/jjW8jMrMPNKRQiySXqnFB9MRrh\n0w+hWxisWyVco/X4/wL1xHcH43rEV4ZIub+dFl9irvi/yU20DroSeWY4ZwCNBG3qWD5VcHkjvA2K\nfQFVVugAACAASURBVGZwrr7JaJsXq9UHg8HRi817VuN4+AJKVyc6Z1ykRKbjHX0fBgwIZsqU3zn4\n/UracQqrQs1GzQNUoObYW2fwL95Nvt6V3j/vIy7XzJFpvZjVPopyk5q39r3N9wmv8ubgL1kyaAb9\n3NbiTAZo3cA9GFz9wTUAnBuBU0MsKmd8HAqZ3GobHw94haltvmHZmUksPDIXvVHDlJZ/Evd4V05n\nOdBvxR4Kyl0IM0US/epuCiRXlpZPQKZWczwpgzMKB3zjDvFd32xmFQ3DICkYmpOMTK3Cfc0hfoj8\nEauyLahH0vpeE65eOvItcOGj95CsVjRuMzEYZHi77AJziv0P9woMs7mut5aIOstbQaXFdyJJJE/e\nDlS66su4WvuzMvdEf7UhiEwmMXp0GPv3TyMqajrjx7fAYrHy1VfHaNLkU+bN20tJydUkahde3rD4\nO9h+GNp1hIw0mDkJRve7Whu0Hv9nUU98dzAqV7zXEl/pPxDjy7O5wW41vnfcNkmFa+oW38vKKmVs\n/E7YCFatCjRitiuxwGUzKDTQdMw7XCSfsi/WANCtkQ8qCT4p6Ui+Vccff8STdCGDUcoIAOL87iW1\n3I3ne52iveF3KkwqRq/dgN6UwP4pk2nllUlcbiizty9lTv91vN52Dg7GZHBsAG6B4NEULCbIS4CC\nZChIgqI0KE4XWaA6D6xaN0wyLT4OhTzf5XMeaPkDHx95jiPpnfDV5rLvoWn4OW+n/4rd5OrdaWY5\nyJ5njpBo8iVSMxKAzUUW8swwNWE5Kldn3ivtiYscevq6AVD+xhJOkAmOryKTQ6dZIjh3OCEN9mzn\nvokDWP9HC+QyK4WXl9T6WbdWQ2MFXDaJ3oi3ggYu4O0s4sCp+bXvXxdoq4jv6trJyqzRGxlgXbo0\nZs2a8Zw5M5tRo0IpLTXy1luRhIR8xpIlxzCZ6sDO4Z0F+S38VpQ9HNwLfdvB68/WZN16/J9CPfHd\nwai0+CpdP5X4J5Jb8m3E536Luo7nbAvtVnVUCIn77Aea78oFCSTfhlXSUwlmwZoB3XQoHDuxI+Mo\nrhuOgVxGx/R4DJKST8urlUtmtr6EzliAzC+MNZeaEuKewztdRSnBw5uXkVJUxqFp02nkVMTe5N6s\nS3mMpSOm42k6DToPYdUZSiA/EXLjoaLY/oDNBijLRdLno7DosSoFUfs4FPJGj/e4XOrKLzGTUMsM\nrB77Dm19VjNs9Vb0Rg091RF8fn8suwtbkuPTGYNezya1J1JJMb91OM1H+h5cxpnuRZkoHHU4HYjj\n932rQdUVVH0Jf7ACpUrOJSNkfTIfb28HLqaPAKCicHWtn7UkwSDbgmZ/Wd2ejz0E27wBSbm3fo4r\ncb3JpzLGXBfLskULLzZsuJ+9ex+mc+dGXL5cwmOPbaF166/YsCGOWrLWBctOmQGHz8P0JwTbfr0Q\nBnWGuJibup963D2oJ747GJW/2Wu1d/9Ji8/tFonvgo34mtalbZxeT6vltlbyViAhseqtpO7+AAQP\n6IZZshK9di2S2UJQSCBOMlipb0GuVQzyzRfDaZgoSG5pSlckCZaNWI9OaeTnM5PZdKEb2x6ciZuq\nkJ2XBnDB2IdX2z2DzFIBLo3BVCGsOsPNB78k49UWwaiQHbT1iWLJXzPFeIYvINh1O1M2/QzA7Cbr\nGBCay9LMvsgcXUnMzCHaLCf0xGbGNDfzn5KeqCXoblt56N/9ngvkge4xNC7QerRY/Zzeux/y8whp\nNYHCIjXebvFgiq91vJVx18N/w5AJsPVUvF3EV8lr1zoIKmyubvVNyKz17h1AVNR01qy5jyZN3IiL\ny2HMmNX07r2MqKjU2k/g5g4ffg7bjwjdz9hoGNgRli2pj/39H0Q98d3BqJQavNbrYrGVV8qvX6Zy\n06i0+Nx0t3Z8vI34QupCfH9sxL04p+Z2nY6MNGH5Neo6llhy0azZD0A7vfD7Lq0QBfsffDCAYY0T\nMRQXc4lAkghkYvNoujdOJa24IU/tWMjXwx8gzDWFc7nNiNP3ZEaT/whzwtEHClPtE57KAYL6QsdH\noedz0G0OtLoP3JvUelstPS8xrMnvLD35CDLJyrJR75JcKGPhkbnIrCbWTdqIpFSwzdQfgO1mDQYr\nLPQ+yHcV4aRJrnQtzkamUeG84zTrz+0EzRiQ3GkzSfgXo/UWrBvXMnhIC7buDgWgOOeXWsfWxUZ8\nUX+D+AJtxJdo59HdCqy277Hsmu9xqe276HCTizBJkhg/viVnzz7Bp58OwdNTx4EDyXTrtpTZszdT\nVFSHEoh2HUT254OPQHk5PP8YTLsP8vNubjD1uKNRT3x3MCqJr/yauIzC9tiM3KYsAyDf5gK7VVdn\n/E1YfCZZdTaqpaWPKCgGzG1akXVeTE4+HSZypOAcjgfPISnkhBblkG5x5IDJnz59Anjxxe7sni+O\nO0Jn5JKZj4cJlY43982jQ4PlTG5xCL1Rw09xs3iixTxxQa07lGTWHFTIYJiyGV7LhRl7YOw3MPRj\nGPEpTPoVnouH5xLgnvfA6foV3H7O2QwK3syG86NQywxsnPgoC6Ke4HRWa5wNySydEkNUeSsMXiGU\nlJRyzKygQfQ+RoRaWFzSEa0MWjcUPsWM75aSJEVTpO2Lf2dwdFNSaIHzS9/jvNNSFG2Fdaw3LuUY\nn/MX33KGHznLKs7xO5fYQTpHyOUcgerLuMnKSTRC1vXlSG+IAE/x/+2y+KzX0ceodPHfaq9ZlUrO\nnDldiI+fwyuv9ESplPH118dp1epLIiJqt45xdITFS2HJL0LxZfM66NMWDu6r/dh63BWoJ747GJXZ\nbdcSX2U3BiN/oyL5GpTaFsMOt6jin2mbTBvVwfsaF9SDfZP84QuQbZkPhUIlpcDPCXMFuPhp0Lh6\nEhe5C8lixce/IWoZbDSEYkXGt9+OZHLPNzGkX6IIJ84RymPd42moyiA+rwkrY0axdNR8AL488Thv\n9J6PhBWUOii7ZtZ2D4ZHdsHDf0DYcFDc4ANwD4K+r8Lzl2DQB6C0X7fh55xFoOsFjmeE00CXx8KB\nU5m1TSShTPDdRjPPAtbmiDjlAYMcgxU+brsF7RI3TCoZHXJFFwn3HyM5bHiLY9pMJBmEjhNEkXgs\nmeTiTSi7GrECnooUkq1biWcTcfxGDL9wmh84xmf8ybvs5gUipJksCZvAd80eZL/0HIf4iNP8SALb\nySUOE7Wbgo1F7g1ptym5xXIdiy/Tti5p8DdKawBcXDS8//4Ajh+fSceODUlJKWLIkBU88sgG8vPr\nYPreOwkiT4rO7+mpMKYffPi2EMWux12NeuK7g3E9V6fK9tgMt9Hik1UmFNxCOMNkhUKLiNW41OEb\ndfFSAfJ7rNAbUAZBzCkACl0Fw7sGeFGBidJ9olFskG2C3G4U7sa2bb+m4JAo3j5JOyzIeW3wOQDm\nH3qZ8c0/JsBRZHB2CElDY84WFzZek9kRMgQePw5N+t/cDSvU0Odlcax3S7u7tPWOJVPvTYnBgYkt\nDuKt+4sV5ychsxpY98ZOpkYZ0HR2Q6+v4FQF+O8/Q/jwQlLHNKSxHJx91JizDWTvBp1yJEaZEy2H\niAk3wQBd93fE8/J0LqR7IcNK14qetGU6rZhCcyYQwmgC6E8DOuBGU3R4Y7YqcVYUY5FfIJUDnOM3\njvM5u3mR35nIVmbyJ+8Tw0ou8xdGrv68XG1u8KLblPBYgFhtOVO92CgqEvXkGk3NpK5bRevWPhw6\nNJ0PPxyIWi3nhx9O0rLll2zceK72gwOCYNM+eOZVEetb8I4gwNTk2zO4evxPUE98dzCu5+pU/gMW\nn9z2TTDfApcW2IbhJq8m0BshMbEA/0Y2f5bcHy4J91MhgqBc/AO5SAHaYwkABOYLE2CvMRAAvd5E\neydRv3aBEMJ8ivAtP0GZUcuvcWN5vbeQPdsSP5y+7tfJegwdAZPXg/ZvKPZ7N4eZ+8G/u923hwX/\nwaEC0cZ+2bSXcf/qMha5RPOss4QHZeH+dBAAUXIVsgoL6ucdeDtSJOm0Uwo/X9zvFbSUnkGpnoBf\nRyHplWUGx80p9PC9jx07hFarNiuHZoymOeNpxWTaMZ3OzKUXbzGQTxjOd1zO+5WZ55dxImc+nXmG\nljyAP31wIRAJBaVcJp0ozrKS/bzFeiaxnac4wVcksxedTljmhbeJ+PIRX+xKBReACxfE/02b3l4p\nTYVCxosv9uDkycfo1q0xGRkljB69igcfXEdOTi2prkolvPYe/LZTtDuKOiBcn7v+uH0DrMe/inri\nu4NxPVen8h+I8f0d4su1EZ97HfvhJiYW4OVuy2CQeUPiRQD0iIlV5+1PkrUA3V+iuWgjjCSYXcmz\n6ggJceePlf1QFWcg0zmRRiNeHS6y9tadG0c7n42EuKSRUtSYHmHXief4tIKJK6/r1rRipoBLpBFF\nCvvJJhoD18n81LrBtB3g19Xu211aRFHs4YBbSTEesXkc926HZAXHTyuYO3MIOLqRV2QgxQQ9z8az\nIrY5+ehobkv+cdlwlOOWdFAPQaGGwPaCEBO2b0eSJEoqOgJQVhh1g09coJlKRoHJnSMlLQigHy24\nny48xyA+ZRxrGMRndOE5QhiNO82QkFNIIhfZxmH+S0Ljh/jgzWfp3mc5OZzF8jcXXpVSZZWanQCx\nsbaxNvtbp74uwsI82b9/GosWDUarVfDLL2do0eILduy4WPvBvfvDvtMwaIRwzz8wQnSBr8ddh3ri\nu4NxPVdnpcVnuEMsvnKbe1RbxxV6fl4xGo0Zi1UG+Xpxg84uGIwic07l1IjkzETkJeUoHLU4yOCk\nqQFqtZyzZ5/Au0wQWrFXKyzI6eMnJq3158cwsfkqAHYlDqCLy+aaF5fJYfxyUNes1C8nn1N8z1rG\nsoOnOcj7RLGASF5lAw8Qyaukc7RmUoZKh+XBtZhcanZ7dc4pJbVY9JPy/vUy0+b9CEBXTqIwWYiR\ntQMgxqLA8eIZ2jSwsr68GT5y0Lk5o8ws5Mjp/aASMmX+/YV1kpaWAUWFOLh2FtfRna017b6Zjefj\njTXfk6HAhQD86UM7pjOAjxnLSvryAa2Zig/tkVmVNAmMZ+DANezhZTYymSMsIoPjWLj5uFcl8bld\nQXxHRDN7OnS46dPVGXK5jKef7sqZM7Pp2zeQ7OwyhgxZwfz5B2qv+/PwhOUb4KmXwGyGOdPgv+/W\nlzzcZbh9Yo/1uO2otPjKrvHE/BPJLX+H+Cp/8nX1TFVUCMvObNYhy7Mlm3h4YCgV7k+Vowc5CYLM\nXFydQa/ngsWDsDBPFAoZWTGisPhckRsquYlGZvH3vuSefD3sUQActSYkexZx59ng27bG5jQOcZAP\nbjjubKLJJhpPWtKFZ9HhhRUzyewj2mkFuvFN6PddzYxR9/wckk1+BLqk0Nwjkt2J/egfuIfHul9k\n+Z6mtGQPZ81yBltNPN8qh437mjBNc5IgBw0x+UWwZjmUF0O2O42UYnGQbgI+HsoERwXGtTKcVIWg\nGQRyR0HqahfQuAiL1KkBODWkkWNDHIyNycARq7V2V6IcNV60xIuWhHEvBeUV9P0qms7tTjCu/wmK\nSSOJ3SSxGxVONKIrfvTCm9ZI1G7+JyKedyOq0zf3i+oVunSxd8TtRZMm7uza9RDvvBPJvHn7eOWV\nXRw9ms6yZaNxcrpBkpNMBm/Oh4aN4ZWn4IM3IC0FPvpC6IHW445H/VO6g+HgIPrxlZWJFO9K6bJK\nceoS7CzdbxE6WxlCSR1Kna5F5WK3rsRXZivUsqKGfBvxuTlfNREXZ6SjBVzUKtDDJbMrwcEirTDH\n5g+7kO9IJ/9M5JZyzuY0x1VzAU9NARklDWjtl1jzwnIl9H7pqk0xrCSHGLI4XcfRQw4xbGE6LZhE\nKgcpQig3y4Jakd/ZCbcjEVft7+OQx58pYfi7pPBY+Hcsj36a/oF7eLhTAh/tGYHVxYeSwkwyVTCq\ncAO+I1SwF5oUZBEDBPy2HaTtAPja3N6XTWA+egjvcKCqifzOG45bC5QAGZoGmHxCUHqGgFcY+LYD\n3/bg4HnD42WoORXdgYsXOvBNfygmlRQOkMJ+ikjhEju4xA50eBPEPQQxEC0eds9VgoF0SlAiIwDx\nxc7IgJMnxYKvR48bDuW2QSaTeOedfnTs2JDJk39n3bpYzp7N5vffJxIWduPPgxlPQoOGMOsB+Okb\nyMyAb1eJH2097mjUE98dDEkCf3+Ii4OUlGri87QlA+TwN/SnroG3LYMuq45dXuyhrskI5eWSbX8z\n6G334KBCbiNfs8FARXYuWsDRds5MqyMNfYV7MicuDoBsvBgeImb901lt6NZoT9XrgcF7al44dIRQ\nbLEhlzjOsvIm7vBqVB6rw4uWPEAAfZHuKYCTgTWK4z0dLmMwK+kbEM3TO4TF2VxxnMjJOWSfyiHm\nDFwyQvfkDPr2B06Bn21NkJij5HLH+2igykYj7cTtByX5+UayZZ3RjX2LQ7ufY3DvOPL0M5Crh6Ci\nFJW5ALmxEMrzoTgDitKhOJ2KghR8yy9D0mVI2n/1Dbn4QcMOENgTAnpBw/ZisWBD1QLH9kycaEwL\n7qcF91NIMinsJ5lISskkhhWcZSW+dCKYITSgPdIVkZWLiJqIIFyr6lJXCS81gwZVu/n/LYwcGcqx\nY48yduxqYmKy6dz5W378cQxjx9bS6HnEOFi3Cx4cCRGbYGx/WLEJPG9R7b0e/wrqie8ORyXxJSVB\nq1ZimydiRZlTh9qrusKnkviuI1V5IyhtE2FFHd2kJrNwg0mSWbSGAVDIqojPqNdjLhLEobUId26e\nRUszR7FDyWWh7lKIC2390wFIyA+mrfdJACxWGXJ71nDriVUvrVg5yXc3HGcIo1DjTDHpJLH7uvvd\nw2JU2GKGOg/o9hTsff+qfULdEyg16FDJjUQ/2rFqex//JE4XIYhPktPdZOb93WNolRfLCNk5JKWC\n8jwjz5Y9if++Uua/uBNNAzXkG4naU8DYrcN4+clTDA54le+/duGFefdWnVunA3d38a9BA/Dzg52T\nLVgcUvks8zwDdBdwLImBjL/g8ikoTBH/YteLE6gcRMZqs6HQbChWXSgg2V3guOCPCw/SkklkcooE\nIkjncNU/Z/wIZRz+9EaGkjO2DN5muANCl/Obb8S5pky54WP5xxAS4kFU1AymT9/ImjUxjBu3hldf\n7cm8ef2Qy2+QDtGlB2z9EyYOheOHYVgPWPMHBAb/e4Ovx02hPrnlDoe/EOcg+YqyIY9/wOKrJL7M\nW7D4XG3hnMI6Ep/RKNZbMqkcTDaCksvQiTmQspwcLAaxXWFTKi6zKnF0VGExmTDp9SDJMKIkyFVY\nfAkFwfi7CBJUya/TmuaKer1cYsnDfgfuDjzJfaynHTNozgQ6M5dx/IYjjezuH8M1kmFdnwCp5k/L\nQVXzeRktCibsngFAYrmExQr58d3Yp38EmQRKhXgwOfGnWL5aWB/eLUUiic6ajIsLJKcLKza0yUU8\nPISLXCYTLvLUVDh9GrZvh6VLIem8jBQHf8Z8OBCnAbPxmv45A3/9k5dKC9nSLI6sXsuwdpgOns3A\nUArxO2Drs7CoOY5fNOFT5zn0V++9roK0hIwGtKc7LzOC72nFFLR4UkQKR1nMVmZxng0cQpSqdKEh\nAGvWiAVeQACMGmX31P8KHB1VrFp1Lx9/fA9yucT77x/g3nvXUF5eS/JOs+aw7RC0bgcJF2BoNzh5\n/N8ZdD1uGvXEd4fDHvFVWny5t9Hi+zuuzkriK6hjro1MrqG4RIVMMoLSdlCFAUebd6j08mUkk9gu\ns4oJ1oQMBwcVFcXCJJU0OkDCUSGCXgUVrgS6isQPJ62dQKVbEDhUu5+SsS8/1Y2XCGbQVW45gHg2\nU0Ka3WPEexnVG5wbiuL4G2DgL6IAP6W8KedK3qSQxpjMJvIt0MZ4hhMmkdbYyGZON9XF8M13vlis\nChq2F/dcYS2nIK2U8I6C8Du0v0hOjigAN5lEMXhiIhw/Dps3w9dfQzNbQ9mgFoIgc3Jg1y74aIGc\nEQ+H4jN0Ko3nfMekI+dY5nuZy71XQLvJoPNEUXiJOQ6f87u2L3zkB1vmQnLUdTMaNbjRnPEMYwmd\neBon/NCTwymW0pWfac95muNKXh48/7w45rXXRNnc/xKSJPHcc93ZsWMKbm4aNmw4x6hRKyktraXX\nXwNf2LgX+gyE7Cy47576Dg93KOqJ7w5HgG2iupL4vKpcnbff4rtceOP97MFBAjlQZgVDHbK6XVw0\n5OTZEgA0tsmk3IiTrRqgMCUFq1rMfmaZYFWtZESSwGhLcbXaavDUcmEZ6o1aXNRiIaBQ2BmE59WF\nYYl2XJcehNGYmlkVqRzkND8AEh14nC48V2OfWNZU/5EZDee32rlzSC70A8BkUWAwKwnUnsNZ7UwW\nQgEmywQD/E4RaxbE2EQl7kmWdonBwyRkisZVOSgJRkhY9xvWixnEbYOUXenErFlD9KpVXNiymfxT\nB9CWxNDUJ41B/cqYOdNKR5vQzLwPobhYfK82bIC33oIRI8DDA9LTRbxt2hwffIc8QMirPzM36zKr\ng6OYX/IS6VIgFKfDwcWwpBssbgl/LoIy+0LOMpQEMoDBfEYPXqOCRmiooBWH2W59gje+20N6uoUu\nXeCRR+ye4n+Cfv2CiIx8GG9vB3bsSGDIkBUUFtbS0NDJGVZugSGjoCAfxg+uV3m5A1Ef47vDYc/i\nc0eDDKF8YcRSVdD+d1DZcuZi9s0fK0ngKYdMs9Ds9Ktlxe7ioiYz24Eg/wLQ2azWYj0etpBI7rlz\nKNThABhsPZmcJANFRRUoK2s8jMKqU0iC+CrMapRy4Y7SKu1MTlcISxspw0zNfdpSc9YtJ5+jfApA\nax4iGGHJxbKGIqq7nyeyi/aWmSj2fgK7377uvRvMIk7Z0iuGmOyWtG9wkuYeX1CYUwEGyDJDs5JL\nZFrVlFllFJUKovdavJUfTvalMDadkixxrgIL/PzQVABWLwXIBSbWvKgNamdnAgOacl/jEDJbhHC6\nTQjuISEM7teKUaNESYHFIlyO+/ZBZKRwkcbHw+JP5Sxu1AUGdeHzkg9YN/woHVWrkJ35BbJjYesz\nsP1laHkfdJ8LjTvWuL6EDAvNWUs/GpPOYPMF9PIU+r64kCbD1jPAYxpyebvrjv9/gTZtfNi/fxoD\nB/7EgQPJDBjwE3/8MRlPzxtkbqpUIrtz/GCI2g/3DYItB0QNYD3uCNQT3x0Oe8QnR4YbWnLRk4ce\nH26xpcIVaCFCLZxNp041XtciUAWZekgy1k58Xl46EpLd6NohDdxsJmZOHlo3cPCUKM0pQ10iLMFS\nm3iok1RBYWEFKkdbEolBEKbepAQl6JRlyCSxr2RP9V9dXStWRpbdcblTUy4kmhWYKKMBHQllXNX2\nTsxl1xWWn9xgwrB2GIqYSPHhdXkczq4XltGVw1AIwm7peZpzeaG0b3CS1r5/cSzdhY7AeYscRW4J\n0/iJT/Ku1kZJ23tNFiYQGBpCrswZX9fjSFaQa3ojKZQYysvRFxdTXlJCeUkp+oICKoqKUJ05Qasz\nJyjZBusrTyJJeIaF0bBjR/x79iSwb19mzQrhscckTCZRVL51K3z/J2QAaeckunzfmUaNOjP94Q95\nfMAmfJK/hfgIOLVC/AvuB71eFF0vbF8mMxY+5zgWJCpO9GLGsDk0HxLJA++twK/VJc7zJnp6047p\naHCz+4z+F2jWzIP9+6cxYMBPHD+eQd++y9ixYwq+vjdoH6HVwoqNMLI3nD0Dk4aL7E/HmsIJ9fj3\nUU98dzgaNxaNaFNTRZ+yyh5lPjiQi55Uim8L8Xk5iZZEeaWQUQANb3LeCVSKJqeJBuhZSxmTv78L\n8Ym2TBbXTJGJkZsLRjXeYRVcOgDaFOE2KzEKK85FqqCoqAK5SoVcpcJsMCDHRGGFFpTgqi6goFyH\nvxPIrHYyOi3VFGK8Tmz02riekTKSiQSgHY8gXVGp6E5I1WuZ0UyPn4+iS8gRReMTVkLoUCz6QmSn\nV1x1TrNFWLAtvQ6xN3kMAOEN8yk9LqzH9Aoz6YA/iZgRP9DKtIrBsyYQVngczeWLfBgp3MtTc2zi\nllVcbj92afbWUeoeSIzKmZOSDp1Wi1xvIic7l6Lk8+TExpITG8vpn0XjXJx8sQQNgmbDUbcYhIeH\nC226i1o7NxXkA2lpMO89JfPeG4eHxzj+82wiEwK+wO3CEmQJeyBhD3rXNlwKfIsTFWOIDD5DVvcc\nytM1/DSkJYZsOWGXBjDQ1JMKNhLLalLYx2WO05qpdmOt/ysEBLjaLL+fiYnJpnfvZezcOYWAgBto\nvbq4wpoIGNYdThyBR+6D5RuFRViP/ynujG9VPa4LlQpathQuqFOnqrcHI35wCdyeHjGSBM1t3sDY\njBvvaw8BNisvqQ419X5+Lpy/aPOtWs8J4V+rFXJ8qjxk6mRRxFZYLiykQFkBqaki88bB2xsAZ4rI\nLROxPg9tLrllYgVul/gqqus0JDul9vYm2BxiMWPAgzCcaFzj/SAGgdVKp3Un8UnIodxRA49FQehQ\nysrg5z9a1DhGLhOWrL9LDsk5HuyOhNyISEKvyDBtqwYnz7Y85wYv2NYHCqDr2jW47riI2lZrb0Z0\n08j1d4NQIBwyO3mS0d6Hy629yArzJN/fBaNGgbysDOfURLolnGb2xSimRu9h8sX9zC06yxxXNZ0c\nWiNT3kO21ItSPKE4A9npH5GtnUD5PE9OPDuEzLU/oKnIJz+FGsjNhcdfC8Rz8gLc5qfw4u4PSS/2\nRVtwmhYn76VtfBt8vddiNcOJSV3p3VbDtm3CnRocoKY54xnM5zQgHCOlnOBL9vAyxaTXvNj/CL6+\nTuzd+zDh4b7Ex+fRq9cPpKTUEhRv4Au/bhd1fbsjhMTZdTJi6/Hvod7iuwvQoYNIST9+HLrbGgFU\nE1/BbbtO84bwZ7xwdw6oOWffEJUNaONqSXwDaNLEjZMxtmZrxhPQpBlkpEGKF34dhU9Xlm6zr30R\nJQAAIABJREFU+ApKsDpBqDyH788JMnRv2pSi1FTcySMmzYHR3tDE7SIZJYJMTfaySwurfcVVNXdX\nwGpH3qwUUS/oQqDd+/CiJeZT3+N/Oh2jWsHeaV0Y7BVGeTmMHg0NMxsxteHVx1isElYrZMZn4xv3\nGvstAGYu40MDMpEDYxwB6ymQVSdMmoCjU9rQKeg0kh8oJ4DRBKaZ4PFU9eLHBzvt0a0IyZZsqMhV\nUpTmTPlFNYoLZpzOF+OWXcowzRmGac4AYJQpiHYNJ1rmTmpxHhUZp2hqjaDp+QjM8bPIazSSom4z\nyHYeRHmFnIwMOHdFh5+iChcWRL3I4qNP8eb0Rcxu/BGty2No/UMMSZ49cV7SHLewmgXeDjSgJ2+R\nyp+c5FtyiWMHc2nPTAIZYHfB8m/D01PH7t0PMXToCg4dSmXEiJXs3z8NZ+cbSJw1CYFV22B0X/jt\nF0GC7y68ve0n6nFTqLf47gJUCvYev6IsKNgWA7mdxFcZ5zudevPHtrH97k/VkvQGEBrqyfkEL0rL\nlGBOhGBbIPOSA/6dQKaQUX42HotGicVoIs8CoYo8kpIKKCsz4ta0KQCeUh6H4oWbN9TjHHG5Ikan\nkdsZRP6lqpc66qaqUak3abmONJzGpKN1hJBPOzmsJUUNnLFgZO5c2LkTyhQ16/4sxnJ+WikjIsKE\nwlJKcCAMu78x3ppQ27Wurg6QpGrPWOvHTsN4oCsoKov96yI4IAFOQDCoOxnxGpOL33Pp+H6diePu\nMtgLxV/pSJ3uS3ZrD+RWM+3zTjAlZyevVJzg+eY+jBg6gHyfzkhWM14p62hyaBiDYgKZd8/7nPgz\nF6sVDAb4abWJzg/nEPJqLN3+2svhJU2Y9dJifrvnIcwaFwJyDuC2oh1se/4qK7x6qBJ+9GQwX+BH\nL8yUc4xPiWLB9Ttk/MtwcdGwefMDhIZ6cPp0JhMm/IrRWEstT7sO8PN68TCXLIZPP/x3BlsPu6gn\nvrsA9ojPD2cUSGRQQtlt0uzsYsuqPHidbj43QmuN+DLFVtSu4KLRKAgK8uLEGZtvtZktUzPOiNoJ\nArp7gcWCrFzcV7oJmslzkawWzp/PxcPWs8ZPIyc2R9R7tPKKJi5XZASarXYEkguSoVRYQ3LUyKgZ\nZ9FzdXd2Z5t7Mw/7H4g2Zh+6onIKfJxIDBdlCn9EWFiyRMxv7y64upNqQSFsWpNHYqIFnRZiPN5g\nck8IP5jBOw77kCOMMzOQ87A7PCGOqyS+8pLq+6qsdbu2t+4twR2cepbReG4GXr/kIttvpeQzLUmT\nG1PUwAnHzHQ6HNnFItMR7gvzI2xED5RBjShKTWX3a6+xwK8Rr80eyeyUb/l1wu/4/LCHsPeicW5d\nREWWmtPvh/Ofl5ZyqGuCEAm3WuDAf2FhGESvtTskFY504Xk6MRcFWlI5wHaeIpc6NI/9F+DurmXr\n1gfx8tIREXGRJ5/cWntnh94D4KvlYjXz7quwb9e/M9h61EA98d0FaNtWJLicPVvdqUGJDH+buG8i\nt1B8ZwcdAkCtEK7OvJtcXOtkEKISLrmYOghdh4f7sveQrUixuc1VFy1qKUIGXL16TtM5o8VIG3km\nR46k0bir6H3npU8kIb87eskFX8fLZJWKhBNPbQ4VVjsJP0kHql4GMbDG24lcPRG5E4oSR4pIIp+a\n/doU54Qo9KWO/lUdeN94Q7z3n/9AaGj1z6u0FH7+BfILwMNTwcxpMEYVj7QN5KVmLrQNxuIkGM5g\nBU9DHuVGQXSyyu6+5urPpbJH444DOj4ZH8LySfB1f3ivhSPvBOp4x1/FO4Fa5jVx4D+hTnzQyYOF\nw71Z9ow7OxcqObsFci6AxZ4giQs49tUT8FIqzhHFlC7XkfRwY0o8dLTOSmLioT95rjyTliNbY+gR\nCvoKVF9vpnHobAJnfE1QQhnDaMLLlu48FDmCimUtOXVEQa9B7oxf/iWZ9x6Fxp1FxuvK8bB6kt0a\nQAmJQPpzD4twpxl6cojkVZJsCUf/awQHu7Fx4yQ0GgXffHOCBQsO1n7Q6PHwwlvCrJ89BXJuoX6o\nHn8b9cR3F0CrhRYt/vkEF7USOomm4ByqQ1/Oa9HBJiwcVQdBma5dG7Fzv83EDI4W7VzOJ0CxmhbD\nro5TJdmEkvsoE4mMTKRRp06gUOFNNGq8iCkRhOfvnEZykQ8umiIKyl1qXjS+untBQzrXeDua5VfF\n+uQoCaQfALHU7OQuyxIZlbl+1SmwJ46q8fGBp56iKoZjtcL6TZCXDz4+MGS0Ny6n4AHDSpCgqK8j\nx1e1QaOoDpBmpvmQW2CzhG2WxIkoH7a8rearfmCwLS7OXiij+M8LXNwLmXFgKigBQxmYDGDQY9WX\nYikuxpCWS9FfWSStzuPPBUZ+fRS+6APvBkssHKpjwzw15yJAf63nXAYObcsIeC4Vxx1lZH/uTnLf\nxqgNJu47eIb34s4xeUgXmgztj8xixWPpbjxDZxDw9I+0y9fw4AQZsbEwb574Hq9dC836duA7xSGs\nI78EpQ5Or4JPW8F5+x3NHfGlH/MJZggWjBzhE87wo9247L+Nrl0b8/PPYwF46aWdrFlTB6WWZ1+D\nrj1FN4enp9f38vsfoJ747hLcKM4Xf5uID6CnLUv/wIWbP7a3zcjaWwf3W7dufhw67keZXgWKGGjf\nVjD7mVBcGkFg75ZV+2bmFGCwQh9lEpGRicjVarzadEDCij+pbI4WwclBwdvZeUmkhVrsNRaM/hXM\nwsTxoWZPPoDz1dVtAIRyL3JUpBFFHld/KFKxSH7ROwvGtxhEoHPCBFt3gXLBItFnIT5BTPz3jlPi\nlVACcWBQKWEoqDoZud+0vqriQgb4OGbSqEEJFisU2UJh+5/O5Ng3FWRd4e1roYIhOpjkBDPdYU4A\nPN8GXuoEL4TDs23hqVCY7gUTnWCYA3TXQIgSXGRgNVkpOlXGya8rWDUNPmoBC7q5snuhkrzqsKiA\nErz65OH/WSr6rWoSpgZQoVXR5OhhJh/ZzeODutN2xHAsZjNHPv2Uz5o2JWrRItRKE2+8IRJgRo4U\nUmqPzpRxz+uzSb/3lBDCLs6AH4fCtheqntGVkKGgA4/TnseQkBHHbxzkfUx2hAj+bdx3Xws++kh4\nEB566HcOHrST9nolFAr4eoUod4jYBEu/+BdGWY8rUU98dwk62tL8Dx+u3tYCoQRxmqyaXcFvET1E\n3sitEZ+tfm9fWe2L2PbtG6DROLBtdxOxobMtb/+IyLhse7931b5Wo5lLRuijSiYro5C4uBxajhYK\nKmFsZcWJbgCMaLqZLfGiO4FCZseHV5olRJcRiSttmFZjl9Msq8rmBNDiTlNGAnCWVVXb9eRiloub\nlNmK7JP+FCm3Nk8slOZgtcI+m4d1YD9QlypxPi3KMpZ/NAH8QCOvIC9fg7FCWLYyCcxWGb9vbs+S\na7zYndQwxRnUNu/nMB/osgqa/Qm+Z8BwxIeYPeEci+jKkZ09ObWnK5cPdkUW25HG0UG02qPmnuXw\nwPswdza83Asmu0IvLfgrbNJzSQXsX2Dksx7wQXtXdn2iouzq8CdavwqCn09CEWEk4ckA9I5qPI8e\nYMyhLcwaN4Sgnj0pLygg4pln+K5LFzJOnMDPT8ij/fKLkEbbtQta9WnKBp99MHg+yORw4GP44R6q\n5GmuQVOG0Yu3UeJAOkfYx1sYKbW777+J55/vzqxZHaioMDN+/K/k5dXi9mjsDwu/Fa/feh5i6t4P\nsh5/H/XEd5egb1/x/44d1WVAgbjgjIoc9KTfpoy3ns1EN/ZDFyH/JueTMBV4yUWT1PO1lDUolXL6\n9w/it622fmddbGSzV9RttRp2Aa1ntcRTnNoJd8rorUjit99iaT5OqKiEsoGE/N6kW4Jw1RRisbpS\nZNDhpcsht8KbGji0uOplU4bbHdtWZlJ+RbZsKGOQoSCDY5TZygVO8i3lDsLC0xYJq+PcgTYABNnc\nxRSlkp4BObng6ABtW4PiiEUk5bcBj5bCUrcoZTzy3GgkW/2hBCz5PYzTR/8i64pw5xw/GDYHgn8H\nyZZFK90/hJ2emyl214EEn7g+yUaH4RxRd+SiqjX5yvbEqztxXNuP3Z5TeTLwc8Z0/5W/nlxLwYeL\nMG16FJ/oVvRdKzHtTXipP0xwhtYqQa6GzAIOfGxgQTs53z7sTsrRqxc1cjcrwbOSUG41ET8jCINa\nQYPIbTyY9Bf3P/owLv7+ZJw4wbedOrHz5ZexGA1MmiTi1cOHQ34+jBkrZ+66lzA+tAccfeBSJHwR\nDqlH7T4fH9oxgAVo8SSXWPbyBhX8jUaStwGSJPH558Po3t2P9PRiHn98S+3JLqPugymPQkUFPHp/\ndQC/Hv846onvLkGLFtCoEWRmipo+ABkSbRHKzqfIvC3XcdVBr2ZgtsAfZ27uWEmCATZ359Y68PCg\nQcFs3tEMg1EJrc6AizPEJ0KKJwpVKh1njKnaN67chNUKE9UxrF4dg1fLljj4h+BADgHk8cupMAAm\ntVzJL9HCGrTr7rwQAWknAJCjoisv2h3bJh4iExFQVeOCF60BK/nEc4HNpHKQYm9hnTrbmhie3Sni\nhurKkq6ssyTZygebhYC8EHTZ5aAEfTc1g0pEMk16gT9vzInEbBCf4R+lkF1yFglhiVX+SDUbgWeB\n5mA0CpPvgLuV3Fbf4yQTk+ZHuW/wbt5/eLbwc6YXfcXI4q8YWfQZIwsXMKrwbZaaHmU942mdP5Gi\nsgWctkQT6dKL3QO+4dILP2BYN5vAwz6MWwzPj4D7nYVbFLOZ9O15fD8aPuruQXzk1QSocDPT9OlL\nGDeouDg4EHlZKaHrljE7wI2uU0WDvT8//JCl3bqRExeHtzds2gT//a/w/C1eDANn9CJv0gkI6AFF\nafBdXzhnX+zbicb04wMcaEA+8UTyGuW30eV/K1AoZPz00xgcHVWsXh3DypXRtR/07kIICYPzsfDG\ns//8IOsB1BPfXQNJgsGDxeuIiOrtlcR38jr6k7eCUTad4E2nbryfPYy0yRduqkN92ahRoRSXaPh9\nW3NQAn1tWZ6Rwv3Z+RElMlsr7vISPUkmuE8dS2x0BmfPZtNh6iQAwlnBwv3DsCBnbLPfWX9eCDfr\nFGWUmO1or+14tWrW9qMn/vS1O759vMGvjGIvb5DJXwAcZTEnER1TC20tLVwzighkACrEzRdUGouX\nz5BpeywNfYHKGvpgqHBTo7WIDBWr0kRoY7FwsVrhRIVQlpjkBP20VKVwLJdtxOr4JqYKMJutSMA9\n8ggmlqyrGnOZzJtcVSdyNKPJ0U4mRzeTHN0jZGsnkaoaxjHCycAXORb8TWl0Kz/EiOKvGJj3KD4F\nj3PacpKdAY8TPW0FFcvnELDPnQdeg6fCoIcGtBKUJ+Wy4gFY0MuThOpEWQAcGpXR5ONEkr5tTG5j\nN9RnTzEoYhXTnpqFa1AQGSdOsCQ8nDO//IIkwbPPwoED0LChEMbuNKAhsd13Q/uHRK3G8lFw/Ae7\nz8cBH/rxAU74UUQSe3kdA7fQSfk2okkTdxYtEj/Uxx/fQnJyLRnXDg5C0Fqlgh+XwOZ1N96/HrcF\n9cR3F8Ee8bVDuPPOkIX5NmW5jbTlfWw9LdRBbgZDHUWcaH9Z7f35GjVyplu3xny7wnbBgTattM0i\noOTovJ5Ojz9Wtf9xpRMeUhlDlPH88MNJwh+dAZKMFvxGYUknDuW3Ryk30bXRCSKT2uOgKqNYb0dR\n40IExG6s+rMDs3HC77rjzKJ6BXBlPCm/ocgcdc0oJIzx+NjaKl2+jCjOzjhBqW13F2eoatnXCFS6\nCiq90w0CM2pkU97nJMpDKj3GZgc17m1CSDRswGA7Ti1BqZOWfebq3n86n0w8PI7g6bYeT9ef8XRZ\ngqfLUrxcfyFbt4VO+ccZXJaO1KAEPI9T5vI1WdqJFMn90Fn1dCs/xMiCtwjNm8pJ80lWNfwPUwO+\nJ2F1FwZ+A3O7wgCdIEB9Qg4/T4BFI3woukZZLKBrKo5rS4iZHIZkNOL381fMahtMm/HjMen1rHvw\nQSKefRaLyUSXLkIIOzwcEhKgW08VB32XQZ9Xhcbqukdg/8d2n40WD/rxPs74U0QKf/IeZupQT/MP\n4pFH2jNqVCiFhRU8/PB6LJZaXJ6t2sLbC8Tr5x+DottTnlSP66Oe+O4iDBwo9JwPHBDNRgG8ccAX\nR0ox3rbszqY+EOYLhfqbT3JxkwuRahOwuQ6L7/HjW7D7QBAZ2d7QPQdcHOBsPFz0B0sGvZ7uUrVv\ndG4xegs8qTnC0qV/oXD3IWjICOQY6cAOXtncE4CnOy5m0VHR2dRVXUC5xY5q9qYnqMzYUKClP/PR\nYScmeAMU2IjPPaMUJ4sPfjbuTEkBEveDxYzRpi2gVEKVMeIOOrcKDLkimUXpbibqQOuq83ZUQ6gK\nCK8WA7A4aUkt+4wgwykqbGSqluCs73vER7wAQKn+xmLlubaFiIcckHSgDEenm4W36yqcvZPBK4Fi\np/nkqDoix0yP8v08bHqC94a9xgmf3iRM/APzpqH0XAZP94S+WlABhScy+aSLij8+cblSCxy1g5GW\nL8VxbklTit0d0ezfxei4Qwx77RVkCgVRCxfyy4gRGEpKaNRIWHxjx0JhIQwaLLFb8R6M/Fyc7I8X\n4OCndu9LjQu9eAstHuRwlsP8Fyu1rLr+QUiSxLffjsTb24E9exJZtCiq9oMenQNdeoi6vnpVl38c\n9cR3F8HdHTp1AqNRiPtWoq1twj55m+J8AKNt7s7V9vMLbogJNsGSX+qQbzBpUmtkMjkfftZBzKLD\nbQf/KswnB6cNtP/gzar9T1qUDFFdxLsoleXLT9Pz2TkAdGURh1PGE1PWAjdtAa28Etid2AGtspzi\ncjvEV5QG62ZUuTxVODGIT/GlZh+568GgU1Hh6obMaIDsOAIDxfbERKoUSSoVVgxGqMq81wCeUHxZ\nuEYjo9uw+efwqvP21gHdobBIW2XxKR0l5hZ+Kc51hcXX2bE5JtsGk0lzw/FeRXz2oAjCyfElPD2O\nIvO6RLL8BTKN3jQ2Z/CoZQGOBZPZrgkjafRWTL/1oc8ieCJYJDVJZgOHPy7kvS4+5Fy6WoMytHs8\nZb9pSegYgCw9lY4/LWbqu2+j8/TkYkQEP/brR2lWFg4OsGYNTJ0qCv6HDYNt+U/A6CXiRFuehiNL\n7A5dhxe9eAclDqQRxV98e8PP4p+Gt7cD330nsoFfeWUXMTG1hCIkCeb9V7z+emF989p/GPXEd5dh\niM2rdaW7Mxwh+BxF2m27zmRRIcDqI1B+k4poE5xFjGp7iegofiM0aODIsGEhLF3ZjnKDI0yw+QPX\nRUMRUL6OYU9Vlx1sLzRiscIc7WEWLTqMf99+eIV3Q0cundjPk7+LeqoXu37E+wffwWSR467Jo8Bg\nJ9YXux52z6v6U4mOHrxBJ56u03224H5UDWwd27Njq4gvPbEMYn4DqhNdKsrBZL3i5+YlFFsAnvn4\ndRRxx6recpIBo6E4yYkym8XX0KXaF1opcamSAAdHTCZBfEbz1cRXaoEjelhRCIty4SXb3Lu+GDYW\nw7kKMF/PC6cI4N2tH9FoXhpfnP6RQkUTvM05jC5aiLVwFhHOEyh96FfU272Z+CRMdAZnGVjSM/m0\nt5YDK69uuurjmY3vN5n8NaENUlkZfh+/wSPPP4VrUBDpx47xQ+/eFGdkoFDA99/D7Nki2XHcODhg\nmAkjPhMn2vAYnFljZ8Dggj89eB0ZSi6ylUR2X+fm/h2MHBnKjBntMRjMPPfc9toP6NAFxt4vZHne\nf/2fH+D/x6gnvrsMlXG+TZuqs+rCaYAWBRcpuG1lDa0aQ3gAFJTBxr9u7lhPBQxxFJqTq+oQrpgx\nI5ySUjXfr+oGTYBu7qDXw5bWgAGF6Wvab/2pav89enhU8xdF5xNYtSqGQe8Ji7AHC4hKeoCD+e1x\nVhfzYMu1fHZsEnKZBbNJwmi1YxHtfhuOflf1p5DJGsBYfqUDT+JD+6t21+JJE4YyhC9pyQNIGls/\nNmNZFfGFS8ugQpi7lQ3jS8ugwiokySwWwBWcTUVYkRGX2xFvhOKHk81YSjE442ooodRGfE4eVgo1\nw7mgan+VqxMHR8xG8czNFg0GK/xcAAOTwP0cdLkEk9PgmczqllFmYHQKhF0ERSx0vwTvZMPhMtHm\nCCAmDZbuB1AwoM1DuHieR+/6C8XyRgSaUhiX9wQn9Z/yV+B6Kt58gtAV8FgohCpBbi5j13M5fDMz\n6CrXp1ZZTpvXz3Dgha5IViseC95k+vTJ+LRpQ+65c3zSsCGrx45Fkqx88QU8+qjggJEj4YzjkzDY\n5gJcOxVSjtj7KuFFS9ozC4ATfEkhSXb3+7cwf/5AXFzURERcZOfOhNoPeP19keiy5mc4deKfH+D/\np6gnvrsMXbqI5rRJSXDokNimQk5XRCeAA9SiGnETmGprgfRjHSQIr8UUm2LYdwW1F7MPHx5CYKAr\nr89vj9HsABNtuo0r80VKY9lXDB88AqtNAuyAHmRWE69r9/HWW5H49x9Igy690JFLH1YxddVEzCiZ\n1nYZkUn3kVzkg4cuj8xiD/sDWP8oRH151SYFaoIZRG/eYTwbGcdaxrGWEXxPOLOr+/OZbc5ISU5g\nIKjl5UwNXlB1nsqG26WlUCYXMbgCrQsUggwrhapAyk3uVfsH2Vyjx6N9cZTKKJBE5zCdF5Q7vY/F\nWvz/2DvrMCvK9o9/5sTunu0uaumlu7sWkBABQRCRUjoEFRQDRRAQEBQQFAQF6RJJpaSlu3PZ7o5T\nz++PZ3aXWtj1XV5/8u73uvY6s3Mmnokz99zx/d7ZHp+tAjg5Y7FIS5iqcaT8TegbBntSpeZnXnA0\nHSZFQ/27UOIGfBIJA9ZLI/h2M5nvRdFgMPTCyesmiY4fY8SWRhkHKR3Tid/sKpLZZjvaX13p2QNa\nS0oh4VvvMKVNOcwP1JpoFUGjvn+xb0pjrIqC49eTeaNvT5zVBOnVzZvZMWoUigILFsicX0KCjHRE\nlH0Par8F5gxZ7Znw5Hu9JG0oQQssGDnKNEz8c/w4Dw97JkyQuef33//j2YUuJUrCW6Pk9CfjCuXM\nnhMKDd+/DBoN9JJV/PzyQHPvxmpV4sECNHy96oFOC7suQkQ+C826OIO3Fi5kwuFniFhotRqGD69D\nfII9Kza2gmaAvy3cCYG9FUEkoU37noZROXptc+NhkN1pxN1bLF58hs7fzQVFoS7zSIxvzJyzrQD4\nuvU7DNr2HWarlqLOoQQnl3jyIH4bDtvHPVEuCyTnT/toRwchIPysnHYvjZMTfNJiJgEud7MXcXSV\nXmZiioZUvTR8UfZeZLXNu5NenAd/hv5qh8zQcPnmkGgvE3IpPt5c1blib00n84EcH45OCKt8sN9x\n8ODuf9ioI8QMk2PheBuw6wz9HuX4K3a4OH2O3us8CfrqeFlj6Ro3gu2mdcSVOkrm13Vo9CH0VdVl\nrFev82mjQDKyAhGKPQqCFp0PsXu61EF1+HIib098L3sXJ+bN4/i8eeh0UuWlUSMIC4NXeygY282H\nUi0gJRJWdpWapI8OEYWaDMWZ4iQTytl/ON83enQ9ihRx4syZCFatygM59p0Pwc0dDu+HXVuf+/j+\nF1Fo+P6F6N1bfq5dS3bVYHV8cETPPRIJLiAVCy9n6FBVktmXHMjfujYKDFLTat89Lrz/GN5+uxbu\n7gZGT6xIJp4wUHUT5iXJEtHUWbRyL0X6QBnrTRVwMcPKdPvdfPTRXnRFy1F9wFtoMdOJ9/lgxzvc\nM5aklNsd3qi8kUkHZRGMu20MEem5UBcOz4bFTSH6at4O8u5BiLkOBncoUgtCTvBurckPLeLgLg3Y\nrSgPnN2lqxat9ySrDul0hC+6BzwSd7XwJDlVxkjTVA8wxbc4d0jAXqQ97PE5OhHrLRdKE08o4vkP\nkFFOCuoMC4fER4okFV05XD1OkOg4Hg2CrslLuZ48jLse6zAOe42A2dDXHewVsAm7yqT6ZUlPVkCk\ngUbmpFu3/5Odk+QLiv2kcYxaszJ7+ztGjuTegQPY2Ulha39/Wc087n099FoPriUg9CTs+YQnQYcd\nDZiABj132UMkZwv03OQHBoOeyZOlkZ84cS+Zmc9IfLu6wbvqcU16L+dHXogCQ6Hh+xeiWjWp5BIT\nA7+rOXM9mucS7hzRUn7O3wvGfHL6BrvJG2xdEoQ+47fr7GzLuHENSE6x4+sfOsIrQDEt3AqBnaXB\nGo02ZQYdFy7MXmdLKtTXXKZuygXGj99N0FfTsPHwozhHqC3O89KyfpgUA29UWUFiZik2XmuGo00q\nNqQQnfl4k1gAgo/Ct1Vh62hIfEpH3vi7sEES5WkwUi67sis22gc8EPdSONhKdzcuyQF3T0k3Sc1w\nAJX3tvmMJ54P8ASzmJjOJlkCmqbIOVbfYiSQgUGkk6nWudhqFYw2ttyrKStg0yhYw5eF7+Kh3M0n\niBIoOlycppHptg6jYkfT9H2kJXThkutUzN2H4r8E+nnJohdD3A0+aV5d5vysEaANQIOF5t2Psmdw\nMxSTCdeJIxi4KYfAvaxZM1IiIvD1hQ0bZIXsvHmwfb879PgFFA0cnAG39z1x3M4UpSI9ATjFAsz/\nIL+vb99qVK7szb17icyfn4dS6f5DoWQZuHkNVj6ZwF+Iv49Cw/cvhKLkeH0rc16SaZId7gwuMNHq\nVhWhUhEIT4R1+aQ2FNdDN2cwAXPy4PWNGFEXd3cDE6cUJ8lcBYaqbsaCNLmR1Fk0Aoy7c8jMPybB\nNMNWVi49wV/nEun2kwxrteIjYmOa8/aO7gDMbjWW+ac+5lhoRdwN8RiNgrDMUk8eiMUER7+Br0rA\nsvZw+Gv5cA09LVvn7HgPvqkijV/RulC6tfQUE0MwWXQ52/GujKNWet+2ljhQaXYuoUkQD0IHu686\n46fNkbZKVi2fr5DrqYWf2Pl4kioysRcZZKrn0tbOjl9TFHQOcqXcPL6+LrCjOLipv/bsBqXAAAAg\nAElEQVSrpcFSASLLwR/F4WMPcHjGS02UBTrfh/GRj1eC2tp1R+txkHSNKzUzz2KJf5XrzhMxtXgX\nr2+gjxvYKeAYfoaPOzQBQFgiQFsOO5FGpRHXONWmGkp8HEW/m077uTl6qovr10cIQf36MGWKnDdo\nEMQ5NYIWH8tw8/q+ZMd/H0F5uuJMCVKJ4MoDIuP/bWi1GqZPlxXHX3xxgKSkZxhhGxsY/5mcXjKv\nMNdXwCg0fP9SZBm+zZtzyOxV8cYVW0JJ4coj3cT/LhQFxrSR03P+yP/vb7xaT7IwHuKfwSnO8vqs\nVg2jPumKeEkDpYD74bCuOpCJkjyRwa3eIrFjrez19qckMsluB2++uRmfxq2oNuAtdGTSg4GsOj2K\nn2+1RK81s7ZLD97fO4+L0QEUcQpDMaVxLbl67gMSVrixE7aPhSUtYUEt2Trn0ExJpgtoAn7VYUkL\nSAzB7FCUNJNqfKq9DsGHcVSNndacRJZdKnpH0k4UP/D1SaWkfU5oNVE1fEV1MqmarlaoOHk6YSuk\nF5iRKOOhtvYGfk8Be0WGSh81fG4aOF4Sfioiq2yzLp2HVnaA8NZBeSMcWAapc4AfoNEzouQzYmVF\naMojIkFafW3s3PeRrjhTO/MUsQm9CXX6EHPQa3hNkxQXDWBz/iBzRzVEIQMhEkBbEl8iSPvSnugi\nHnDqL+okRRCgqrIn3rvH6R/ky8zYsdCwIYSHw5gxQPOPoEht6W3v/+KJ49WgozYjAIVrbCYlWz7n\nv4/27cvQqFEx4uMzWLkyD7m+zt3B0wsuX4CTeSDBFyLPKDR8/1KULAkNGkhB981qCzktGtogWwNs\n52aB7ev1+uDpCCfvwuF8KrnUMkBrB/mgnJcHr2/kyLp4eBj46ReFK6H9YZz6xTfXIcIGMlZSPPMk\nlb77EqF2Jk+0gr3xNIGhhxgxYgcd5s3FrUI1PLjJK3zBwLUTOBZfDQ/7OFZ16UO/31ZxKqIsfo4R\nuGlCORAehFS+zAd0dhB8BE58L9uYl26FMS0TF7skrqQ1BqsJ0mI5HF4Bq2KLxQKhWlm96RmqvpQU\nhxJFEwjQ57SkiVNfDnxUabQ0lcjn6QEuWYYvSf5sbR0cuGUEezVH+Gioc1VRqGPI+T/LWDmpv/rd\nl6D6p/DnNfB1gd8HwaH6EFUO+j2hj28WtqXAS8GPGz9FXx0bj70YFQNNMg5wPG0CRtcfML7SmJJD\noZP6EhCz/hT7t1RAsUaBxhsw0MT2KLu+aY1VUeDbGfSYPCl7u1sHDyYpNBStFn76SXIjly+Ho8d1\n0Gm+fDs7NCvX3KwH5SlBCwSWh1pL/behKAojRkgh84ULTz67e4ONDfRSOaw/PZm4X4i/h0LD9y9G\n377y84G0F20phQY4QggJBdSk02ADQ2Vuni/+RpHZRJXLPCv22V6fk5MtU6fKgodOvcpiaV4FWiGJ\ncLPUZoGJg3jdvy4Ji3OI5vFWaGPdyKEV21mx+ip9tqxH6+BCIL/SUuyixQ8TuZRekSJOYax9pTdv\nb1/BnrvV8HaIpoH3XjZc7U6cpmzOQBQF9Ab59ySY1XNbujVU7o64ewh7Ec3h+w0xlesCF9aSYbHh\n7e0/4ugoH3BzTkhVGLv4TOl+lYaAIvE4p+S8/UeqIUcvSzoWAaY0K4oGnF1i8LTKL3MMnyPx1id7\nfOVtoK3jw0PWqbb96z9AGQBtZkGcygnsXlt25QDw0sHSIrAvlwJYkFqsr4U8HvbU6muhuMicVLek\nxWw0rUTvuh7TCHeqN4DqtqAjk42jtaSm2oLpL7CVIYVOgbvZNbAVisWCYdK79Fi3Lnu724YOBaBM\nGRinvgy98w5Yi9SFWoPky8f23LsbVOI1FLTc40+SCjAHnl+88kognp72nDsXyfHjeRCceOMt+bl5\nDST8s90nXiQUGr5/Mfr0AWdnOHwYTqtcV28cqI0fZgS7uVtg+xrdBpzsJLUhv15fcwfZrijRCl/F\nPHv5gQNrUKeOP7fvZDB32UiYYAsGYOdlOFIKLHewS/6UIf0mkvhSDsE8VQgGKUuZOnget+IN9P51\nA2h0NGQW1cyhNJg/jtvGspRyu8OOnh35cP8iZv/VA73WTPfAdVwL9mBj8FuYda4ypmtKB60NeJQF\n32oQ0BTKBEFgZ6j6GlTqDhHn4OJ6FEsmi88O5Lfo4VQJmwDAsB0jqF/kBrY6WfCy8kpPkhVHFCsk\nOjqCM5RxigBjGsn4ogBxVjAJMMQZSVONisENXC3X8Ff/z0iRE7aODjhpnmz4qj6Bq69XDd8Hmx7/\nbt4eMAyGIT/n9Hts7gDh5SQt5UnYlgKfRD9hP4aeJDuMQouVpomTOa5JQ+/+A0yHtj6y2MUj8yJT\nBqgyROaLoKuBizUW8ygbYn3d4OxJAjHiqqoCXP/tN8LPSCWFCRPA11c2Zd64EQiaCjaOcH1HrsR2\nB3wpSRvAyiVWPfmA/guwtdXRv78Mry9ceOoZSwOlykCz1pLJv27Fcx7d/w4KDd+/GI6OMGCAnP72\n25z57ZGe0U5uYSmgIhcPx5xc36eb87/+FC/5OTcOwp9R4anVapg//yUUBcZ/FEG482QYpn75WQIk\naiDtGwKNl6i55GtMvq7Z65qFhddNS5nQdhyGinV5eYnMD7XnHQKNqVSd+zFnU6Wnt6d3Kw6F9KTr\nhrnEpLvRoOgxOvj/xM+nXmF1+AekGspCRiLE3pAG7u4BuPk7XN0C51fDhTWQGk2wuQYd1mzlSlwV\nvqz5BorVzIxjbdl0fQLTW4wnQ3UOE60t0dhKq3KruCysCbCRJZqhuma4aHQIZCGJEkK2XJmDB3iZ\nr+ErpMeXmaHqi9raUFSXE+pMJ8c7fVLgVsk6709oWJGFRftBOwjS1eJUXx1cL5O78ZsaA0efwA93\ncppGqrYExc0hhKZOItPQGXPJntgNgXaqfbYeOsz5s2XBchv00hi0V/bw6/sd5Xi//Igea9Zkb3Pb\nkCHqtuHjj+W8adNA2HtC/eFyxr6H6SQPogI90KAjhCOk8QSL/V/C22/L/PSaNReJj38GyRXgTalE\nw0+LCotcCgiFhu9fjuHDZVRu1SqIVn/LNfDBFweiSOM0EQW2r3eCwMUAe67AgWv5W7eePbzsBGkC\nJubhmVOnThHeeqsmZrOV7n3dsQ58A6oAYXEwNUA+ABJ608srEOvqT7PzfW4aUBA0jV/Dh5XbUTSo\nE+2/lQr/HRhFBVMSdb+dyO7YxjjapLKxWzeaFrtN1R/+YvnFZtjqjAyotpTOnnNYdbQp44/9wKb0\nr7jr1pdUz4aYPKqS6VWHGK/O7NV8TvvfTtJr5bdMaDiDWS3HoGBlyrGXGL93NYtfGoKnbTjp6WBB\nh6u9Bns7aSXOlJXdGDRhMt+n8atJUZ00bBFquDNFVbi28dDiaE3A33gZAItVHqtGUahuB2ZkJamO\nnNLM64/zuknKOu9qru3gBAidBYv7Pb6s/ZCcZ6yLFk7lUgALMDIiR+osG4oBOxf50tE2ZR07rWfQ\nOX2JtZeW8iWhmA4MIoYFo1VR8MydYNsJHZl4d4whpIw/3LuD3/1bFGsk9VBDjx8n5qrM4/XvD15e\ncOoU7N4NNBorw9LXtkL4kxtJ2uNJERoAVm6TB+3M54QyZdxp3boU6elmli8//+wV2r8M3j5w9RIc\n/xsySoV4DIWG71+OMmWgQwcp6KsWv6FBoR2ymetW8hmXfArcHKTxA5i4Mf8vn195y36zyxLgVB5e\ndL/8sjV+fo4cORLCrGV9YWZlGfLcfhu2B4A1DG3im7zX9G0Spsgu30l6PXXtpEh2QNwRZpStgnfN\n2rSbK1vadGQEDazXaLPoU7440w2romNM3bns6NmdeSenU2PJRnbdrY69Pp1B1Zcwvf5bNLDM5MSR\nNKZtaMfQn0cyaMlIJq1ow5UTEcxt2IvDfRvTpNgBUhU3Xt00iI/2ruCTxnPpFriR8Djp3kRTnqF1\nvkdRPadIvY8UfjkuPb4y5UvhpzIhwlT7lapWoWR6SyUAbYYUvs4+7YpCKwdIFrLLg7OSU5J5NgNi\nH6UoZFX8q4UrDcqAvxsMbAriRxjX9uHFF+7PmS6qh+X+T75OpzLgtyewCbS2bUi2aYCDSMeYNh+z\nrgS4DUQzApqrXp/zzb2cPVcRrOGgk0nGIOMBtg9Rb7TvZhM0M4e+cni61Os0GGC0muL97jvA0Rtq\nDZQzTuSu1FIKGV69wx9Y/8HWRUOGSK9v8eI86HHq9YVFLgWMQsP3AmCUKu23YEGOyENrArBDyxki\nuVVAffpAhju9nGSfvvUnn738gyhrC6Pc5YN79JO8hEfg7m5g6dKXAfhw4lHOa5fDRFXX8vNgCHaC\nzF24pcxm6PjZxPdujCXTxEWdgZ5O4K5VcEgLZ1mjBsTduUvrGTNAUWjJx3RhOZN2TKTV6iEk64tQ\nzec8R99swFvV/6Dfr1spt3ALX59oS0SmD76OkbxaYT2Tm33C4g5vsbxzX+a1HcnwWgso53GDdMWV\neZfaUmzWPNZfmcdHjebxWdNJCEXDkhMyBxmnrcKYet+Q9ayNsvch+hqkRFpw9PWldoCgyCOGL81O\nXsxEHz8ANGZZBJNVgapYrNS0g/Q0KaX2oOED2ZXhQTRUOz6hNszd+EiKaWZPVZdTxbDlD3/f2wWK\n6ngiFuZSsevgKBVImqVt45gIQeMwHtpCgIcMnzqISJZMaSoXNv4FNk2wEamYO2tJcXWEsycp6uyA\nTlX7PrtsGeZMyYEbMEBK+G3dCrGxQO1BcjvnfgHTkwu7vKiME0XIII5w/kbPrQJC587lcXKy4cKF\nKO7fz4MeYFaRy7aNYHyCO1+IfKHQ8L0AaN0aAgMhNFRN9gPO2NJe9frWcqXA9uViD5NfkdPvrc3J\nBeUVH3uBj1bqd/6Y8Ozl27Ytw4gRdTCbrbzW+zAZr/8BbfUyATYqDVKBlI8pn/EnL//4I8lNKpCW\nks4OrSN9nQTV7OST+vic2Rz/dh6VevRAY2ugOj/zJiM5fWsAPlPGsyG6E4pGw7Ba33FrWFkG19jP\ntycW4DfrPJW+X8abvw1k/vmWbItoxJ7YRvwa3oIvTr1M0+WjcJr6CyN/XYGNtiXru/ZmcrNPECis\nzhhF2AXJG6sWmIajLhmsMsGW4OLCtT/l2Eq1bk6gzU3V41OIssgClzQhk3yRPiWwPJi108ppS2oy\nigLmO/Jn7Kt5OKz9eczDQtWjK6sTqmhNj+/g9CPNC5YPyv1aaBQY4f7k73anQvITHCiNTRDpGm+8\nLTHcMe8FXSksDg3QdJYVngBxR0NJz7AD0yGwkRW9bcQpDr5cXy6wbgWtp+c0Z72xbRsAfn6yW4nJ\nBKtXA37VwL8WZCTIllNPQFb3DYBQ/jlunF6vpUULST364488dG0IKAXlKki18zP/nMF+UVBo+F4A\nKEqO1zdtWk4I8mXKoUfDUUIJJp8q00/BoKZQtSjci4XZu569/INw0cIcKdXIe5E55ftPw/TpbQgM\n9OTKlRiGj7mPmLsNSilwywIfIHW+EvrQQkmk3qYfSa9QhLiEFFbiSDuDme7OtiTgQdL9YC6tWYNQ\nhY2Lc5ihtCLA7Ef3H8ZQd/kormmbYK9PZ1y92dweVprfe71Os+KpHLz/ISO27qbjj7tovWgzXZau\n5+Nd6zh4fw6VvIrwVctp3BhWjm6BGxG2zvxs/Zx3Z1koxm1MigPvtNsGVhBp0jqkuDpmK22Vat2Y\nIunXsFHApPhiReb50tUXgxQvLy7aVMo+H3onGS9NTZSevOsdaUFKaB62YrGWh7mT7d1Ab0UaPhkd\npdZn4DtGcvqO3IQ6j9SGRD1CaG+UiyqaGdnl4TEoGqx20mt3yNiJBYHW8Dq8BBVVze+S1n1s26WG\nNhU7QEdp4wVOdFFFCn7fSuWePbM3eWltTj++LMH2rVk0mxoy5M3l3Cuw/JFcughO/aOd2oOCZOL0\n999v5W2FJqp+4MF/ts/gi4BCw/eCoH9/+QZ89mwOod0dQzahfR15FF7OA7QamKM+cKZug5A8ENMf\nRE9naOsACVYYlYfaG3t7PatWdcPOTsePP55l4TpX+GmpfHjvA74DSIf4Trzq4kvp3UvJKO1DVEIK\nPylOlNZm8Il7Kpc1jUjXOSMsOQ87A/H05FW6soSrwQMInDyYdr+N4ZJte4TWjjYld7Og3XBuDytN\n7DseHOnbmi2v9mfLq29y4I2WxIz14tyg6rxbfxZO+mSMpdoz/MoX9J+mIQgZC65czQGDrQVK9kIx\nm4lwc8eaksG9w2Y0OijXvjGGO7LIIUrt/xdmBpOqjZlhdOb3+FY558NFWozUJGmVfGzlNS6ledxz\nGBcJV1V1LCctdM0qgK2Ws0xkkuT0NZr6+Lk3P2IXPHPr3g7cyMX7d7CRUl1FTTcIJQlsmkMFcHKU\n29OLFPb/WkEubDoF+nposKCrZibDwQDXLuNgNqJRi30urVmTTf4OUu3ln3/Kin/KvSRn3Pydh5oB\nPgAniuGAD5kkEleAOfD8IihIRmR277797HZFUGj4ChCFhu8FgZ0dfPCBnP7ssxwuVjcC0aJwkOAC\na1IL0KICdK0FaUYY8Uv+Cl0UBb7zAwcF1ibBmjw4o9Wr+/LDD50AGDVqJ4diW8DC6fIOXghsQIof\nx7VikE9Fiu/9kcwSXkTEJbMEJ/Qig5/d/uK20oo/7V5C5+b10ParspJ3qUJ9othzYTCVP+1FiQXv\nsiRhJJGeQQh7T9wN8TQoeoxOZbfSqexWmhQ7hIddLDj6klG5H8udl1D0gxZ8t1qhERkEcBStrR2d\nm0eBeymihcxlBRf3w3XDMYQFSjcDg5Me5ZpsRHtZSM5IqDknX6u317FmdY7H4+yuClcnJJNiSsXH\nvwJJKbb4aSLwUR5/k+gQDEmqDRilhipt6sKzNK3n95HFLw8i/Cke+qNKLtnQyQrWEub78h7UBWLV\n26OpmpMzvH9ataimU2Ajz1MF5R6X6peX80/9Rf133sneZPxtaeR9fKRoe3q62p/Ssyy4l4b0eAh5\nMqdPQcEPWU0awT/X7LVMGXdKlHAhNjadM2fyIKXWsJn88Zw4Ig+4EH8bhYbvBcJbb8n2LefO5Xh9\nXtjTghJYgfUFmOsDmNtLktp/PZP/QpeSNjBLDXkOi3g2tw+gT5+qjBlTT1Icuq/lfsXB8IUq4/E5\nsAew3EaJa8OQIrUpfvBnMsr7ExufzPfCkRSLmbXOm2irSeTz+EFY2o3Bu3KVh/bRjrF8RAXacprI\n2H4MWtAB37FBGCaP4pWjXzEjYRrrbKewxXkGqx3m8knqzzTZPgXnN0vRd0I00dF1aEg6rZExw+4d\nM7B3MUDvjZyaLxOw11tUxn3lYQAqdQZuR4DRyH1tcW4jRZzDzDLPB1DKKYrL31cjViOtkLOPfFNI\nsQiO3j9CnTrFOHVOVqXU1j1+IW6boON9yLBCQ3vo6AhGDbQcB6/UemxxAHa8A8NaPj5/26MdGh6A\nXW6qb1opnu5sTSKKNFC0WHXlISDHgzRGp2Iy6SWnT63uDDSFcadygFzgwhn8a+UMNvJcDmWhXj35\neTar81Bp6WESfDTXsXpSEYB48hhmfA5QFCXb68tTuNPdAypXl8Utxw8/59G92Cg0fC8QcvP6uhOI\nBoW93C2wXn0ARd1h+qtyesQvEJdPh/JtVwhykPqU/cOeXeUJ8NVXQbRoEUBkZCrt2/9C/KuTYdww\nmed7HzgBmK+gxLVmsH81KhxcRWrNkiQnpLAw05YbZg3jDYfZ5ryG73bpWWo3gubLt1I9SwlARQPm\n8L5SlQ5spgS1MWX2Y/O+RoxfEEiPT/14eYITvSbaMHmulUOHfDGZuuGldKAXswnifQDatobASnbQ\nZws7zxgIVFVFLpTxxungFWwcILAdcFk+9K5qShJFFbRArDWnU0Ogwx3S79vz/T1Z2eeuSonFW+Ds\nvaO4+Rq4eluKFnTR7nnieTuYBs3vyXO90E8anL3p4PYKmJeA8XuInis/xY/Qrsrj27ieCd88Jaxd\nyiaXLxSZg7QRJqwqGUOruIFrjm6oo4ggPErlSyhSa83LEk1webXT/Z1b+FStmr3JqIs5HS2qqWHb\nbFvor6r5ZDUJfgJc1cKvBPJQWPIc0aaNzPPt33/vGUuqaKqGvAvDnf8RCg3fC4ZBg6BIETh/Hjap\n0lT+OBFESazAT+SBMJsPDG4mNR6jkmDcmmcv/yAUBX70l90CdqXC7Dw0lNDpNKxf34MKFTy5dCma\nl19eTfror+HNvmAEhgPHAfMFlNim9HUrQbM/N5PwSl3M6ZmsTBYc1jjQSnebix6L8D63n6CBZ7hQ\n8k3eTUqj95Jp2NmBuxvoRBp1WEh/mjNeqcJrTKMZ56iKjtKUpDQlqYwNzfmLAbzNcFGF8vyGjQ28\n+grUb+kD/XYSZl+PJf1mEqBNJN7Dh9R90vOu9irYOilwWaoBnDV5ARp81fBfhBqeLK27TpUqsGSW\nNM5uAXJ+vBU8Lt1gJ7dINqr6puYN6HNR6/krXfbVu2eCdUXBoMjK2qB7EGYFTyfQ50JXuJgBbYNl\nd6gnXktyL3xBSNK+GR2KGhNXFCnZZqt6iTakEB2rtvJQDaWjNY44XzU2GxGGS/Hi2ZtMCsnplVhR\nOm/cyErX+akdN55i+BzxRYeBdGLJIA/lxc8J1avLsMfVq3nQ8oPCPF8BodDwvWB40OubNAmy6jh6\nUQkDOk4QzgWiCmx/Gg388CbY6mDZYdicz5RJET0sU1/0P4iCY0+Qv3oU7u4Gdu7sQ5EiThw8GEzv\n1zdhnroYer0J6UjjdxSw3ISYSnSw1fL6+o1ET3oNrILd0ams1rvjZEliq/MqvtevZ9Yn26lc9XtO\nO3Tg/dDbjPzlXYaMdKNBPXB3B1uRSCBbaMGndKUvb9CON2hHd3rTnM8pzmH0eqhVA0YMgYpdX4YR\nZ0lwq0enjisZlSnLX891a43Hsv2gKNTpD2iKwBl50g4lOeGricjm82XB0xLF8CF3ub1Bimh7qVra\nkWYod+oGa7lC+UadiY61x8fpPmt9cn/gx1qg0V1YnwRL/cFLC3vToOxN6B8KW5MhzCRpELFm+CMF\nhoRD1dtw9ynh6A6OOd3jH4NFikJHaz3xUFTrKJIhLYeMb0WLyay2m1eVaLQik2Q3VWk7KQG9fY5l\njbmSE7b3U7mHkWpXe7zUQpm4m7kmnxU0OCMNaTJPaTj8nBEQ4IpWq3D/fiIZGXkoca7XGHQ6SWlI\nTX3+A3xBUWj4XkAMHAjFi8PFi7BkiZznhh1dkYUCSzmfHXIqCJT3gy9lv1cGLYOwfPLlOzrBGHdZ\nEt81RD54n4XixV3YubMPLi62bN58lb79t2CetRj6DIIMYAQy5ydSIaYytU0X+fDT70nc8BEWJwPX\nI+P4xuzAdfS8aXeOm57zaRv+B6+/tpbabf5gTdKbeMwII2jJRkZ+34+R4zzp+jI0qAeVK0KpAChd\nEioGQsP60LMbjBtrS8f3e+I09hD02UxwvIFWrX6m4qVdNNEHY3F1Z8fdYDRGM6V7NpUGzFocTkk+\n2RGzJ0U1wfg/YvisKdDrlQ0oQsPx4Dq4Fgd7V0gVUOLgVVKsGQQ3TWXjDhniqx8zg/c8nn7+5sfD\na6HQwCALTEzAskTodB+K3ADbK+B5HYKCYVE8z7xbPvB8ypcmmXcM1flTROVRWCwhkJhTEJOOB472\n6ltPlnFEYNGpjyjzw0YhIzGnIspHJeRnGz5bJ9k2ypQu+ybmAgPSm/wnPT69XkvJkm4IAbdu5aE8\n2skJipeUeYz7d5/7+F5UFBq+FxB2dpDF9/3oI8h6RnShHO7YcZN4DhZwa5bRrSGoEsSmwJtLcvKL\necUMH2hmL6sGu4bIQoxnoXJlb7Zvfx1HRxtWrbrIG2/+innGdzBgmAx7joVsIf64dvgnfcbUVz7B\n8/wakptUIDM5lVWxJjYZvLEzp7DQcRsXPb6n2IW99HptHeUqLuKLTR7crfU17l9FUeXH2wQt2UC3\nRTN5Y+F4+swby6tzP6DNnAUEztiH7eQEeG01lqIN+PHHM9SsuQjrudMscNoOwKFuXbFfdRCh1/HS\nhw3luK57Qno6ST4BxAgHAgx3H/P4xFVw0q+lbVs4tqc+igJF68jvYiISKX/2Nru1d4kt1g8AN7uN\nTPeIYEwuZPMHsSUFQvLgaDwNw91k0UxuSMuUhPMrttUohjOIdBTLPUSw9EABYimLr7dquRR5AkyK\nM/pMdXA2DycQLQ+ol6iiLjmCJooCTmrlVEokucEOye34Jw0fQNmy8kLduJFHXlAxNcl7P495wUI8\nhkLD94KiZ09o1EgKV3+hNqe2RcfrSPmO5VwgswDJuxoNLBsoG9buvgyz86kBrFdk3qm4Xuaihobn\njSLRsGExdu3qg5OTDatXX6RP382YvpgLEz6XBS9TgVlIqbDUWdhF2DCqWC267dtJ9Iw3seq1nA+J\nYo7RwF8GD8qJSDY7r+G61yKahe1j6se7KFlyLnXrLWbirNv8HlqNiDKDEUFfwkuzZEucekMxF2/K\nucsJTJ9+iEqVFjBw4BYqJF5ln+dKnMgkud3L7FkpS22LfTYG96JqQuqs7B9000Mmqoo5x+KhAb1O\nn32MmZc0KKbjjBlxl2MnpZpJGbU/4nUTvLntFgK4+qo3v+2rgK2Nkeg745jtk9ML8XmhuT3M9n3K\nAtZYbDJ+A8Bs2x4dGjAeRmM1Yj2nIUa9BdPt/PF0jwJsQciZqVo3nBJUj83lYV6Fg7f30wdmqwqS\nZuZehmqrGr7M/yeG7/r1PCS5AYoWGr7/FIWG7wWFosDcuTmfWYn/lgQQgAtRpLGugOkNfq6wVC2O\n/GADHLyev/W9dPBrMVl0sSwRvs3jC/CDxm/Nmkt0fnkNKUPGwzc/glYLy4DhCtniNVFFaJD0PpPH\nzcThwi8kBlXDnJrOzpBY5uo9OGfvTilLJEsdfyXG+2t+dPkN57MHmTl1P23brkCXBvsAACAASURB\nVMDPbxYuLtMoVWouFSrMp0SJORgMU6hefRETJuwh7vo9Fvvs5U+3n3E1J5PZLIgF12+hDYnB2KAC\nfd6dBMY/5Vj+lJ73n+YAAAI8UlAUcHH2yT6+lIsyeda68WruhsnihvIqcfuWEUqv+JWKJhcStJns\nqzUck0mDh2EV1swjfOENK4uAfT4bzOcFXZ1ge3Gwecq2zalz0JHJSdsa1NE1ljMztsI1sCZYuZvV\neLeq6rbpq4JF3qxRWn+8g9V8dJFi2RqdQHafPpAC7SBTXznIemvKfXBapBdp5T90ef9DlCsn49I3\nbuTR8GV5fCGFhu/votDwvcCoVQv69ZNE6HfflfO0KAylJgAbucr9AqQ3AHSsDu+1k4ofry7If76v\nul1OscvYyKfzxh5EgwbF2LOnL15e9uzceZMWLX4iqnUPWP+H5D8dFvC6F9kCNhlrcIv04n2/0wzY\n9jMJmz4ms5QPSZGxbL4fxxxbL457BaA1pdNfd4rdzstJ8pnJseLrmOm6n06ZJylx/wwON87hHXqZ\nIOUqk/1Oc6bCViK85jLQfACNsJLYdyjf3rxPxomLZJb0psumtdhaj4I1GlJLw5EToNWyNEQedBkf\nmeeyccipYLSGmeAeKBmL6dvPmwtXKuPsD0XrydzcxdAYJvwWjhM23CzvzergILRaQVJwN7Am0ssF\nzpeGJs8grOcVbhpY4gfri4LhaU8Q8x1I+QqAo45vUBVvsKZgTV8Gm+COCcwCovW1adNe1c20aQJG\nOX1JX5xi19TCk9LliL+Vw3VzLlYsezpKtY1PdAKV3A2fQMbTlacYx/8GihWT3mlYWB75QIWhzv8Y\nhYbvBcfUqbJh7ZYtat8yoAKetKUUZgQLOIUowEIXgKndoEWglMLqvgCM+Xyh7uECH3nK6OSrIXA4\nD5WeIHv4HT48gJIlXTl5MowGDZZw2aMy7D4JVarDvWjorYefvCArh5g6g8rR1ZjV9AJdzn5G3JIR\nZJT2ITk8mh1X7zIj046NJapw068kOlMG9VIvMU67n1+cNrLP5SdOuv7ACdcf2Oa8ko+MW6gedRKN\nsGBs/RJHBozjmx9+IvX8FTLK+VFt90rq+FSGNLW1zLEqYDZjqtWIC/fN2NvrKekuDzZTVyb7uNIE\nJO9zQLHcon/v3fxxqBsARd+QHLDjGeA8YzwfWOqhQ2FToze4FFMMN6cIom90AmGktA3sLyG9v1I5\nUdR8obItzPaBu2VhgNtTbQqIDDISuqMjk/12jWlp00camPTFaFISsWzTcEJtoHDe1IVer6hcGLtX\nwfgHAH/ZlKHSCTVUUbMu0ZcvZ2/eq0KF7OlwVfTEJ8dJzglx2jg8bZDq5z/7GLRThdRNpjymHooW\nenz/KQoN3wsOX1+YOFFODx2ao3TUlyq4YMslYthLwf6AdFpYMwSKucPRWzBqZf57933uBYNcIV1A\nx2C48OQuM4+hbFkPjhwZSM2afty+HU+9eovZcjYTth2WRS8mE8yMhuE14YG6B03mZuqmDGHOSysZ\nfKwJTj93JbV5BaxpGVw4fYFfLt7hS5MDy0pW40CNZlyv2YSYyjVJq1AVU6XqpDduQXTHHlx6fShb\n2vXmq98P88eMmVhT0oh/pS5Vj2ygR6mWYLoMGRsAG9gguVu3KsqEXbVqPrjbyAd2jDlHTDPeAhl7\nZS7Q1ryAEoGvA1C/ZQRaPweiLXD5UiSVl89hLPWwKjZ8U+E94jIc8XI+SNSNV0CY0CjQywWulIHV\nRWQxEcCeEnAsAH7wg/c9YIgb9HGRnx97ymXvlIELpeEdD3B+il4nAMJMZkIf7EynidR6ccflMyrh\nBZZIrMmTYDFEx1m5aQKL1h77+oH4eYeBNgDQguUeGRovIpO9KHXutoxh1qpP8KFD2bvwrV49ezrL\nHpYvn7V/Aclhctox9wSkGRkj1fI33wQKCDY28oQajXk0fIUe33+MXOiqhXiRMHYsrFgBly5JRZdp\n08AJGwZQja85zo+cow5+OGNbYPv0coYNw6HJl7BoP5T1hnHt8r5+lp5nrAU2JUvy9OEAKXX2LPj6\nOnLgQD8GDNjC2rWX6NJlNZMmNWfil9+ibdUeRg+AQ6ehmyu8Wws678l+BVREHAGm9YxtDdbWNpy7\nV4llO0pjt/kc9ufvce/kuTy/JqTUL0vaBz3p13kodfAHYYWkoYCAiK5wcDXY27PDsR5wnBo1fHFJ\nkYnIW3H+ZPl8F4zQ9UwspmAtuuJb6PLyFI7taUX9Gnvw7dWe0Nk72JsG5SZNp3Hrl6FoPWZq/+Lz\noh/xRcRneDttJ/p6Y7zKbgeNBzYK9HSRf9czoayNPN/1CiIUak0lI7E3dhlbSFUMrHabwjBNMxAC\nkTgUzd1ELD/B76oXf8IyiE8++Fr+YxgI6YsBOGnXhLpbT6GxWKBFEDg5cer777N345XFWidHsSVb\n2CU9HsyZYOMIto65DjUdmVOzIw/lr88R+TZ8/kVlNVlkuCxltcnDj6IQD6HQ4/sfgI0NLF4sH24z\nZ8JplWTenOJUxZtkjPxA7qTnv4s6JeFntb/be+tgQz71PHWKDM21UGkObe5BSB44fgAODjasXt2N\nqVNlMcinn+4nKGgF4VWbwYEL0KYDJCbAx3ugX1W41fCxbWgwUqNkFFMmrSHo3H5s7m0kYuU4oka0\nI6lNVTJL+WB2c8Bqq8fs5kBGaR8SOtQk9PMexJ+eR/Oj25nV+VNp9ACSPwTjAdB4wfdZKuKvs+OI\n9PyaNCmBXg3RxRmdKNG+60PjufdbcRQE2rTJuBeXsmgdXj+BtlxJ4q2wPxKsw1vSOMPIJKUJUbry\nfOLzMbHCBS/n48TfqIw5dfdD2yxn+4yQZX5gukB6bN1so7fIfRr99X3Ro4XU6SiJm7CMUziXLPN7\nRp0nukb1aVjnMCgeYOgJaT8DsMq+MW1XqH2bXu5BzLVrmNVwReArr6Boch5dBw7Iz9q11RlRqgvo\nUfapw80yfPY8g/T4nJFvw6fTgcFeerYPFPwUIh8QQjztrxAvEEaPFgKEqFFDCJNJzgsVSaK72CA6\nibXikLj/XPb75VYh6C+E3dtCHLuZ//UTzULUuiUEl4QodV2Iu5n5W3/nzhvCy2uGgEnC2/sr8dtv\n14SwWoXYvFaISv5CeCCEl0aIke2EOF9DiDBy/qKqC2E8n70tq7CKUJEs/hKhYqO4Kn4W58UicVr8\nKM6KNeKyOCiCRZRIfXgAVrMQie+r29QKcXy+EJ6KEL56kXHtujAYvhAwSURGpgjRpaUQHoiWut1i\n3ZTfxCQQk0CkuyESAp2F8Z5WWMMUIYxnxJ2TjYUIQ3w7qpeYpFHEJBA3nBDmd5yEMF0ToSJZjLL+\nLvqZvxPXo0tlH1PE1VeEMN3O/4XIDZZYYUwcJyxhOiHCEPcj/cXXxmUiWagXKnWRECEI0RcR7oKY\noo61ju0Sce9EgBxX8gwhEgYLEYa4HttUjD01VV6XAGchUlLEnokTs8/F5Y0bs3cdGirvaXt7ITIy\n1JlHvhHiQ4TYMOCpw94uBou1opNIEHcK7lz8DZw7FyFgkqhSZUHeVypqkOcnJeX5Dezfj1xtW6HH\n9z+EL76AEiXgzBmYNUvO88eJfsgY0QJOEU8ek2n5wPiXZPPaDBO8NAcuheZvfWct/F4CatvJTgNN\n78HtfHR+b9u2DOfODaFVq5JERaXSqdMq3ui7mdjGHeDoFRjyjnR7Vu6Edpfhm66Q3ECubD4LMVUh\nugYkT0ExXcFfOFAXf16hPG9QhbepQX+q0YMKNKYYXln9foQA40GIbQSpMwAd6BfCyG/kd2+N4mCw\nlvR0M1Wr+uDt7QBG+QafiS1xrq2zj+GAmysu0Ulc2FsJBQGJwylS4WusVoUh764lpYbkkaxPgfil\nyVgmV8U/4wizlFYEaZswwW0Kvzj2wIQOH+dNmCPKEn6lA9aMvdm8uXxBCDBdwJQ4ElNUCfSps9Bg\nZod9EAc91zNS/waOQg8pMyF+MHwOSVtgZQqYrIILSh+GTdtP8SJ3QVcT9HUgbRECHXOcXub16Wqz\n2f5DMWu1HJwyJXvXZdu3z57O0qNt0QJssyL1IWqHcr8auQ7fRBophKNBh2NWS/p/CFqtdLlNpnyo\nPmRpEWqflXAtxJNQaPj+h+DoCFlpkkmT4JrURqY9pamOD8kYmc/JAq/yVBRY0Ac6VoO4VGgzE27n\nUy7UXQu7S0iJrWATNL0LN/IR5fHzc2LXrj7Mnh2EwaBjxYrzVKy4gA2/h8AXs+HQJejSU4aOftgI\nLU7Dl90g5DVQnKUBTPkIYipBlB/E94CUqZCxGYx/gfkGmG/KfnLpGyHpA4ipDrFNwfSX1OR03AIj\nNsHNaxBYCT6YzOrVsstAp06yFU9W6MqIDbfu2WWP/2ioLHX3WRhFonAB0xH0nCVNeQedzsLguXtJ\nKd6RTAE/JUH8N5mIiW3Rxr9PL1GGb7UduG8YzVCvOew1NEXRCvxct6OJb0XyHQ9CL3chLeYbSSWw\nRD5cjSQEWJPAdBbSlmNKHE5GdADEVEWfNg+9SOGMTVXmesyjrMtqemkaoLWmYE14HSLfg3chbi0s\nTYZkC4RqG1N8QBX69VwOGMB1MSSNAGC3w6t474+m5p6z4OAIw9/l9OLF2UNp/MEH6Oxyzsvy5fKz\nd291htUqm9AClGqe6/0Qz01A4ELAP17cEhMjE54eHoa8r5QljVRo+P4enuYO/iPOaSGeO/r2leGh\n2rWFyFSjUdEiVbwmNolOYq34QxRgGOwBpGUK0Xy6DHuWfE+I0Lj8byPJLESTOzLs6XNViBNp+d/G\njRuxomnTpQImCZgk2rdfIS5fjpJfnj8jxOudZRgp669zUyGWjRYi+DUhInweDoU+6y/cQ4ikj4QI\nuSxEh8Zye+U8hbh+RSQnZwoXly8FTMrZf5MqQnggqmrPiq5dhdjYp092iC+yupcQHoitK4LUbTsI\nYTwr0u5VFyIMseunZuI9r6ZiEoivNIj7zgjxEsJ0pawQGbuEEELcFvFiVtoxMTD1O7E6qasIi3zy\n8ZhCtCIt2E4k33UUphDtE5dJiHASOxJai2+Ni8QJESaswipDyOmbhTnCX4j9CEsDRdxzRnylleHN\nIdo6om/H+TnbSV0uRNxrQoQhEiOLizdjF4roavI4xbyZIiMxMfv4J4FIDg/Pvo6nT8v72MlJiNSs\n6HLISRnmnF5MjiUXXBHrxFrRSZwS+QgvPiesWnVBwCTRvfvavK/kqchzZDY/v4H9+1EY6ixEDubO\nlSHPkyfh00/lPE/seRsZGvqBswXarT0LBhvYMlIWvdyJgZZf5Z/g7qSFHcWhjQNEWqD5XdieR5J7\nFsqUcWffvjeZN689zs627NhxkypVvmPUqB3E+peDFb/CsWuS/mAwwOEDMG4uNNgMY2rD1o8h9guw\nHwO27UFfC7SlQFsadFXBtjM4vAfuu8B8FOYp0LAOHDsEfkUkqb5sIIsWnSQxMZOGDYtRoYLaEV71\n+DKFLVeuQLu5c7PH/VNzKTxQf+oJDpkaSAHuhDcw+K3AaPYlqM2f1P7EjTi31qRaYWkSHP8TtJ1u\nwE9tscS0omTmGcba1eUb+4F4OsxijvILox1mstB5APvtGnNLV5IkxRGdxoJBl4GjTQo6jYV0xZYQ\nrT+H7eqz0rEnCzzm8bv3Eaq4bGSE/m1qC1+UzP1Y45pCaBe088Ow9IQj5wTLkiDVIrinaYW+d3eW\nLhyhXszZYLkLGauxKA5MdB3J0FGL8QyJhpp14e1R7Mni4gCNxo/H0TeHnvCV5MYzaBBkN264uE5+\nlu/w1KqdcE4B4KVK+P2TCA+XN7Cv79M4hw9A2ns5rSl8hP8dKOLpBKuCjXkV4v8NDh2CZrLKnD17\nZI5EIJjBMQ4TQilcmUFLbCj4UEpsCrScAedDoIw37H1fcv7yA6OAQWGwPBG0SOrDW27PXO0xREWl\n8skn+/jhh9NYrQJnZ1tGj67HmDH1cXc3QFIibFkPa5fDkT8fXtnVDarUgIDSssTcYC9LaOPjIDwU\nzhyHyxdyHlIvdYGZC8Hbh/j4dAID5xMVlcrWrb3o0EENddYIgPv3KJN0mzuWkiQlwUzHnAf4gKCK\nFDt1mR2D2lBz7GV8LKFg2w4cP8MS3QatJonf97Vg6bDyBCYuBCBABy85gFcNYBiYmwWicxgKdt1A\nWwSBIJJUrpvjuBwbTUhmMqnGJARGNMIIZicMGkfKOrjToGhRiuOCIYsJZQmFjPVY0r5Hm3QZfgXr\n9wqh4YLtqTk9BY9qxtL+kwxGv71AznD8QopRJ09AoDDDbQJei+8zYNIKcHGFfWe4dzeYZc2aZR/7\nhKQkbJ1kd4eLF2UDWo0Gbt2S3UiwmGFGMUiJgLcPQ4nHK3UBMkliC31R0PAyK9BTQJI2fxPjx//B\njBlHmDKlJR9+2OTZK1gs4KOTBx9VcHq7LyCeIttTGOr8n8XHH8tXxyJFhIiNlfNShFG8JbaJTmKt\n+E6cem77jkkWosanOWHPO9H534bVKsTESBn25JIQ4yOEMOce3Xoqzp+PEG3a/Jwd/nR0nComTPhD\n3L+fmLNQWKgQK5YI0a+bEBV8Hw6H5vbnbyvEwJ5CHP7zgXFbRe/eGwRMEo0b/yisD4bk1O22qhQq\nQIjDh4U4MmtWdqjvnU1jhdVbK4QHYv7WQSIlwlWGDOO6C5H5lzCHytDl9UNlRMdiX4qPbT3FJBCf\ng/jNFhHvihB1EGIGQpxFGKNrCJE4Roi0tUIYLwphTX/KCU8VwnhZiLRVQiSMFKaoGkKEIsROhBiN\nsJSU4dVf9DmhyXe1xUXLIt+Js7urCRGGsIbphUj9WYjED9X/FfF96lAx55ehOeds60aREhX1UIjz\nyubND1339u3lvTtixAPju7RJhjlnl39qmPO2+EOsFZ3En+KT/Nwizw1vvLFRwCSxZMnpvK2QkSHP\nk4/u+Q7s349cbVuhx/c/DLMZmjSBY8egWzdYt05Gh24Rz3vsxYyV96hPE4o9e2N/A/Gp0HY2nLgD\nRd1g51io9DcK7L6Ph2HhUuKsnQOsLApuf9NRPXw4mMmTD7Brl9SF1GoVunQJZNiwOjRvHoBGo75E\nCgGh9+HqJbh3W5KJ09NlVaarG3j5QOXqUK1WTt8c5Ivmp5/uZ/LkAxgMOs6cGUz58g+0UCjjDgnx\njGwXw7xfPJgzB0YONzNZLwswrHZ66szoR8fPfiDF1ZFvtg1mnMtCbEUq2ASB8zREQn8U8zmMRj1f\nfjWay0tiqZixDBAoQDk91LCD0noZmaUOUA0IBOEDFr0HQnEGxQkwg8hAEYnorLGQAgQDF4GTIE5B\nagRcMcKZDAhXHRCzxp6TumE0f8fMO8MWYKM3ynCw87eQthAyf0OgZYHLCNJ2wruDv5Hd2T+fhWXQ\nCBbVrEn0pUsAVB8wgJezGksi79MePcDZGW7eBC8v9XosagD3/4KXZkOjd3K9xnt5n1iuUosRlCLo\n790oBYhWrX5m7947bN/em/btn849BODeHahVCnz94WI+S6T/t5Crx1do+P7Hcfs2VK8OycmwYIGU\nNQPYzk0WcgYDOr6mNf5qA9GCRmIadJwLh26Aqz1sHQ2N8vDbfxR7U6FHiFR6Ka2HzcWgst2z18sN\nf/0VwuzZx9i48Qpms6ygK1rUmddeq8Srr1aidm3/HCOYR8TGpjF69E5++eUCGo3Cpk096dy5/MML\nBThDSjI/T0rgzZEudOokdVZ/f/ddjqoclJu/jWfmqhP47NpLZAlv5v/6FhP0C7C3xoO2LLj+Auk/\nQdp8AIJDi/H5R0NI3nORCpa1KCp9Qa9AaZ1sBVVEJ6NnNv/X3n2HZUG9DRz/Puy9QaYMByq4t6KG\nI01NLbMcuTMz9dcwzYa+ZalllmWa5swyR5kjR5a4Zw7QXCgqyJa917PePw4IDhSQKedzXc8Fzz4g\ncnPOuc99G4DCETAHTBDryDlANmjjQZsEqRqxwhahhDAVRBWpxZqrY81/+qNp+qoJ7769EnvbeHGH\n8QQwGiiyN9Vh5CksWGA5CefVUYz99FcR9D74DPXUGWzo149b+YVlzZ2dmXrjBvr5fzzExYGvr2i3\ntXw5TJyY/8Y398OanmBiB9PDiq3RmUIo+3gLPUx4np/Q4wl+SMqBVqvF1nYByck5hIe/fbdg9SMd\n2gcvPQsdu8LOw49/fO0lA59UvI0bRTq4vj4cPgwdO4r9vq84xTEicceSBXQv3NcpZ9l5MOxH2BEE\nRvqw6Q0YWPwRrGKF5cELkXA+B0wV8IMTjLJ6srFFR6ezcuU51q49z+3bhV2/7exM6NnTiw4dXGjd\n2pkWLRwxM3uwdFRenprTp6P4448rrF17ntTUXIyN9fjllxcYPLjJA4+nrilkZRF1Ih1XbzPMzCAx\nEXS0ucwtksZ/I3w5K8etwCgokGgvJ77f9Dpvma/HUXUTMASzWWDQCdKmgSoIEAFw+bIRXPhdQf3c\nPdjkXXjg7Y0VYKUDhgoRGHUVoNSKPdUsDSRrCut7F1ArDLmp7UG2Zzt6jYtg5NDNmJnmJ0fpdwaz\njyBnswjGQIx+Y+YYvc7gD3bQc+Mh8bgPP0c9ZTob+vfn1r59d1/7nchILFzEMoBaDX36iGLr/v7i\no44OoFHDsnYQHQg9Pwf/jyjOWZYQyj/Upx8tmVjs4yrL9euJeHsvwcnJjKiod1GUpIzO2uUwfRKM\nGAffrX7842svGfikR3vrLVi8GJydRUmzOnUgCyXT2E8U6XTAhZl0RKeCWrio1DB5Paw4LJZbFwyB\nab1LX04rSwOvx8Cv+TFqlCUsdQKzJ0x+02q1nDwZyYYNF9m16/o9QbCAlZURLi7mGBvro9FoSUrK\nJiIiFbW68L9Rz55eLFny3L3Lm0U5G4r6i5HZ+LQ24soV+PtvePZZuLJlC78PGQJAroc9Wae+YeHQ\nr9C7+B9JjjYsXDOV3g1P0i07/xybXhMwmwPadHGAXiX6L2o0Ck6c7cSe7Z0IDtBHEx2Dm845bDTX\n0NE8/nBkpq4LceqGJJv4YNXYnA4D79D/uX24uUQUPsigJ5iMA+V/kLUEtBloMGSr2YucDmnM1Kkr\nRMshExNY+jM5XXuyvndvov799+5LTL56FbtGje5enzkTvvxSLG0GBYFLwbL42dWw7TWwdIW3g4ud\n7WUQy14moUVLH5Zgjutjv9aK9ssvFxg1ajuDBjVi27ZXSvak2e/BD1/Dx/Pg7Q8qdoA1mwx80qMp\nldC9e2G2Z0CAKAkYRTrvsZ9MlAylCcPxqbAxaLUwdxfMyq/GMaYzLB8FhqU8X6zVwpoUmBorujs0\nNBA1P1uX4nzwo19fy/XriRw4EMq5czGcOxfD5ctxxVbeaNzYjp49vRgzpgWtWjk9+sXr6ImpTUwe\nn87T55NPYNgw2LBB3L3O35+wQ4cASBrWGd1lb/PlyMXonziKWk+XdbOGEzrWnXczfsZaHS6epNcc\nTKeBjhlkb0Kbsx0FhaVv8vL0uRjclGs3GnD7uh1xoUbkpCvIzdRBq9RgYKrFwAwsbJXU9Umlfv0I\nvOtfw9Xpvv0lHWcwfhX0moLyKGT/Ko5cAFcN27FcMZgu35/ghaU70VVroL43rNhIgoExy1u0QF2k\n7uT9Qe/HH+GNN8R57b//hh498u9Ij4XFvpCVCC9vgObDiv3WnuE7wtiPO/60o/g9wMo0Zcoeli49\nw/z5PZg5069kTxo5CP7aAat/g4FDKnaANZsMfNLjxcRAq1YQGys6OhSUNQskljkcRQO8T0c6V/Bf\nyn+chZGrxBJop/rw+yRwLsNRhSu58EokXMoVW1Uz7USbHcMKOPpUMMOLjk4nN1eFQqHAwsIQd3dL\nDA1LuESs1YJ9/uDi1NyO0MHTU5TiiowEW1vITUvjC8vCfaCE8d3J/f5NFs49gMVycVQgpEU9Viwc\nQ6MGYQzL2ImJJr9MjsISjIeKJBjyIHc/KI+jVQWLMmilpTAH/XZg0BV0XUF9W1SyUf139yHXDNux\n1qAvHpvDGf7VH1gkpKJVKFBMehftzDlc2r6drSNG3H28gZkZU65dw9zZ+e5t69fDqFHi27NqFYwf\nX+T7tX4gBO+E+r1gzN/FLhEkc5MApqEA+rAMMx7zB0gladt2JWfPRnPgwCj8/T1L9qQuTeHqJTgQ\nCM3KsCdQe8jAJ5XM8ePwzDMi4/OXX+DVV8Xt27nOGi5giC5f4E89yhCJSiHwNgxYDFHJ4GABGydC\n98aPf979sjXwQRwsThI/zD6GosN7m3Ka/ZWrgvNZCgXEi9ljv36wZw988IFoKgyQGhHBt3ULO7Sn\nd21M5O6PeP9YNi1mfIoiWnQtPz6gA3+8O4D6XmG8kHUMJ2VhI1cUpmDgJwKXXiPQ5gBaUMeAJlrM\n1LRZoFWCwgx0TEXg1HUGjIBc8Zi8s6LjhDbx7kvnKsw5bOzPvty2+G68Sv9Vf2Mbk39/+84w52vS\n6riwbeTIu7NXAM/u3Xl561aMigT2NWtgwgRRoWvuXPjwwyLfr3+XwZ9vgpEl/O+SWOp8CC1q9jOD\nZEJowABa8Fpp/2UqRGpqDvb2X6FWa0lJeR9z8xK0BdNowN1MZBCHpoK5RcUPtOaSgU8quaVLYcoU\nkeEXECCOPGjR8h1nOMBtbDDiK3oUFmOuIHdSYfgKOHAVdBQwZxB80K9sxSqOZcG4aAjJE7O/6bYw\n2x6Mq1PhC5UKencQgS9AFFo+fRratwdTUwgOBtf83+0J166xtMhSIEDwyc9p49uetxbsQW/1D3er\nwFzo2pR9w/2JetaJ7pylQ+4F7FU3HjIABeg4igCnYwkKExH4UII2WwRETcJDh56hY0+gYSsO6TZH\n56QWvz9O0mnPGQyy85cvG/nAh3NRduvJv99/z/4P7t2bem7JEtq++ebd5I6CQDd7trh/zhyYNavI\nE8JPwqpuoFY+donzBrsJ4keMsaU3S6v8wHqBgv29Z57x4ODB0SV70s0QqFgztwAAIABJREFUaN8Q\nHOrAldiKHWDNJwOfVDpTp8KSJWJ57dQpqF8flKj5hKNcJB43LPgSf8yo2CaYag18ugM+2ymu+zeC\nda+VvtILiMSX2XHwTf7sz0MfFtWBgebl2JOuAgweDFu3itnfzp2FY02NiGBpo0Yos7LuPlY74Xmm\nz1uNqTIPlnwF636EHNFxI8vClLPdm3OuV0vCO7lSxy6epspQGilvY6++g7k6BsUDOZv30qBLpo4t\nCXpOXNdzI1jPlTuxDtQ5FUerAxdoefgiZilFyt117w1vvIOqY1eCfvqJPW++ec/rmbu48OrevTj4\nFpYOS06G0aMLv9bFi8UfYoUPuC3O7KXHQKe3oN+3xY43lXACeBcNeXRkJq48vJpLVRgwYCM7d15n\n6dK+vPlm25I9qSCjc+AQsccnPYoMfFLpqFQwcKBYZmvYEE6eBBsbyCCPmRwknDR8sGMOXUWj0Qq2\n9yKMXg1xaeK837KRMLR92V7rZBZMjIGL+ZORZ03hO0doVH4N6MtVdDQ0aQKpqSKrccaMwvtUOTns\nnjSJ8z/9dM9zus6aRbspUzA1NICtm2DDGgg6c89jEp1sud7Si6j6zsR4ORHvZgPWCtSWOuiaatBH\niRodNBpd9FOVaJJ10E1WYxuVjPPNaNxComhw/hbmSfcVS23YGF4aAYOHk6ZnwJkffuBYwTptEQPW\nrKHF6NH3NJU9dw5eegnCwsDKCn7+GZ5/vsiTshJhhR/EB4NnNxi7D3Qfnv2kJpf9vEcqt/GgB215\nqyTf7kqRmpqDg8NCVCoNUVHv4uhYfKf4e4wZDLu2wjcrYNSEih1kzScDn1R66elimfPCBejaFf75\nRyRaxJPFdPaTRA5dcGMa7SvsmENRcWkwfi3syj9+NqQNfD8C6pTgzO/9VFpYlixmgCka0AOm2MCH\ndmBfMccVn8iOHTBokJgBrV9fpA1PvlsBAfzSq9cDz/MdOpSW48fj4e+PTngY7NsN+/+Cs6dEB/ry\nYO8ArTuI2Z1/b3Ksbbm6dSsnv/nmbvWVorrOmkXHadPu2cvLyRF7mF98ITKMW7cWFVo8i+Z7ZKfA\n2mch6gzU8YUJR8H44Qc1tWg5zTeEcxgznOnFIvSoPhu7ZVrmVKuhoZ34dwsMhboeFTrGp4AMfFLZ\nREZCu3Yi43PoUPFLV1cXQklhJgfJRkUfvJhEKxSVEPy0WvjxELz3G2TmgrUpLBoKozqVbbkyXgUf\nxsHqFPHDbqYD02zgXVvRALc6+eILkeSioyPS+1+7L0dDlZPDuZUr2fu//z30+S3GjqVBv354+vtj\nbGUFN6/DhUC4FSIuURGQkgRJiZCRXvgNVSjA2gZs7MDOHuo4Qb2G4jhC05Yobe2JCQoi9MABzi5b\nRkZMzEPfv+eXX9Jm0qS7haYL7NsHb74pyo+B+Pzrr8GoaFGV7OT8oHcWrD1gwjGwLL6+3RU2c5lf\n0cWI7nyJFSXMmKwk/ftvYPfuEH74oS+TJpVwmTPwNDzbHjzrwZmH7dFK95GBTyq7wECR6ZmeLkqa\nLV0qfhf+RxyfchQlGl7AmzE0rZTgBxCWABPXwT/5Ewr/RmL2V5ZanwBB2fBRPPyVvz1lqysSYCZZ\nV68A+NlnhQkfr78uWkwZ3Vd1S5WTw4VffiFgxgxyUoqf1TXo2xeX9u2x8vTE2ssLM0dHjKysMLK0\nREevcNqr1WjITk4mKz6ezPh4MmJjSQoJITYoiCtbtjxyvB7PPEOn6dOp17s3Ovc1TQ0MFA2Rd+bv\n3zZpIsqQdbm/QUFKBPzcF+5cAhsvGH8QrOpSnDD2c4bvAAWd+Qhn2j1yjJXtxo0kGjb8Hn19XSIi\n3sHBoYTtiL6ZC/M+hjFvwMJlFTvIp4MMfNKTOXgQnntOJAp+/LH4BQxwhhjmcRw1Wkbgwys8pAxX\nBdFq4ZcT8M4m0dldVwem9oBPBoJlGRP3jmaKGeCxbHHdUgcm28BbNuBQTZZAV6+GyZPFv4W3t5j9\nFenec4/YCxe4tGkTx7/4otLGV79PH5qPHk395567ZzmzQGCg+PnZvl1cNzERP1PTpolM4nvE/gfr\n+kJaFNg3gjH/gFXxRdPDOcK/fANoaMFrNGBA+X1h5WTy5N388MNZxo1rwerVA0v+xIH+cPwQrN0C\nzw+usPE9RWTgk57cjh0iw1CthkWL4O23xe3HiGAhp9AA42nOQBpW6riSMkS1l+WHQKMFWzP4uD9M\n8i991RcQAfWfTJifAIfzEyaNFDDUQgTB6nAG8Nw5GDECrl0T1wcMECn/zZsX/5yU27e5FRBAxPHj\nnF+7ttzG0uiFF/Ds3h33rl1x8PW9J1mlQE6O2LNbtkwkSoGYqU6eLJJ1HBwe8sL/bYat40CZBe5+\n8OoOMCk+nTecw5xmEVo0+DCCJpSwBFglSkjIom7dRWRnq7h0aRI+Pg/7wh8iOQmaOIqss5BE0QFE\nehwZ+KTysW4djBkjPl+zBsaOFZ8HEMpizgJVE/wAzofDWxvgyHVx3d1WnP0b3gH0yrhceTJLBMCd\nRTL02xnBJBsYYgGmVXgOMDdX7PstWAAFJxr8/UUwef75h8ye7qNRqUgNDyfx+nXSo6PJjI8nKz6e\nnNRUVNliyqtQKDCwsMDY2hpDS0uMbWywcnfHysMDy7p10X3Em6hUcOiQCHh//CGKbQNYWsK4cTB9\nOjg9rICKKhf+fh9O5HefbzkKBv4I+sV3UghhF+dZAUAjhuDLq5W27F4an312mNmzD9G3bwN27x7+\n+CcU+PE7+OhtkUD0296KG+DTRQY+qfwsWiRKmikUsHatOHMFsIebLCcQgLE04wW8H/EqFUOrhd0X\n4IM/CluVedmLg++jOoFBGZcrb+TBsiRYmyI6FACYKOAFCxhhAb3MQK+Kfs/euQPz58PKlYUB0Npa\nHEcZPFgsg5pXTFepB0RFwf794rJnDyQUOe/esqVIXBk2TBzIf6i4q/DbcIg5Dzp6ordehynFZi5p\nUHORn7jODgCaMQZvXiznr6p8ZGcrcXf/lvj4rNKVKNNqwc8Xrl2Bn/6A/tXz66uGZOCTytf8+aJ8\nlEIBP/0kaikC7OUWP3AOgNE0ZTCNin+RCqTWwPqT8PlOuJFfqtLVGqb2hNe6gE0Jj03dL0sDm9Ng\nZTKczC683VoHnjOD/ubQx6zsjXCfREqKmJGvXAlFTxHo6ooarN26id6Lvr5ib/D+pJjS0GpFkLt2\nDc6fh7NnxeXGfcmG3t4wZIi4NG36iMxbVS4cni8u6jywqScqsrgVn5iSRwan+Io7BKFAl9ZMxpOe\nZf+iKljBbK9NG2dOn36tZC2IAE6fgL6dRbWWCxGif5hUEjLwSeVv3jz46CPxy2zdOhg5Utz+D6Es\n5SxaYAQ+vEzjKlt2Uqnh9zMwdzdczp8BGhuI2d/EbtDSveyvfSsPNqSKFkjBhc0O0AFaGEFnE+hk\nDE0NoYEhGBT5FhT8t6uoijFXrojlxV27xH6gWn3v/To64oyci4toReXoCGZmYiZmairGpVSKDkl5\neZCUJGaWBZewMMjMfPB9zcxEgO3ZE3r1Epmaj/0aQ4/AjoniUDpAm9fETM+w+GlqIsGcYiFZxGGA\nBZ2YiT2+xT6+qkVGpuHtvYSsLCWHDo2mWzePkj95yhjYtA7emgmz5lfUEJ9GMvBJFWPuXJGRd//M\nbz9hLOYMWmAgDRlHsyrdc9Fo4O9L8O2+wiMQAC3rwvguogqMbRlngQDXc2F3BuxKhyNZoLrvfl3A\nTR/ClIW31TeAM55gVcGzw/R0OHFCFCC/dEnMBm/cEN+TJ2FnJ6r6+PpC27bQpg34+JRiQpIWDQGz\n4Nya/Bf0hkErwLNrsU/RoOYaf3CZDWjRYE19OvI+ptR5si+mgr366lZ+/fUigwc3ZsuWl0v+xNQU\n8HUWRanP3BBn+KSSkoFPqjiff15YQHjJEpFcASLb8xv+RYWWHngwhdboUvVVoa9Gw7KDsP4UJOfP\nWnR1oEdjGNIWBrUEuyfYE8vUwOlsURj7dLZojxSqfPA/k40uXK8HtlVwTCInB0JDRWGC6Ggxi8vM\nLLxotSI5Rl9fXGxsRHNiBwfx0c1N3FYm2clwZAGc/A6U2aBrAN0+hG4zQa/4unGphHGGxSQj1lMb\nMoimjESH6r30d/JkBJ06rcHQUJerVyfj6VmKjMzVS+H9KdC1B2wNqLhBPp1k4JMq1sKFIksPxCzw\ngw/ELDCQWOZzglzUdMCF92iPQSXU9iyJHCXsCIK1xyDgitgXBDHudp7wXFPo4wut3EH/CYNTtgai\nVHAiC3QV4K4PLY2qNiu00uVlwqklcPgLyMk/WO/zIvSaB/bFJ0IpyeIKGwlhF1rUmOBAGyZTh+rf\ni06pVNOx42rOnYvhww/9mDu3x+OfVPhk6NgIwm7Byk3wQvU7nlHNycAnVbyVK2HiRDFbmD5dFFRW\nKOAqCczhGJkoaYwtH9EZC6pXRejEDNgeCL+dgUPXIK/IWqWJAXSoB34NoI0HNHcT3SGqc0eHaiUj\nTgS8U0shO0nc5uUPz37xyOQVDWrC2M9lfiWHZEBBPZ6jKaOqTWuhx/nkk0N8+ulhXF0tuHp1MmZm\npehmUtCJob43HLsEetWkgkLNIQOfVDk2bxbNa1Uq0Sl72TKxVBZGKnM4SgLZuGDO/+GHI0+wqVaB\nMnLgYDD8dVHMBEPuPPgYa1PwdYF69uK4RD0HcLIUTXPtzcV+oW5tms09TEIIHPsagtaBSrRGwrUd\n9PxMdEx/xBGFSI5zhU2kI5rq2uBNK97Ampqzx3XqVCR+fmvQaLTs31+K4wsgzqW0rQ93YkT7oYFD\nKm6gTy8Z+KTKs2ePaC2TnQ19+ogDzGZmkEAWczhGGKlYYshs/GhAWTeKKs+dVDhxA47fgKBwkVGe\nmPHo5ygUsGkivFy9ykRWPFUeXN0BZ1bAzSJ7Uo2eB7/3wKNLsQFPTS5h7Oca28lENFk1xRFfXsUN\nPxTVYH+4pDIy8mjRYjk3bybz3nsd+eqrZ0v3AosXwJz3oVkr0ZS4LN2XJRn4pMp16pSoHpKQIM6Q\n7d4tUuazUDKfE1wgDgN0eJt2+FF87cXqSKuF6BSRJHMrvvByJw3i0iE+XdQO/ftd6OVT1aOtJPHX\nRHZm4FrIjBe36RlB8xHgNw0cGhf71GySCCOAEHaSSyogAp43L+JJj2qfvPIwEyb8yapVQTRrVofT\np1/D0LAUy5SpKdDaC1KSRZWW7r0rbqBPNxn4pMp344YobH3jBri7w19/QePGoETDMs4RQBgAQ2nC\nUJpUSk+/yqLKPzdX1lJpNUJqFFzcDBc2QPS5wtvr+ELb16HFq2D88AxGDSpiOEsoAcRyFm1+53cr\n6tGIwbjSEUU1SYIqrZUrz/H667swNNTlzJkJNG1ayqMW82fB159Dp26w46DcTC47GfikqhEfLwoo\nnzoFFhZiD7BPH9EodAch/MQFNEBnXHmLthghN/CrtbRosZR56XcIPVR4Et/QHHxegrYTwK3DQ39Z\na1CTwCWiOEUEx+7O7hTo4kxb6vEcDrSoljU2S+rQoTB69foFlUrDmjUDGDu2lJmn4WHg5yP2+P46\nAW07Vsg4awkZ+KSqk5Ul6nlu2SK2KhYuFJ0dFAo4SwxfcYpsVNTFgpl0wpVKKiwplUzCdbiyTVwi\n/i28Xc8QvPtBs+Hg3Rf0H2xbkUc6cVwkmtPEcIY80u/eZ44bnvTEnWcwouZ3G7h5M4l27VaRlJTN\ntGkdWbiwlPt6Wi289CwcDoCBL8PqzRUz0NpDBj6pamk0om3Op5+K6+PGwQ8/gKEhhJPGfE4QRTrG\n6PEWbemEa9UOuDbLyxKzuet/iUvSzcL79IygQW9o8gI0GQRG9/bbyyWVJK4TxyXi+I8UblH014g5\nrrjQARc6Yk39Gj27Kyo1NYeOHVdz9WoC/fo1YMeOoeiWNq3355Xw7utgYwvHr4B9CVsWScWRgU+q\nHn7/Xcz+srOhQwdx3dVVJL18z1mO56evD6Qho2mKXg3K5KuxtFpIuJYf6PZC2GFRNLqAsbWY2TV5\nQQQ9A1O0aMgkjjQiSCOcZG6QRAhZxN3z0jroYUtj6tACFzpi8RT+QZORkUfv3us5cSICHx97TpwY\nj4VFKc+pRkVAZx/ISIcfN8DgYRUz2NpFBj6p+ggMhEGDICIC7O3Fvp+/v9j3+5MQfuI/1Ghpgh3T\n6YAt1aDz69MmJRxuHYRbB8TH1Ii7d2kVCrTOrVA27EJOw3akuTiRpZtMJnfIIp4s4sggBjV5D7ys\nLkZYUw87GuNAc+xohG41K1ZQnrKylPTrt4FDh8Jwc7Pg6NGxuLtble5FtFoY2hf274XnBsLP22RC\nS/mQgU+qXhISYPhw2LdP7PvNny+qvSgUcIUEFnCSJHKwwpDpdKApctkHxB8HSjLJJYVc0lCRi5qc\n+z7moUGJBiVqVGjIQyctAbPQYMxvhWBx6wbGScn3vG6eiRHxDVyJbViHqAYW5Jo+PsnICBsscMOC\nuljhgQ0NscC1xmZjllZOjoqBAzfxzz83cXIy48iRsdSvX4ZzqRt/gqljRVf1Y5fB8WHdeaUykIFP\nqn7Uavi//xO1PQH69xcdHmxtIZkcFnKKi8SjAAbTiGH4oP+UL31q0ZJDMulEkUksGcSSSSyZ3CGb\nRHJIRftA74f7X0SLWUImdreT7l7ME+/tIZRnpEe8hy3xXnbE1bMj1cEcdAp/T+hhgiEWGGKBEdaY\n4IApDphgjykOmOKIQTWtvFMZsrOVDBnyO7t3h2Bvb8Lhw2No3Ni+9C8Ucg16tRVLnEvXwSujyn+w\ntZcMfFL19eefYt8vJUX0h9u4Ebp0ATUaNnKFLVxFA9THmndp/9RkfSrJJJVwUrlNKmGk5X9eNPPx\nYfQwwQhLDLBADyP0VXpYxCRieTsC87AwzMJvopd572toDIzIdW9Grlcr8rzaoXH2QUfHCB300cUg\n/6MeuhhigAW6NfDQeGVJSspmwICNHD8egY2NMQcPjqZZszK0RUpPg2fbQ0gwDHhJlCaTS5zlSQY+\nqXq7fRuGDYOTJ8XS5yefiA7vurpwmXgWcZo4sjBEl/E0pzdeNS4jMIdkrvMnadwmldtkEf/Qx+lj\nigVumOGEKXUwxREzHDHGDiONObpJERB5Ov9yBmKC7k1GATCrI8qDufuJi2Nz0JVnJJ9UREQqffr8\nypUr8bi6WrB37wh8fMqwDK/RwJjBsGc7NPKBvadEXT+pPMnAJ1V/SiXMng1ffCGud+oEv/wCXl6Q\niZIfCeQQ4QC0w4mptMWyBiVO5JDCTgqXsnTQxwI3LHHHEg8sqYslHhhhI4K6VisOjEedEQEu8rT4\nPCf1wRe387430Nl4ydlDObt8OY4+fX4lMjKNJk3s2bt3BG5ulo9/4sN8MxfmfQwWlrDvDNRrUL6D\nlUAGPqkm2bcPxowRDVLNzOC772DsWPF7/AjhLCOQTJRYYsgkWtWoM39X+R1znLHEHTOcChNBlDkQ\ndwXu/AcxFyD2P4i9AFmJD76IuRO4tgfXtqLbgUsbMC5lJqFUKtu2XWXUqO1kZOTh51eXHTuGYmNT\nxmzjfXtgeH/x+a874dl+5TdQqSgZ+KSaJTERJk0S5/xAFLxetkzsAcaTxbec5mL+UmEnXJhIK6wx\nqsIRl4BWC1kJoqBzQsHluviYGAIa9YPPMbYG51YiwLm2A5e2YOlS+WOvpdRqDbNnH2TevGMAvPKK\nD2vXDsTYuIx7oNeuQN/OohD1B5/BtI/LcbTSfWTgk2oerRZ+/RUmT4a0NFHr86uv4LXXAB0te7nF\nOv4jGxVm6DOeFnTHver2/jRq0XQ1PUZcUm4XuYSJgFfQefx+Ch2wayj24hybFX60dJVLllUkKSmb\nESO2snfvDXR0FCxY0JN33+2Ioqz/HrdDoZ8fxEZDvxdg7RbZbqhiycAn1VyRkfDmm7Bzp7jerZvo\n9t6ggZj9LeUcgfn921pSh8m0xgHTyhvgrrfg4m+QGQdazaMfa2gh9uPsvcG2ofho5w22DcCgZnQV\nrw0OHAhl1KhtREWlY2trzObNL9Gjh1fZXzA2Bvr7Qdgt6NhVtBsyloUZKpgMfFLNptXCb7/B1Kmi\n44ORkaj7+e67oKun5SC3WcV5MlBiiC5DacIAGlbOub9tE+DsKvG5qT2YOYp9OKu6YOUB1u5g5S6C\nm1kdOYOrxnJzVXz00QG+/vokAB06uLJp0+DSV2MpKikRBnSD4MvQog1s2w/mFuU0YukRZOCTng6J\niSLY/fyzuN6qlZj9tWolDr2vIOhuvU83zJlIK5pVdNWXtGgx0zOrA7ry/FtNdeFCLKNHb+fChTvo\n6iqYPbsbH37YBT29J/jjKT0dBveEwNPg3QT+PAy2duU3aOlRZOCTni5798LEiRAeLiZQ48eLCjAO\nDhBILCsIIpoMALrixliay5qf0kNlZSmZM+cwCxeeQK3WUq+eNevXv0iHDk+YLZyeBiMGwInD4O4J\nu46Ck0xMqkQy8ElPn4wMUfJs8WJQqcDSUlyfMgXQV7ON6/zGVfJQY4weL9OY52mAQS2pJSk93j//\n3OSNN3YRGpqCQgFTprRj7tzumJs/4fnQhHh45Tm4cA7qOMHuY+DxBHuEUlnIwCc9vYKD4Z13xCwQ\noFEjWLRIdHq/QyarOM+/RAPggAmjaYYfrjWu8otUfm7eTGLGjAC2br0KQLNmdVixoj/t25fDmdDI\ncBjcC25eB8968Ps/MuhVDRn4pKebVgt79ogAGBIibuvfX1SB8fGBIO6whgvcRlQ9aYQt42hOI2yr\ncNRSZUtNzeHzz4+wePFp8vLUmJjoM2tWV6ZN64i+fjmsBFy7Irqox0SBb3PYvBfqOD7560plIQOf\nVDvk5YmlzzlzRF6BQgEjRojanx71tAQQynoukYqobdkRF17FFzdklt3TLDtbyfLlZ5k37xgJCVkA\njBrVnHnzuuPiUk7/9oGnxfJmchJ08BNVWSxlRZ0qJAOfVLvExsLnn8OKFaIGqJ4ejBsHs2aBjauS\nLQTzJ9fJQ4MO4I8HQ2lCnco8/ydVuNxcFStXBjJv3lFiYkSyk59fXRYt6k2bNs7l90Z/bIS3x0N2\nNvTqJzotmMhzmVVMBj6pdgoLE+f9fv5ZFMQ3NBSH4adPBwOnbDZzhX2EokaLHgqexYvBNMIe+Uur\nJsvIyGPVqkC+/vokkZFpALRs6cicOf7069eg7NVX7qdWw2cfwJKvxPUR42HhMtCXx1qqARn4pNot\nOFhkfP72m7huYCB6AE6bBhbeGWzkMocJRwvoocAfDwbTCOda3Gy1JoqLy+T77/9l6dIzJCfnAODr\n68CcOc8waFCj8gt4ACnJMGEoHPxHLCnM/RbGvSkLFFQfMvBJEkBQEHz2GWzfLhJiFAoYNAhmzACn\nDqn8zlWOEYEG0AH8cGMIjXGnjO1npEpx5kwUS5acYfPmS+TmimLfHTu68v77nXn+eW90dMo5GAVf\nhpEDIfSmOJC+Zgt07la+7yE9KRn4JKmoa9fg669h3TqREAPQtavoB9i4RzpbCOYgt1Hn/xdojzOD\naEgT7GrFMQg1GoK4QwBheGDJUJpU9ZAekJGRx++/X2bZsrOcOSOOqygU0L9/Q2bM6IyfX93yf1Ot\nFjashQ//B5mZ0LQl/LwN3NzL/72kJyUDnyQ9TEyMyAJdtgxSU2H+fJg5U9wXTxZbucY+bpGHKD7t\nhRXP04CuuKH/FB6EjyKdAMI4SBhJiKVCB0xYSd9qEfC1Wi3Hj0ewdm0QmzdfJjNTCYC1tRHjx7dk\n0qS2eHlZV8ybpyTDtImwI79X1ksj4JsVMoml+pKBT5IeJS0NVq0SmZ9W92WgJ5PDbm6wl5ukIaaH\nlhjSAw964YkL5lUw4vITTxYniOQoEVwn6e7tzpjRAw+641Hl5d4uXrzDxo2X2LjxEmFhha2dOnd2\nY9y4lgwd6ouJSQUmlBw/DG+OhKgIMDWDBUvh5ZFyP696k4FPkp5UHmqOEM5OQgjNPwgP4IMdPfGk\nIy6YUDOy+WLI4DTRHCeSYAq7vBuhix9u9MSTxthW2SxPo9Hy77+R/PnnNXbsuMbVqwl373N2NmfU\nqGaMGdMCb+8KLvisVMKCT+Db+WKZs3V7WP6rqMgiVXcy8ElSedGiJZhE9hHKUSLIRSRT6KNDa5zo\nghttccIIvSoeaaFc1ASTSCAxnCGGSNLv3meALm1wwg9X2lThuLOylAQE3OLPP6+xc+d14uIy795n\nY2PMSy81ZvjwpnTp4l7+ySoPc+5feGcCXLkoGsa+8yG8N1seVag5ZOCTpIqQhZKjRHCYcC4Tf/c/\njB46+GBHa5xojSOumFfq7CkLJSEkcZVELhJHMIkoKWySa4o+rXCkPc60xRnjKgh2arWGoKBYDhwI\n5cCBUA4fvk1Ojuru/R4eVgwY0JABA7zp2tW9fEqKlURGBsz/GFYsFrM8z3rw3Rro1LVy3l8qLzLw\nSVJFSySb40RyjAiukXjPfx5LDPHGBm9saYgtrphjg9ETB0MVGmLIIJJ0IkgjkjRukUIEafe8vwLw\nwIoWONAWZxpji25lNOktOlaVhosX73DkyG0OHAjj8OEwUlNz73lMu3Yud4Odr69D+Z67K4mAv+C9\nN0ShaV1deHMaTP8/mcBSM8nAJ0mVKY1cgrjDOWII4s7d2qBFGaOHC+Y4YooFhvkXA0wxeOCx2ahI\nI5d0ckkjjzRyiSOLWDLuHrkoSg8FnljhjS2+2OOLPRY8YaudUoqJSefUqcj8SxRnz0aTlaW85zFe\nXtZ07+5B9+6e+Pt74uhYRQUDIsPhkxmwfbO43qwVfLsKmrWsmvFI5UEGPkmqKlq03CGTYBIJJpFb\npBBFOun5GaJPQgE4YIor5rhigSvmuGOJF1aV1ndQrdZw61Yy58/HEhQUy/nz4lJQG7OoevWs6dTJ\nLT/QeeDuXsVFnLOy4PsFsGSBqLNpbAwzP4OJb4lqLFJNJgOfJFVGaldnAAAE/ElEQVQ3aeQSSTrx\nZN0zk8tE+cBjjdDDAoN7ZoY2GOOMGYaVsD+nUmkID0/lxo2ku5eQEPHx1q1k8vLUDzzH3NyAdu1c\n6NDBlQ4dXGnf3gV7+2pSBFyrha2b4NMZEB0pbhv4MnyyQB5Gf3rIwCdJ0qMplWrCwlLuCWoFl9DQ\nFFQqTbHPdXExp2VLJ1q0qEOLFo60aOGIp6d15WRflta/x0XAO31CXG/aEuZ9Bx27VO24pPJW7A+f\nnMtLUi2Sm6siNDSFkJDEIoEtmRs3krh9OwW1uvi/dV1dLahf34b69a1p0MA2/3MbvLysMTN7cF+y\n2vkvCOZ9DAF7xHV7B/hoHgwbIxJZpFpDBj5JegolJ2dz+XI8V67Ec+JEBH/8cRVbW2PCw1MpbpFH\noQB3d8v8oGZ9N7AVBDdj4xp6fi0kGL6YXVhqzNQU3ngHJr8HFrL4eG0klzol6SkREHCLRYtOsWdP\nSLGP0dVV4OFhdU9QK7h4elphaPgU/S0cEgzffQG//VLYjHHcZHhrJtjZV/XopIon9/gk6Wl25Mht\nunX76ZGPCQgYSZcu7hgYPOXLeufPwXfzYddWkcSipycaxE77GJxdq3p0UuWRe3yS9DRzcTHH19eB\nS5fiAHjxxcZ07OhK585utGrl9HTN5B5Gq4UTR+DbeaIxLIhuw8PGwtQZ4OFVteOTqhU545MkqebK\ny4M/t8CK7yDwtLjN1BTGTBL7eE7OVTs+qSrJGZ8kSU+RxAT4eQWsXgqxogkt1jYw4X/w2hSwsa3a\n8UnVmgx8kiTVHOfPwU/LYct6yBGNcvFuAhPfFo1hZU1NqQRk4JMkqXrLyIBtm0TAu3Cu8PaefeGN\nt6FbT9kQVioVGfgkSap+tFq4eB5+WQm/r4eM/P6BVtbwymgY8wY08K7aMUo1lgx8kiRVH3F3YMuv\nsOkn0QC2QPvOMHoiPP+SKCQtSU9ABj5JkqpWTg78sws2rYP9f4E6v+C1ja3Ytxs5ARr7Vu0YpaeK\nPM4gSVLlU6ngyH7YuhF2b4P0NHG7nh706gdDR4uPBjWgBqhUXcnjDJIkVTGNRnRE2LoR/vwdEuIL\n72vWCl4ZBYOHy3JiUoWTgU+SpIqjUsHJo7Bzi5jZ3YkpvK++N7w4TFzqN6y6MUq1jgx8kiSVr9xc\nOHZQ1Mrcs00cNi/g5g4DhoiZXdMW8hiCVCVk4JMk6cklJcK+3bD3TzjwN2RmFN7n1QCeHywyMpu3\nksFOqnIy8EmSVHpaLQRfhoC/REbmv8fEHl6Bpi2g9wAY8JLIyJTBTqpGZOCTJKlkMjLg6AHRwTxg\nD0RFFN6npwdde0CfAeLiWrfqxilJjyEDnyRJj7duBXwwVXRDKGDvAD2ey7/0kd3MpRpDBj5Jkh6v\nXkNQKqF1e1Ejs2dfsV+no1PVI5OkUpMH2CVJejylElJT5Bk7qSYpdmNZBj5JkiTpaVRs4JPrFJIk\nSVKtIgOfJEmSVKvIwCdJkiTVKjLwSZIkSbWKDHySJElSrSIDnyRJklSryMAnSZIk1Soy8EmSJEm1\nigx8kiRJUq0iA58kSZJUq8jAJ0mSJNUqMvBJkiRJtYoMfJIkSVKtIgOfJEmSVKvIwCdJkiTVKjLw\nSZIkSbWK3mPuL7aRnyRJkiTVRHLGJ0mSJNUqMvBJkiRJtYoMfJIkSVKtIgOfJEmSVKvIwCdJkiTV\nKjLwSZIkSbXK/wOSG3SDerlRLQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t, x_t = solve_lorenz(angle=0, N=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using IPython's `interactive` function, we can explore how the trajectories behave as we change the various parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FGXXh+/t6T10EgIJoffeexcBkWZHED8URbEiNhRE\neQXFjgULTUERkI70EnoJgQCBkATSe7LJZtt8fzwhRVqABAh57uuaa2ZnZmcmm935zTnPKSpFUZBI\nJBKJpKKgvtsXIJFIJBLJnUQKn0QikUgqFFL4JBKJRFKhkMInkUgkkgqFFD6JRCKRVCik8EkkEomk\nQqG9wXaZ6yCRSCSS8ojqWhukxSeRSCSSCoUUPolEIpFUKKTwSSQSiaRCIYVPIpFIJBUKKXwSiUQi\nqVBI4ZNIJBJJhUIKn0QikUgqFFL4JBKJRFKhkMInkUgkkgqFFD6JRCKRVCik8EkkEomkQiGFTyKR\nSCQVCil8EolEIqlQSOGTSCQSSYVCCp9EIpFIKhRS+CQSiURSoZDCJ5FIJJIKhRQ+iUQikVQopPBJ\nJBKJpEIhhU8ikUgkFQopfBKJRCKpUEjhk0gkEkmFQnu3L0AiudMoCmRlgckEFsv1J7sdPD3B1xd8\nfECvv9tXL5FIbhcpfJL7DrsdEhIgKqr4dOFC4XJ29q0d281NCOBlIbw8r1YNGjcWU+XKpfrnSCSS\nUkalKMr1tl93o0Ryt7HZICwMdu8W08GDQuDy8q7/PicnMel0159UKkhLg6QkSE4W57sRlSpBkyaF\nU+PG0KABODiUyp8skUhKhuqaG6TwScoT2dmwb1+h0IWEQGbmlft5e4O/f+FUq1bx156eQtRuBrsd\nMjIKRbDoPCoKQkPFdLXr0Wigbl3o1An69YOePcHd/ZY+AolEUjKk8EnKJzYb7NwJK1bArl1w7NiV\nVpe/P3TsKKZ27YTAuLjcnetVFIiOhuPHxRQaKuanTwvhvIxGI661b18hhC1aiHUSiaTUkMInKT8o\nCuzfD0uWwB9/QFxc4TaNBpo3hw4dCsWuevW7d60lxWQSArh5M2zYAHv2gNVauN3bG3r3FkI4eDB4\ned29a5VI7hOk8EnubRRFWEdLl4opMrJwW0AAjBwJffpAmzbg7Hz757Ngx4gZI5b8SSznYUOPpmAy\nFFm+/NoJLYbbjAvLzIQtW4QIrl8vxiUvo9fDkCEwdiz06iUtQYnkFpHCJ7k3OX8eFi0S1t2pU4Xr\nq1YVYjdqlBC7mx2Py8ZMNJnEFJmSycGIhWwsmClBlMp1cMdAFZypjDNVcKFywbIz3jihufZv7goU\nBc6eFSK4erWwCi//LGvUgCeegCefhMDA27pkiaSiIYVPcm9x+DB89BH8+WfhTd7bG4YPh9GjRRBI\nSSwdGwrnSOMcacSQWSB2aZiu+z4NKpzR4Yw+fy6WDWgwYyuY8oosX35txIIV+zWPrUVFVVypjzf1\n8KY+PlTDBVUJxTAmBn79FRYsgHPnCtd37iyswOHD794YpkRSjpDCJ7n7KAps3y4Eb+NGsU6vhxEj\nYMwY4dbT6W58nHiMHCWeoyRwjESMWK7Yx4CGmrgVmyrjjGu+0BnQlFiI/osdhTRMxJNNPEYS8qd4\nsknASOpVRNcNPfXwoX6+EAbiiZ7rK7uiiMCen36CZcsgJ0esd3eHF16AF18UDwsSieSqSOGT3D3s\nduHCmzVLpB+AGKd79ll46aUbB6dkYyaUJI6SwBHiicdYbHsVnGmIL35FRM4XJ9S3KGy3Sx5WIsng\nFMmEk8IpkkmneGKhFjXNqEQHatCGarhhuO4xs7KE+P34owiMAWH1TZwIL78sk+YlkqsghU9y57FY\nRKDKxx+LJHMQFsoLL8Dzz18/cjEPK7u5yL9cIIxk7EW+is7oaEolmlGFZlSmCqUQ7VKGKCgkYORU\nvgieIoVoMgr+IjUqmlCJDlSnHdXx4PqZ7rt3w4cfiqAYAEdHeOYZePXV8hHhKpHcIaTwSe4ciiLy\n7qZMKYxWrFEDXnkFxo27dlSmgkIEaWwikh1Ek4OI99egIhhvmlGZ5lQmEK+bCh65F0nDxD4usYdL\nHCexQNjVQAN86UANuuKHK9cuDnrgAMyYAStXitd6vRgDfOMNkdsokVRwpPBJ7gyRkTBpEqxZI14H\nB8Prr8Mjj1y7wHMWZrYRxSYiuUBGwfq6eNGbADpRE2dKMPhXTskkj/3EsoeLHCUBa/7PTo+Gbvgx\niCBqce0yL8eOCQFcvlw8dDg4CPF77TVhDUokFRQpfJKyxWyGTz+FDz6A3FxRzHnmTDGOd63ozHBS\nWM1Z9nKpIErSFT098KcXAfhf52Z/v5KNmQPEsY0ojpBQsL4xvgwkkLZUQ3ONbmKnTsH06cK9DCL/\n8fPP4YEH7sSVSyT3HFL4JGXH9u3wf/9XmIc3erQQwapVr77/OdJYxAkOEg+Ib2czKtObANpSDd0N\noh0rChfJYg0RbOECufluX1+cGEAdehNwzYCYHTvEGGpoqHg9cKAQwDp17tSVSyT3BFL4JKVPYqII\nqPj1V/E6KAi+/lqkJVyNKDJYTBh7uQSAI1oGEkh/6uCL0x266vJHDhb+5QJriCAW0U/JES1DqMuD\n1MXpKm5gqxW++greeUdUiTEYhOvzjTdEVwqJpAIghU9SeigK/PyzCF5JSxM31alTxY31aq13Ysli\nCSfZQTQKoEfNQAIZRj3cbxDGLynEjsIREljFmQI3qDsGRlCfftS+qqUcHy/GWC8/nAQEwMKFotap\nRHKfI4VPUjrk5orcsZ9/Fq/79BGWxdXKaSViZCkn2UIUdhS0qOhLHYZTD29k1MXtcIIkfiWUcFIA\nqIQTj9CILvhdNeJ11y547jlRKFujEZbg1Kmgla2oJfcvUvgkt8/58/DQQ3D0qIgW/OYbePzxK+to\n2lBYzVkWEooZO2pU9KIWI6hPpXs85648oaCwnzh+I5RoRBNAf9x4kqa0pMoV+5vN8Pbb8Mkn4nWn\nTsL6k6kPkvsUKXyS22PtWnj0UeHaDAwUNTabNLlyv4tkMo+DBZZIZ2ryCI2ohiwuWVbYUNhGFIsJ\nIwlR16wrfoyj2VVdyZs3iweWuDhR/mz+fFE2TiK5z5DCJ7k17HYRIj99uhjbGzwYfvkFPDyK72fD\nzt+cYTFhWLDjhQPP0ZLWVLs7F14BsWBjNREsJgwzNlzRM45mdMPvirqkycnw9NOwapV4/eST8MUX\nsvi15L5CCp/k5klNhcceE9aeWi3KZL3+ulguShQZzOMAZ0kDoCe1eJqmuFyn6oik7Igjm684xHES\nAWhJFf6PFle4mRUFvvtO1Es1mYQFv3o1+PndjauWSEodKXySm+PIETGeFxkp6msuWSI6hBfFip2/\nOM1SwrCi4IMjz9HqquNLkjuLgsJmLvATxzBiwQENj9OEAdS5onj3yZMwbBicPi2KXa9aJXogSiTl\nHCl8kpKzYwcMGABGI7RqJcbz/msFpGHiI/YUjOX1pTZP0eSqOWWSu0cqucznCHvycyfbUI3JtL7C\nGk9LE33+tmwRKSm//goPP3w3rlgiKTWk8ElKxpYtosRVTo6owPLTT1fm5p0nnQ/ZRTK5+ODIC7Sm\nGbIvzr3MHi7yBQcxYqEyzrxOewLxLLaPxSJSHr7/Xrz+8EOR8vDfqF2JpJwghU9yYzZtEsErJpMI\ndvjhhyvrbO7hInPZTx42gvFiKh3xvEEbHcm9QTxGPmEvEaShRc0zNKMvtYsFvigKzJkjKvIoioj+\nnD9fFCmQSMoZUvgk12fdOhg6FPLyYPx4+Pbb4kEsCgrLCGchJwDojj/P0fKGXcQl9xZmbPzIMdZx\nDoBu+DGRljhQPJN91SoYM0a4uwcMEO7uq1XlkUjuYaTwSa7N6tVifMdsFsWmv/yyuOjlYWMeB9hJ\nDCrgCZowlLpXhMjfDyiKmOwK2OygVoHuPqxusp1ovuQgedjwx5136YTPf+qlHj4MffuK1Id+/USP\nRSl+knKEFD7J1VmxQiQvW62iM/pnnxUf00khl5ns5ixpOKLlFdqWu9w8RYFLaXA0Gi6kQFw6xKZD\nXIZYjsuAtBwhdFf7ObgYwNcVfFzz5y5QyQ3qVoaG1aFBNfAoh4Wfo8lkFnu4SBY+OPIenfH7Tyuo\n0FDo2ROSkkR5ur//lj3+JOUGKXySK1m2TASw2Gyi4PTs2cVFL4kc3mQrieRQGWem0fGe75GnKBCZ\nBAcvwOEoOBItpqSskh9DpRKWnlpVaPndiGoeQgQbVYdOQdA1GLzLQTJ4FmZmsJuTJOOMjml0pCG+\nxfYJC4MePUQ3jl69RMd32eFBUg6Qwicpzo4d4kneahWtambOvNLSe5OtxGOkLl68Q6dr9n+725gs\nsP00rDkGa0PhXOKV+3g4QQt/YaVV84CqHlDVvXDZyxk0aiF2RT8HRYHMXEjOFuKZnCWWY9PhVByc\njBXzXHPx86lU0LQmdAuG7vWEELrfo2KRh41P2UcIl9ChZgpt6UCNYvucPCnELyFBzFetAmdZdlVy\nbyOFT1JIVBS0bi3cV5Mniyi+ojf7NEy8xTYukkUdPPiArvdcFZbUbFh2ENYch39PQk4R4fFyhg6B\n0Nwvf/IHf++yC8u32SEqGcJihZW57TTsjYA8a+E+Og30awyj2sDgZuByj42V2VD4niOs5RwqYDzN\nGUTxlhvh4dC9u2h11K+fED+dTNuU3LtI4ZMIjEZRlf/oUTFms3Zt8ZSFTPJ4i21EkYk/7syg6z1j\n6SkK7DwD3++AZQeKC0szPxjYBAY0gba1hfV2N8k1Q8g52BoOW07B3nPCbQrgqIdBTWBkG3igGejv\nkeCZ/0bujqMZgwkqts/p0+L7k5wson+/+07m+UnuWaTwSYRwjBoFf/whOizs3w+eRXKYszEzje2c\nJ50auDKTbnjcAzl6yVnwy24heKfjC9f3bggjWkP/xlDd89rvvxdIyIDlB2Hpfth1tnB9FXeY2B0m\ndBMBM/cC6znH1xwGYCIt6UftYtv37hXuTpNJuMjffPNuXKVEckOk8EnETeqtt8DVFfbtg/r1C7fl\nYOEddnCGVKriwky63fVmsXHpMHMNzN8O5nzrrqo7jO0MT3eGAN/rv/9eJSYV/tgPP++GE6KSGAYt\njGkHL/aCpvdAkeh/OMt8jqICJtOG7hRv2vfnn6KkmaLAokUi508iuceQwlfRWb0aHnxQLK9cKcqS\nXSYPG++yg5MkUwknPqI7vty9SIykTPh4HXy1RQSugLDqnukq3Jn3S16doghX6Geb4J9jhakU/RvD\nzIeE+/Zu8ifh/EIoauAV2tGJmsW2z50LL78Mer2o+tOly925TonkGkjhq8icOgVt20JWFsyYIeov\nFmUeB9jMBXxwZCbdqXKXuqSnZsP/NsC8zWDME+uGtoD3h0DjGtd/b3knIgG+/Bd+3AnZ+X/76LYw\nfQgE3sUyqIsJYykn0aBiKh2K5XAqCrz4oujj5+kJBw9C7drXOZhEcmeRwldRycgQHRYiIkSi+tKl\nxYMRNnKeLzmEHjWz6UkAHtc+WBmhKPDrHnh5KaQaxbqBTWD6UJGCUJFIzoKP1sCXW4R7V6uBcZ2F\nAPrehTFABYVfCOUvTuOAho/pUew7YrOJUnerV0PLlrB7t6zrKblnkMJXUZkwQRQZbtpU3JSK5l5F\nkMbrbMGCncm0pge17vj1RSbBhF9hU5h43b0ezBgG7QOv/777negUeG+lCOqxKyJF49OR8ETHOx9F\nqaDwGQfYShQ+OPIpvYoVJk9LgxYt4MIFeP55YQFKJPcAUvgqItu3Q7duItfq6FFo0KBwWyZ5vMxm\nEsmhH7WZSMs7em1Wm3Bpvr1C5OB5OcNno+HR9jI8vignL8GLS2DzSfG6ez347gkIusPuTzM2prGd\ncFIIxosZdCtWoPzAAejYUbQ2+uMP2ctPck8gha+ikZsLTZoIF+d778G77xZus6MwnV0cJp66ePER\n3dDdwS4LZ+LhkfmirBiIsazPRt874fz3GooCC/cKV3BytogAfe9BeLX/nc1XTMPEK/xLEjl0xY+X\naVOsUPkXX4h6r66uosB1YAW32iV3HSl8FY0334RZs6BhQ3ET0hcpvLKEMJZwElf0fEbvOxrBufII\nPP6DKANW0wu+eQwGNr1jpy/XJGfBK38I9ydAz/qw8BmRC3iniCSd19mCCRtP0JiHqFewTVHEOPLy\n5dC8OYSEFP/eSSR3GCl8FYkjR0RJMrsd9uyBdu0Ktx0inunsBOA9OtOcKnfkmmx2eO9v+PAf8Xp4\nK/jxKXCTlf5vmvWh4uEhKUtYyQvHi2T+O0UIl5jJHtSomEV36uFdsC0jQ4z3nT8vvAzvvXfnrksi\n+Q/XFL67XNhJUtpYrTBunIi2mzSpuOgZsTCPAyjAGBreMdFLzYZBnwnRU6vgk4fhj/+Toner9GsM\nx96HHvUhMRP6zoG3/hQPOneCdlRnKHWxo/A/QsimsFCquzssWCCWZ8yA48fvzDVJJDeDFL77jLlz\nhWvT31/ceIqykBOkYaIe3jxM/asfoJQJj4PWH8D6E6JNz8YpYmxKBrDcHlU9xGc5fYh4rJ25Bh76\nqjD/sax5lMYE4kkiOXzDYZQizqEuXWDiRPEQNnasmEsk9xLS1XkfEREBjRuLGorr1okK+pc5Syqv\n8C8qVMyl1x3J1zsWDb0/FS65Fv7w13Pg71Pmp71lFAXsgA2wKuLL76S690X635Mw/GtIz4GW/rD6\nRSGMZU0sWbzEZnKxMolW9CagYFtWFjRqBNHR8PHH8NprZX89Esl/kGN8FYHhw0UNxUcfhd9+K1xv\nQ+FV/iWCNIZSl6co+2iSg5HQZw6kGaFvIyF6Tnc5sdmmwFkzHDfB8Ty4YIE4C8TbxDztKq5CDeCh\nAU8NeKqhlh6CikxNHcDlHvCbhMfBgLkQmSyChv55EZrUvPH7bpetRDGX/RjQMI8+VKWw++6GDeLh\ny2CAY8cgOLjsr0ciKYIUvvud0FCRvmAwiMCCaoWVpfiHCOZzBB8c+Yp+OFK2xS73RED/uSJyc3Az\nMZ5nuAt92/LssCcXNmXDlhw4ZgJTCb7ROkCrEl/+G+2vBpo4QHtHMfV2gSp3qZZoUiYM+VJ8/h5O\nsGkKtAq48ftul/8Rwg5iaEolptOlWIrDU0/Bzz9D//6iBZZEcgeRwne/8/DDIoz8hRfg888L16eQ\ny0TWk4uVqXSgHdXL9Dq2hcOgz8VY08OtYNEzd7aodKYN/sqC3zNgew7k/ucb7KeDJgYhVkF6qKoV\nUxUteGtA85+filmBdBuk2SDZBufNEGEWlmN4vvVo+881tHWEB1zgQVdodIe7OpksMPpb+PsIuDvC\nhpehbZ2yPWcGeUxkPVmYeek/nRySkkQ+X2YmrF8PffuW7bVIJEWQwnc/c+KEGNu7mrU3mxB2EkMb\nqjGNjmV6HYcuQJdZohLLY+3hp7Gi1mRZY1NgfTYszIC/s4pbaU0M0MtZWGLtHIXbsjTJscPBXNib\nCztyYIux+PmbOcDTHvCIu3CX3gksVhgzX/T/c3WAdS9Bx6Abv+92+JcLfM4B3NDzNf2KNS+ePVuM\n8TVoIFye2vuku4bknkcK3/3MiBGwbJlIX5g3r3D9URJ4hx0Y0PAVfalUhl0XLqZCmw8gLkOUHfvl\naVCX8dhXrh1+SYf/pcA5S+H6Lk7wqDs84Hrn3Y5GO2w2wuosWJEFqfnmoEEFD7vBq97C2ixrrDZ4\n7HvR+NbZAFtfg9Zl6PZUUJjGdkJJogf+TKZNwba8PCF658/DV1+JiE+J5A4ghe9+5cQJMban04kb\nS/V8T6aCwutsJZwUHqURI8owfSHbBJ0+gmMx0DVYhNnry1BwsmwwL1VMifnCEqCDcfmWlf89Ui0k\nzw4rs+DHdNhkLPwxDXSBN3ygUxkXzLHa4IkfYXEI+LrCnqll2+IoliwmsRELdmbRnQYUhvD++acI\nvvL2FtHHHne+CYik4iET2O9XPvhAhOE/80yh6AGEkUw4Kbig4wHKzs9ls8Po74ToBVWGP58rO9Gz\nK/BTGgRFwLQkIXotHOD36nAmEKb63juiB2BQwwh32OAP5wPhBS9wVMGabOh8AfpHQZip7M6v1cDP\nY6FPQ5FS0ncOJGSU3fmq4cowROjmzxwvlts3bJjI70tJgc8+K7trkEhKghS+ckxYmHBx6vXw+uvF\nt/3BKQAeIKhMozhf+V10D/dyhjWTRZJ6WbDTCK0i4ek4SLCJ8brNfnAwQIiL9h7Ptaulh8+rQFQQ\nvO0DbmpYb4Qm52FCLCSWUZK3TgvLJ4r8vvNJMPCzsk1yH0ow7hgIJ4W9XCpYr1KJhzQQwVeZmWV3\nDRLJjZDCV46ZMUNYe+PHQ40iHcrPkspREnBEy6AytPb+OgSfbQKdBv56vmxa5eTY4fk46BIFR0xQ\nQwuLqsOeWtDT5d5PLv8vvlqYXgkiAmGip/DFzE+H+ufgt3Tx/yxtXB3FQ0mdSnAoCsb/XDbnAXBC\nx2hE4dBfCMVCYXJkly5iSk+HL78sm/NLJCVBCl85JSVFpC+o1Vdae8vyrb3+1MGVsvH9xaXDM7+I\n5U9HirG90uZALjQ/D1+lidy6d3zgdCCMcS9/gvdffLXwVVUIrQO9nUUQzOOxMDAGYiw3fv/NUtkd\nVk0SgS5L9oleiGVFHwKojitxZLOBc8W2vfOOmM+ZA9nZZXcNEsn1kMJXTlmyRDT97NMHahap0BFF\nBiHEokPNg9Qtk3MrCjy9AFKyxfjRcz1K//izkqF9JJwxQwMD7AuA9yuB0332ja1vgA1+sKAaeKhh\nXTY0PSeiQkubBtVhwVix/MofsPNM6Z8DQIuaJ2gMwHLCsRTJdOzRA9q3Fw9u335bNueXSG7EfXYb\nqTj8km9tPfFE8fXLCQegNwF4UjZx899tg3Wh4OkscvVKM20h1w6PXII3E0Vi+MtecCgAmt/HnRxU\nKnjSA07WgQEuonTa4Bh4JR4speySfLg1vNpPRHyO+Eb0+CsL2lKNWriTiol/iSpYr1LBtGlied48\nWcBacneQ6QzlkJMnRYNZd3eIiwPHfFGIx8izrEWFiu/oXyZ5e2fiofl7Ikn992dhRJsbvqXExFpg\nSAwcMIn6l4uri1y8MkNRwJ6MYosiN/scxqwoTDnpKHYjKlUeiqJHq3PGwdEdR+eaODjXQqX1A3WN\nMvO12hWYkwJv5At/Vyf4qyZ4lWLyu9UGPWYLi294K1FSriz+nJ3EMJsQquDMN/RDk/+cbbdD/fpw\n5gz89RcMHVr655ZIuE46g6yhUA65bO2NGFEoegBbuYAd6ErNMhE9RRHjejlmkaRemqJ3Og96RsEl\nK9TSweqaZVDuS8kjN2ML8dFrsJoO4usRjodrBirACXDSwzWHRPPyJyAn14nUrEDUhuZ4V+2HwbUX\nqEun7YRaBa/4QAcnGH5RlF1rHwlr/CCwlIZrtRpRYKDJO6K6y6IQ8f8sbTpQg6q4EEc2u7hIV/wA\n4SGYOBEmTxYJ7VL4JHcaafGVM2w28POD2FjYtQs65lchU1D4P9YTSzbvl1Fn9b8Pw9AvRcrC2Y+E\nq7M0OJUHPaIg3gqdHIWF41taj2T2LOIuLMCYvJTqvodwdDAX25yZpScy2pNL8Z6kZnhhV1ywWB0w\nW3TodFZUmNCosvFwS6NqpQwC/NKo5JNzxWniU4LROD+Eb80nQVs6kbQxFhgULTpJeGtgvR+0KkWX\n7087xVituyOEfiC6OpQ2GznPlxwiAHc+o3dBAev0dBGJbDQKD0b9O9MeUlKxkJVb7hcut3oJDBSu\nossuqjP5/fY8MLCAQQVupdLCbIWG0yAiEb54BJ7vWTrHPZkHPS6I3LweTrDar3QCWLJStnHp7Mf4\nV95STOyOhlXh+OnG2NStcffpQA3/pgQH++Dufn3zUlEUEhONnD2bSlTkaZLj9qKxH6R+nRN0bBWN\ng0NhAEdCan2cfCfh6vsEqG6vPEuWDUZeEkEvbmpY5yeswdJAUcSDzMojMKylKD5Q2liwMZY1ZJDH\nx3SnfpFqLs8+C999B88/D198UfrnllR4pPDdL4wZIyI6p0+Ht98uXP89R1hNBIMJYhzNSv28n2+C\nyUsguAqETi+djgsRZugYKSqw9HKGlTVvU/QUhYSYZWTGvk+Q/8mC1XsO1iI8qj/VAkbRsUtbXF0N\nV7yPzAyIj4XUFDDniQKTOh04OYOLK1StDp5eVwyGpaXlsnnTSWIi/qKa1zr6dz+Ju5vwiRpznclV\njcfH/63bcoVaFBHwsywTnFWw1g+6lJK1fSkN6k2F7DyR6zegSekctyi/EMqfhNMNP16mbcH6o0eh\neXNRxiwuTnzcEkkpIoXvfiA7G3x9RYf1yEioVUust2HnSf4hgzzm0ItAPEv1vKnZEPimaCq7+gUY\nVAq6mmorTFfonS96jrchegkXt5J96Tnq+IkcxrR0B9bt6IVX9efp0acXen1+dIjdDqdOwO5tEHoE\nJew42adPkZGdS4Ydsu1gQYiNCtCpRA6hixrcnB3wrBWAc4tW0KgZtO0ITVsWtBvIzbWwds1xLpya\nT8fma2jXUlQuMeUZyGECXn7TQe1+S3+fVYGnYkUHClc1bPcvvUjXORtgyu8Q4ANhH4JjKad+xmNk\nAmvRomYBgwo6NyiK6CoSFgarV8OgQaV7XkmFRwrf/cDatTBwILRtCyEhhesPEc/77KQ6rnxN32KN\nQEuDKUthzkboWR82vXL7EYBmBfpFwdYc0TZoVy1wvcWoRbMpgdMHn6RxnfUAJCQ5s2X/Q7Ts9B51\n6+W3IzCbYdsm+Pt37JvXcjEhhXMWEUgTZ4Wcm/yWO6ugshZqaiHA3ZnqPXuiHTIS+j4AriIMNTw8\nmZXLFtC0zvf0634WgMxsDzQeM3H2mQAqtRiwTUsFY7aYcoyFy8aiy9lgysWuUrMiV8sxqxaDTscE\nXy0+Bq0wlTT5c60WdHrw8gZvX/DxFXOD4Zp/j8UKLadD6EWYPgTeHnzz/4cb8T47OUQ8T9GEoRRW\nO/joI5g6FUaNEp4MiaQUkcJ3P/DKK/Dpp+JGMWNG4fpP2cd2onmEhoykQameM80INaaISM7D70Jz\n/xu/53rPNhgyAAAgAElEQVQoCoyPEx0LqmhhfwDUvEUX1+njC/DWvIiPVxZ5eRrW7RhEw7ZzCQrO\nF7wL5+HHr7Av/okLyekczxPNY/P+8612cNPjVdsR9+oqnCvZ0Dta0DmCYldhzdOQZzSQnagmM8ZO\nyvkszDnFA2T0KgjWQX1nLXWHPYRm/CRo1griLpF4NJzdvy+imcdaAgzpkADmWCd0aW6oEpKE+N0J\nXFwLRbCoIHr7Qg0/Dqjr0m15EBoXZ87NAl+30j19CJeYyR78cecL+hSsj4oSngtHR0hIKHhukEhK\nA5nOcD+wZYuY9yhSKcWElX35xYAvh4uXJvO3C9Hr3fD2RQ9gUYYQPUcVrKp5a6Jnt+VyfNdImtVd\nDcC+I4GYnb5jyOP5H8ypE/Dxu+St/ovDJthngozCkpF413GkTtc8/NvbqdYE3GuYUanMVznTZQpr\naykKZFyE2OMQtc+byK02ks6lE2qGULMV559+p9mi32ntAO4aqAT8N1pfTw6QHxnq6SVEydlFjCc6\nuxRORV87OQk3rdWK2WJhUYqVFJOF2morQxytqK0WsFlFOZ88kxirTEmC5CRITYbsLDFdOH/Vv7A1\nYARiHGqQdrQuvh2DoU5dCMyf1/S/rQ6yLamCMzqiyCCaDPwQLl9/f+jUSUQor1kjLD+JpKyRwldO\nSE0VwQB6PXToULj+BEmYsFEXL6pQuq0RLFb44l+x/HKf6+9bEiLNMDFeLH9RBVrfwhhVeuo54sL6\n0qzuOUwmDev3jKPfsHk4OOoh9iJ88CbmZQvZmwN7TYXWnYefniYPmWkyDLzr5IqV2vqgawPaBqCp\nA5qaoPYClTuoNIAd7EZQUsAWD9knUR3aiceBw3iEXaLBuRTIglQPOGUWaQeJNthtEuduYoDOjuDl\n5QGjn0KpWo095zPJ0S2l90NnoRIkmtpSKWjJTY396YGeFmh9XpzvJS+Yc73sFUWBjHQhgilJxQUx\nKRGiI+HcGeznI6hpughnLsKZLcWPodNBQKAQwaYtoXV7aNEGXEtmGurQ0JEabCSSHcTwKIV/75Ah\nQvhWr5bCJ7kzSFdnOWHFCtHTrFs32Lq1cP0CjrOC0wynHo/n10csLRaHwCPzoX5VEfRwO2N7VgW6\nXoA9ufCQKyy7heInMee3YzAOppJPJjGxHkRn/UzHbg8Kd+GPX6F8OJXQNCObcyAr38Lza6uh40Qb\nQT1BpXEDh8FgGASGPqAuHgRkxU42ZrKxoKCgjo/HZf8BnPftR7N/L6rQI1fW2FIhzNY6FpQ6cFEN\n+/d5E7Y1FUVRUAOtHaDrwD44zp0PNf2Jikrnp6/eYsq4H3BzNZOa6Ydn7X9R6QJv6vPYlSNSQSwI\n6/m2q9xYrUz+JIrTu88wrtppHvI4A+fOQMRp8VDxX1QqqN8IWrWHVu2EGNape80adsdI5G22UwVn\nvqN/wVj0mTMQHAyenpCYeFuGpURSFDnGV96ZNEm0cvlvGsMUNnOWtFJPWlcUaD1dtLGZ/wSM73p7\nx5uVLOpvVtfC8To3X4Lr5LHVVHMYiYdbLgePB1K1wXqq16wDF6Nhwhiy9u5mdTacze9sULWJmj7v\n2qnVHtB3AacJ4DAUVMLMTCGXkyRzKiua6BNHyTh1Bvu5GKocOY/X+XjcEtJxzMlDpxJuWTc1uGlV\naOv7o+7SHqeWHalcvx2aoAbg4ACWfZC7AHJ+A3JJjYSdn1fm6LIEUMQx+nsZaDTrf6jGTsSmwNzZ\nv9Gn9Ws0aZBIttEVh+pr0Dp2vqnP5dMUeCVBJLgfqw3VbzMl4MRFaPwOOOggajZUumzQGY0QGQGn\nT8LhfXBgL4QeEa7Vonh4ChFs1f4Kq9CGwlj+IQ0Tn9ObAArbsAcHCwHcvl20LpJISgEpfOWdhg1F\nhYudO8WYCEAOFsawEoAlDCnVhrP7zkG7GeDjAtH/u70Q9xgL1IsQ0ZMb/aD3TXpkTx1bQQ3nUbg6\nm9lzuCWNOm3Bzd0N1q2CSU9yJjGNFUYVJruCg7uKPu8qNBsBKscHwGUq6NsBIqx+i+Ush7esI2ft\nTly3ncTpeNQNzn4lNjdHsjvVw9S9MTUeHECXoA60pioGtGBPAeO3YPwUlDTiT8D6ab5E7U8CRBDM\n4EG9cfp+MXj78PeKAziYHqVftzPkmfXguQKD24ASX4tdgQHRsMEo0kI2+N1+1O3gebD6KEwdCDMe\nus6OJhMcPyxE8OBeMY+PLb6PWi0EsO8D0GcQ84KNbFZF8RiNeJjCci2XA7deew0+/vj2rl8iyUcK\nX3kmPh6qVhXxDWlpYpwP4BBxvM8ugvFiNqVUSiWfl5aIJrMv9YE5tznuMvIi/JEJD7vBHzVuvH9R\nwo5toYbDQNzdTOw80JF2/Taj0xngi9ko77/OjlzYlj9kF9QTHpgNrjWag9scMHRDQeEg8aw8tpb0\nb5bi+cdetGnGguNrAF+NmNw14KoCgxo0Li4ofgGY1RpyNXrSbDYScnNJjo0nLym12DXmNPYj86me\nNH3sUR7waU11XMGeDtmzwfgpipLHkaVObHzbRl5OHq4qeCjAF/8/10GzluzZE8m5QyN4bPhBzBYt\neCxH7/ZgwfFtNjtms+2KSafT4OioJUOnpXWsjlS7igXVRKeH22FvBHSYCV7OcPHTm3joURS4FJMv\nhCFCDI8fLmYVmvz92Ni3IQl9uzO+/YsFX+bLFYnatIF9+27v+iWSfKTwlWeWLoXRo6FvX1i/vnD9\nzxznL07zEME8QemV3LDbwe9VUdUj5C1oW+fWj7XFKIpPO6ogPBD8bsIVdzEqDFVqR6pXySDkaBta\n9tyJTquFNyZh+/FrVmXDcTOggh5vQKfn9ajcPgTnl1FUag4Rz+Lti1C/9zOu28IKjuurgfp6qK0T\nrlftTVpImXoHLlSrzSmVjrOnI7BlCSG1G3SkPNWNmq88w5g6faiJG1gjIOM5MG8k4xIsH+/JxaNp\nqIE+blpihr7DLo/W7NgRyZPDfuaFp/djMml4cOwT7Aipjdlsw24vwc/wgSYwayhkmvB+8idcTGac\nnHR4eztRpYoLVao4U7myS/6yC5UrO+fPXQqT+4vQ6n3h5v7laXi84819PsXIyoJtG2HDati0BlKS\nCzYpLq6oevSFvg+Q3W4AHnVEdZu0NJnWICkVpPCVZ958E2bNEt2r33+/cP0r/MsZUnmXzrQsxfG9\nXWeg8yzw94bIT27ddaYo0DISjpjgQ194y7fk783MyODiscY0CIoh9HRdgtsfQq9zgpfGY134E8tz\n1Jw22dE5wcPzIahPffBYDroGxJLNt6f/Juf5T3DdHAqAQSWiLFsZoFIJPcLJdkeSFScu2tyIVVzx\n0NtoYUiihjmxYB+bAmeq1yEEHdGhoheiotWQPL4nmlFjMWz3IupEOk0CV/Li2GU46c38/rIjZ5YL\nM7WdA/xpH8j35taAwlcz1zDxyYNkZunpMuwpjoVVRaUCg0GLXq8pmHQ6NRaLHZPJSm6uhdxcK3w7\nBjoHwV9H4O1VJf6sq1RxoV49H4KDvQvmx03VeGO1M21rQ8i0Eh/q+thscHg/2zZ8Sa0NO6l1KqZw\nm0rFMUN7FqcMpv+Pj9BtzE26BiSSK5HCV54ZNkxEdS5eLCw/KD6+t5gHcaL0Ch1OWgRf/isaln4y\n4taPsyYLBsWIRPXzgSUvSaYoCut/70f/rhuJjvXBLeAoHp7VYMqz2H+Zz7IcNeEmOw4e8MhCqNFh\nOLj/hKJ2YZXlFLtefRXXL9ah2BUMKmjvAG0dwOE2i1/H2V3YZKnNDos/FjT0dYjkQf1pnO0mAKJw\nZLHFm7ysS6gUBauHM1FTR7F5bz3iVhipF5jE3wv+ILhOEnt/0bNpqgVFUWhmgCpjppD68ASio9Nw\nsz/N6CEnSMv0wS3gGBp9tRJ9ZiezbTSP0WAFVhiyCDSZSErKIT4+m4SEbOLjs4mPNxZ7nZhoxGa7\nys9co4VRL4PekV7GjbSrq6VVq2q0a1eDypVvL21mKSdZTBijo50YveE8bPwHdm0tcInaVWrUPfvC\nI0+LsUF9KddQk1QUpPCVZy4Hthw6BC1aiHXHSWQa2wnCk0/pVWrnstlFpZb4DDj4DrSsdWvHURTo\ncAFCcuF/lWGKd8nfu+Hvj+jbdip5Zg2Jto3UrN0D5sxAmTGNNSYNh3JsOLjDE8uhSpuXwXU2Rqws\nWzKd9BfmkpEiksObG6CX05WFr5fmNeSEUgXnoDr4t29EUOeGBDeqhpu7gzBvszJFkEZ8LESdhyMH\nUA7vR5WeVnCMLEXPn3n1+TavFbXVaTzvsJ8OOhHyf8LixF9qD5R0EeiR0a8ZLv97jwm+3anmDaqM\nMZC3hoitOn5/UsFqsdLMAIO/+QbVU8+yadNJnHP70aF1DCmZTfGuux9UJbv5v5YAs1Ogs5Oo53kj\na91msxMTk0l4eDKnTyfnz1MID08mrlZXqNcKQnfDwc0F7wkI8KBduxq0b1+Ddu1q0LRplau6S6/F\n5e9uAB58Tu/8DzSLvbM2cnHeUoY4rESn5I8L+vjCw4/Bo09DcOlWJZLc90jhK6/YbCKoxWwWwyUu\n+Q/b6zjHNxymJ7V4kdaldr7LgQ21fSFi1q27OS+P7Xlr4EKQKPJcEsJPnsLb3gpf7xwOR0ylRecZ\nsHIZPD2CEJOIXtQY4LGl4N/zQ3B+k7RNf3HqzcnsPHoJkwLuahjiIhraXua9nK58bWpNzeZBjB/f\ngpEjG+LpWTyD3maxYExMJDs+HlNaGhqDAZNNw95DKWw7nEPMjqO0ST7AcMNJWmrjCt632RzALFMn\nrIqa2c6baK2NRVEgrIo/K2PTsKZnYq7miXXpO7zS+Rl8FT1kPgc584kK0bBwJFgtNto4QP8Vq6Df\nA8z/di39Wo3Gr3omKaZn8Q74pkSfX4YNakeIIuC3EkFblA1HzfSbp8fLYGac2w4OHLjE/v2XMBqL\npzAYDBpatqxG+/Y16NChJj17Bly3zVMeVkbzNzYUFvEgLvndfyMjoXZtCPZJ5tT0hagW/yiq8Fym\nVTsYMxaGjpKDgJKSIIWvvHLunOi9V6MGxBQZEvmBo6ziLI/TmOHUK7XzfbwW3lgOE7rBt4/f+nEG\nRsPabPjAF6aVcGzPbldYv7QjA7rv5dS5xtTveAwizkDPFsRk5PBzthq73c7wb6HhyDdhTxvyZr9L\n+MHjrMwWX9a6OhjqUujWHJg5hrWWunTu7Md773Wje/daqPLVPO38eSLWr+fC1q3EHjpEemTkta8N\nFSl4k6arimNwc9p0bcODpiNU2rgUVY4Ibtnp1JSnL3WmuTaeuZ5bqWZNIVNnYIlLVeIjLqCoVSR9\nPo5Jz39EPcULsl4G42ec36Fj8SM2bDY7A70MtNpzGKVufd6fNou3JkxDp7NjdvkHvevAEn2OHyfD\nG4nQxgFCAm794cVuhzpvwIVk2P46dAkGq9VOWFgiISEXCQm5REjIRcLDk4u9T6tV06mTHwMGBDJg\nQBANGvgWfOaXuZx/+iFdaUIlQHgJvLxEk9qLF6F6NQWOHICFP8JfS0TJNRBPgg+OEK7Qth1vP39D\ncr8iha+8crkjQ8+esLnQ28R0dnKQeN6kA+2pXmrnG/gZrD0Oi56BMe1u7RiXLOB3VqQKxNYFnxIG\nk/zz13cMav8suSYtVs9juDrWgf4dyDt6mK/NjmQac2n3DPQdPgg+joejBzlggrX52QkdHaCnk7gP\nfm9pzYuZvfGp6cO8ef158MFgVCoVZqOR4wsXcuTHH4k9cKDY+RWVmmzFCSPO5OKIBht6zBgw46HK\nQKXYi+1fqXFjGg8bSkutDccf5kF2FjaNli/ozvtJLfjUeSNjDUewK/Bv1UD2hEUAkPj+KP7v7c9p\nhC9kTIDc7zn6hzMrJxtRA48HV8c/JJQsjRPf/G84rz37D2mZlfAMOgfqG5twRjvUPivKmf3rDz1u\no3ffa3/A7PXXT2tJS8tl375L7N0bw7ZtUezeHV1s3NDPz71ABHv0CMDZWc/XHGI95xlLU4ZQt2Df\nHj1EZaI1a2BA0XRGoxH++VOI4N4dhesbNIaX3oLBw0Fziy0+JPcrUvjKK3PmwJQpMHEifPVV4foJ\nrCOObL6kT0HB39vFZgevSZCZK5LWa3rd2nFmJMG0JBjuCstqluw9KclGLhyqT8smMYReeI7G7b+E\nGW/B3Jn8o3LlUHIW1RrA2CZeaDaJPLpjefB3fv3o3k7QwREsai1PZTzAInNTnn66OXPm9MXNzYA5\nO5t9X3zBntmzMaWJsTqtkzMxDvU5kFqVi9QgGR/sXP3mqcVCNV0q7WvnUU97Hm3kQWw54uQ6Jyea\njRxJB8WIxz/LQFGI8q1P9zO9aaGNY4HHWlxtRg5XqsXq09Fgt5M8eRDj5vxAU7whbTDkrWPD226E\n/JiJkwrGD+iKx+qthOyLQp/ZnhaN40nOHY9P7fkl+jw/TIK3k6CfM6y7jeLilyN861SCsx+VzLhK\nTzexceM51q49y7p1ESQmFuZNGgwaunWrRfM3qxHWNYWu+DGlSHPaiRPhm2/gs8/gxRevcYJzZ2Hx\nT7DkZ0jML/5apy5MfhOGPyI72kouI4WvvDJhAsyfD59/Di+8INZZsPMwf6GgsIxh6K9xs75ZjkZD\n8/eglo9IY7gV7AoERcB5C6z3g74lHGP67fv3eGzQ+6Smu+NZ9yKqiGjo1oyoXAs/Z4gCIBM8yXeK\nwXkzLMoCO9C7hjcdclPI1jjRN3UUh7W1mT9/EI891hSAk8uXs37yZLIuiS4Wav+GLIsK5hT1sRaJ\nhtWprQR7pzCkpwfuTjYcNBayzAbOxGo5ek7F0fNqLv+WNFjpWCWRnq5HUc7uB0Dr4EDHMaPouG8T\nuvhLWB2cedQ0kiNpTmzyWoKfkkKYe2WWx6SAxUri1GG8OON76tr1kNIVu+kwi0Z6cn5vGn5aeHK+\nCHaZ+f5nvDb2ZdRqUPnsRWUoFIprkWIVVneOAifrQP1rt+O7LjY7VJkMydkQ9gE0uEnngt2ucPhw\nHGvWnGHt2ggOHLiEooBHawc6768NUQpjjzRhwIAg9HoNc+fCyy9f+aB3VfLyYOkvMG8WROW7qWv6\nw6TXYcxTopScpCIjha+80q2bqF+4fr1IYAe4SBYTWU8lnPiBko37lIR5m+DFJfB4B/hl3K0dY2+O\niOasqYXIINCUwEJITMgm6VQgDYMTuJD2IbXqT4UHu6Ps3s73eQbijHl0cYTuTmL/dBt8lwkmO7Rr\n0Yi+USfI0jjTLeURLrjXYfXq0XToUBNTRgZrJ04kdPFiACy+gSxO6kAkAYAKrdpGN78LPNslhoEN\nYjFkn0dlt17zOu1OlUjQNyYkIYCZq6pw8Kzw4dbQp/BE7VB04dsA8PDzY2iDWvgd2IGi0TDTcwxf\nnKnEBq+lNOUSZ9wrsSQqGWx2kuY/x3vjP8HHlgpJTchJSePrjg4YM0z089TT9tgZ0lwqsfCbAUx6\nahspmfXwrhsmGtnegGdi4ft0eNUbPql84//DtXh0PiwKgc9Hwwu9b/04AImJRtatO8viv09gWGHA\nlmtnrXM43l6OjBrViNq12zBlig+9esGmTSU8qNUqxgDnzoSzIpeSylVh4hR4YkJhRJikoiGFr7xS\nrx6cPg1hYdAgP5p7H7HMYDfNqcz7lF5F30fmi44M3z0Oz3S7tWNMTYCPUuAFL/i8hDn133/5MeMf\neoOUdA+86yWIO96YQZzIgz+zwUUFkzxFw1ebAl/ZHEjLMBHQKJjHYk9j0ejpmvYYZ9zqsnXrEzRp\nUpmUM2dYMngwKadPg96BNeYeHKQVCmoqOWczuXUIr3QJRWfNKLgOu6IiIjWQmKyaGM3OmGwOuOkz\nqeycgL97FF6OacWuO9WtFT+GdeCNhR7YFTX1HC/xiNdWbJciUGk09OjZhY4Ht6JSwY9VhzP5RBBb\nvRbSShXDIa/q/HP2EopGjXHNh3zQ91UccldC+nDC12v5faywRZ/t2xGvdTtZsmQ/nYN7U6NaFibH\nxTh4jL7h53r5IaSyBmLqgu4WY0AW7ISxC2BwM1j5wq0d42o8YltJlsZMdK9Ujv2b77LEF5iIr28O\nBw6Y8fe/ifprdjv88xfMnQGhR8U6L2+YMBnGPQ/ut1nLTVLekMJXXqlaVdTqvHgRque7mVZwmgUc\nZyCBTKB5qZ3rcpmqXW9Cx6BbO0bjc3AiDzb5Qa8SPGjn5FjYsbIJ/bqFczHjVWrUnQX+Lig5uXyd\nAck2GOQMLR1AUan4plkDkjaH4VjFl0nWFBwVO8OzHma9rhk7djxFixZVuXTgAIv69yc3JYUEKvEH\nI0jBB2ddHnMG7GZck/2obSLpPCypASvODOWfs4M4ntiEXKsaSAPyC4CiAdwAN+p4RtK++l4GB61i\nUOA/OOrEMUwudfjseB/eXFoJNXae8j9Mzag1ANRr0YyHoo+hVRR+rP04rx+szF6vXwgikU2eNdgT\ncRGrtytex5fyUrUBkD4ecn/gz3HunFibQYAWHvtjKQwZwcfvPM4bExeSkuGPd/C5/J6B10ZRoME5\n0XX+dtoWRaeA/6vg5ghpX1yz69BN8zpbOEUKHyhdUI4p/PbbMX777SxJSc8DJlSqjxk8OJgpU9rT\nqZPfFZGh10RRYNNaIYAH9op1rm7CAnz+VdHuXVIRkMJXXnFygtzc4jl8vxDKn4TzKI0YUaTC/e2g\nKOD+HGSZIOlz8LmFm+QFMwREgKsakoOFhXYjfl+0hoe7DcJi1WKoEQvPvQTLF3HWDIuzRDugFzxA\n7e7Oz9PGEzVhLiqrjcfrVCYgPYHZuR14PbcPq1aNZtCgusQePMiCbt2xGrM5QxDLGY4ZA70DIlgz\nbhs6o0gy//v0g8za+wb7YptSyXkX3f3X0jvwIG39E6jskIGHNh0Aq6Il3erGuXRv9kdVZ+O5LuyI\nHoJWXZMxDRfzevuPCfC4AECCSzse+KELB8470dItiqH2P7FmZ1KrQT1GxYdjUMGs6mP5+oQbB7wX\nUMmWwS+e/kSdiyKzZ2Me3riWdnhCUj1yki7yZTs9uUYzYwKrEnQyinWbzxDs2Yna/unkOf6EweOp\nG36+nyTD64kw1BX+KmGg0dWoOQUupkH4DAiueuvHKcqn7GM70bxEG7ojInAsFjvOzmCxqNHrP8Zs\nFg8XbdpUZ8qU9gwbVh+ttsQlgGDXNpjzIezMb6zrVws+nAv9H5RpEPc/1/wHl9Kzm6QssFiE6KnV\n4FwkJD0XkUBcmmXK4jOE6Hk6g/ctDolsyA/e6+NcMtEDSIz+CbUa4pJ7wCdfwPJFAISI+x1tHEAT\nVJfQDas5sXQjKquNZk3rE5CeQKiqOlNzejJtWhcGDapL9JGTfNe5J1ZjNidoyFJGYUbP5jcj2Dh6\nITrjRQ7FtaD5j4cZ9ud3+DqtZuXwFlya1I+lQz7j6Ua7aOR6Fl9dIjqVGZ3KjKM6h6r6eDpVCuPl\n1htZP2oa6a+24PsHehOWbKXut6E8veYHknO8qZwdQsgj8/hkdByHMv35xvQ4Gg9fLpwM5zc3f8wK\nvJ74G51qa3gobRh2lZrhqVHo3V1x+zeURXPfIVOtBbf/4eQNnaeIMcTNkXHYf5lPv34N+HXFEABy\nEt6F/6RXXI3H3MWPfHUWZNpu6t9ZjBb5kaGHbr6L0zXxQgSfpBZY16DTqalcWdyWdu9+nnfe6YK3\ntyP7919i5MjlBAV9weefh5CVlXfjE6hU0Lk7rPgXVm6Dhk0g+gI8PhRGDRA5opIKiRS+e5jMTDF3\ncyv+cGrMFz7nUhS+MwliHlzl1h+E94pKYXQrYd5YREQqnVrtAQvU/MYEn34AiOoj5y2gBVq09cO+\nbg+/ntuJ26b/Z++8w6Oq1rd97+kz6Z0AqRASOoTeq/SugCiICIKoKPbeOBYUj4AdFUUFKSLSMdRQ\nhFClJCRACOkhvWeSqd8fa5IAGUhA9MDvy3NdXEz27LL27Jn1rLc972nkTg7ckxqHWZIxOX8kHbsG\n8Oabffht5XE+6dwfWXkRF2jKOsahkFtJ/OgoA6TlmC0yXo18jy7L9uKi3s7hhzuwacL7jGoWh9Uq\nIyJhEK9GvsfDm35g+pavmL5lEbO2LeCxbf/lyYiFPBnxGR8cfJmj6R1RYGRi6BH2T5nDn4+EE5tj\nJmzJWZZHP4jMXM4LQUvY+/wxLpvd+KRgEgrPhqQlJrHWLRCrwchP8hVk6RrwWmk/HGUwzpa04/7G\nCr5LjgDNBFD1ptO0Mly8tGSZ4cybryKVldGp1wskpznj5pyCWV979oevUpR5mIAdpbXufl1UStcd\nT7z1c1wLd4TL8UriA/F9B9BoHHjnnX4kJz/DV18NJyTEncTEAubOjcDPbyEvv7yTtLSiul2sRx/Y\ndRzmfyZifbv+gF6tYN7LUFJy+26qHncF6onvDkahLe/C5ZoyvUqL73Y2nj1nU+AK/RtNHqJs81fX\nOoZQtm/7g/ahlzHNlSNfX12UHG2wjaWRhHbjMaJc9UhvLwOgr38DdFj5vKwTsbKGLFo0mFmzNrH8\ngem4mTLJwou13AeSxIV3DxJQsJVigyMjf93EoiPj+WLIPUROfplODdNIL/blpd3zeXLX16jcnHm5\n7+csGzmNpcNns3T4XJYMfYGvhz7H54Of4fPBc3ik7Vecy/Pixd3v89GhF8gp86Cz9wUOTp3FwkHj\neCLibR7d+g0VJhW9VZuJfmM/JTJnFuXei9zRlQsXE9nq5Isi5zJ7W0eyoLwHe8zBhBqKCW3qj0xv\nIOmF+VyUCsB5MQo19HtNPOu9mUVYVv/EsOHNWbtVdGnPSvy4Tp/zcJvbeuvfmN87/AMWn5NNqqwY\nw1XbK4mvcuGn0yl57LGOxMU9yfr1E+nZ05/Cwgo+/PBPAgMX8/jjW8jMrMPNKRQiySXqnFB9MRrh\n0w+hWxisWyVco/X4/wL1xHcH43rEV4ZIub+dFl9irvi/yU20DroSeWY4ZwCNBG3qWD5VcHkjvA2K\nfQFVVugAACAASURBVGZwrr7JaJsXq9UHg8HRi817VuN4+AJKVyc6Z1ykRKbjHX0fBgwIZsqU3zn4\n/UracQqrQs1GzQNUoObYW2fwL95Nvt6V3j/vIy7XzJFpvZjVPopyk5q39r3N9wmv8ubgL1kyaAb9\n3NbiTAZo3cA9GFz9wTUAnBuBU0MsKmd8HAqZ3GobHw94haltvmHZmUksPDIXvVHDlJZ/Evd4V05n\nOdBvxR4Kyl0IM0US/epuCiRXlpZPQKZWczwpgzMKB3zjDvFd32xmFQ3DICkYmpOMTK3Cfc0hfoj8\nEauyLahH0vpeE65eOvItcOGj95CsVjRuMzEYZHi77AJziv0P9woMs7mut5aIOstbQaXFdyJJJE/e\nDlS66su4WvuzMvdEf7UhiEwmMXp0GPv3TyMqajrjx7fAYrHy1VfHaNLkU+bN20tJydUkahde3rD4\nO9h+GNp1hIw0mDkJRve7Whu0Hv9nUU98dzAqV7zXEl/pPxDjy7O5wW41vnfcNkmFa+oW38vKKmVs\n/E7YCFatCjRitiuxwGUzKDTQdMw7XCSfsi/WANCtkQ8qCT4p6Ui+Vccff8STdCGDUcoIAOL87iW1\n3I3ne52iveF3KkwqRq/dgN6UwP4pk2nllUlcbiizty9lTv91vN52Dg7GZHBsAG6B4NEULCbIS4CC\nZChIgqI0KE4XWaA6D6xaN0wyLT4OhTzf5XMeaPkDHx95jiPpnfDV5rLvoWn4OW+n/4rd5OrdaWY5\nyJ5njpBo8iVSMxKAzUUW8swwNWE5Kldn3ivtiYscevq6AVD+xhJOkAmOryKTQ6dZIjh3OCEN9mzn\nvokDWP9HC+QyK4WXl9T6WbdWQ2MFXDaJ3oi3ggYu4O0s4sCp+bXvXxdoq4jv6trJyqzRGxlgXbo0\nZs2a8Zw5M5tRo0IpLTXy1luRhIR8xpIlxzCZ6sDO4Z0F+S38VpQ9HNwLfdvB68/WZN16/J9CPfHd\nwai0+CpdP5X4J5Jb8m3E536Luo7nbAvtVnVUCIn77Aea78oFCSTfhlXSUwlmwZoB3XQoHDuxI+Mo\nrhuOgVxGx/R4DJKST8urlUtmtr6EzliAzC+MNZeaEuKewztdRSnBw5uXkVJUxqFp02nkVMTe5N6s\nS3mMpSOm42k6DToPYdUZSiA/EXLjoaLY/oDNBijLRdLno7DosSoFUfs4FPJGj/e4XOrKLzGTUMsM\nrB77Dm19VjNs9Vb0Rg091RF8fn8suwtbkuPTGYNezya1J1JJMb91OM1H+h5cxpnuRZkoHHU4HYjj\n932rQdUVVH0Jf7ACpUrOJSNkfTIfb28HLqaPAKCicHWtn7UkwSDbgmZ/Wd2ejz0E27wBSbm3fo4r\ncb3JpzLGXBfLskULLzZsuJ+9ex+mc+dGXL5cwmOPbaF166/YsCGOWrLWBctOmQGHz8P0JwTbfr0Q\nBnWGuJibup963D2oJ747GJW/2Wu1d/9Ji8/tFonvgo34mtalbZxeT6vltlbyViAhseqtpO7+AAQP\n6IZZshK9di2S2UJQSCBOMlipb0GuVQzyzRfDaZgoSG5pSlckCZaNWI9OaeTnM5PZdKEb2x6ciZuq\nkJ2XBnDB2IdX2z2DzFIBLo3BVCGsOsPNB78k49UWwaiQHbT1iWLJXzPFeIYvINh1O1M2/QzA7Cbr\nGBCay9LMvsgcXUnMzCHaLCf0xGbGNDfzn5KeqCXoblt56N/9ngvkge4xNC7QerRY/Zzeux/y8whp\nNYHCIjXebvFgiq91vJVx18N/w5AJsPVUvF3EV8lr1zoIKmyubvVNyKz17h1AVNR01qy5jyZN3IiL\ny2HMmNX07r2MqKjU2k/g5g4ffg7bjwjdz9hoGNgRli2pj/39H0Q98d3BqJQavNbrYrGVV8qvX6Zy\n06i0+Nx0t3Z8vI34QupCfH9sxL04p+Z2nY6MNGH5Neo6llhy0azZD0A7vfD7Lq0QBfsffDCAYY0T\nMRQXc4lAkghkYvNoujdOJa24IU/tWMjXwx8gzDWFc7nNiNP3ZEaT/whzwtEHClPtE57KAYL6QsdH\noedz0G0OtLoP3JvUelstPS8xrMnvLD35CDLJyrJR75JcKGPhkbnIrCbWTdqIpFSwzdQfgO1mDQYr\nLPQ+yHcV4aRJrnQtzkamUeG84zTrz+0EzRiQ3GkzSfgXo/UWrBvXMnhIC7buDgWgOOeXWsfWxUZ8\nUX+D+AJtxJdo59HdCqy277Hsmu9xqe276HCTizBJkhg/viVnzz7Bp58OwdNTx4EDyXTrtpTZszdT\nVFSHEoh2HUT254OPQHk5PP8YTLsP8vNubjD1uKNRT3x3MCqJr/yauIzC9tiM3KYsAyDf5gK7VVdn\n/E1YfCZZdTaqpaWPKCgGzG1akXVeTE4+HSZypOAcjgfPISnkhBblkG5x5IDJnz59Anjxxe7sni+O\nO0Jn5JKZj4cJlY43982jQ4PlTG5xCL1Rw09xs3iixTxxQa07lGTWHFTIYJiyGV7LhRl7YOw3MPRj\nGPEpTPoVnouH5xLgnvfA6foV3H7O2QwK3syG86NQywxsnPgoC6Ke4HRWa5wNySydEkNUeSsMXiGU\nlJRyzKygQfQ+RoRaWFzSEa0MWjcUPsWM75aSJEVTpO2Lf2dwdFNSaIHzS9/jvNNSFG2Fdaw3LuUY\nn/MX33KGHznLKs7xO5fYQTpHyOUcgerLuMnKSTRC1vXlSG+IAE/x/+2y+KzX0ceodPHfaq9ZlUrO\nnDldiI+fwyuv9ESplPH118dp1epLIiJqt45xdITFS2HJL0LxZfM66NMWDu6r/dh63BWoJ747GJXZ\nbdcSX2U3BiN/oyL5GpTaFsMOt6jin2mbTBvVwfsaF9SDfZP84QuQbZkPhUIlpcDPCXMFuPhp0Lh6\nEhe5C8lixce/IWoZbDSEYkXGt9+OZHLPNzGkX6IIJ84RymPd42moyiA+rwkrY0axdNR8AL488Thv\n9J6PhBWUOii7ZtZ2D4ZHdsHDf0DYcFDc4ANwD4K+r8Lzl2DQB6C0X7fh55xFoOsFjmeE00CXx8KB\nU5m1TSShTPDdRjPPAtbmiDjlAYMcgxU+brsF7RI3TCoZHXJFFwn3HyM5bHiLY9pMJBmEjhNEkXgs\nmeTiTSi7GrECnooUkq1biWcTcfxGDL9wmh84xmf8ybvs5gUipJksCZvAd80eZL/0HIf4iNP8SALb\nySUOE7Wbgo1F7g1ptym5xXIdiy/Tti5p8DdKawBcXDS8//4Ajh+fSceODUlJKWLIkBU88sgG8vPr\nYPreOwkiT4rO7+mpMKYffPi2EMWux12NeuK7g3E9V6fK9tgMt9Hik1UmFNxCOMNkhUKLiNW41OEb\ndfFSAfJ7rNAbUAZBzCkACl0Fw7sGeFGBidJ9olFskG2C3G4U7sa2bb+m4JAo3j5JOyzIeW3wOQDm\nH3qZ8c0/JsBRZHB2CElDY84WFzZek9kRMgQePw5N+t/cDSvU0Odlcax3S7u7tPWOJVPvTYnBgYkt\nDuKt+4sV5ychsxpY98ZOpkYZ0HR2Q6+v4FQF+O8/Q/jwQlLHNKSxHJx91JizDWTvBp1yJEaZEy2H\niAk3wQBd93fE8/J0LqR7IcNK14qetGU6rZhCcyYQwmgC6E8DOuBGU3R4Y7YqcVYUY5FfIJUDnOM3\njvM5u3mR35nIVmbyJ+8Tw0ou8xdGrv68XG1u8KLblPBYgFhtOVO92CgqEvXkGk3NpK5bRevWPhw6\nNJ0PPxyIWi3nhx9O0rLll2zceK72gwOCYNM+eOZVEetb8I4gwNTk2zO4evxPUE98dzCu5+pU/gMW\nn9z2TTDfApcW2IbhJq8m0BshMbEA/0Y2f5bcHy4J91MhgqBc/AO5SAHaYwkABOYLE2CvMRAAvd5E\neydRv3aBEMJ8ivAtP0GZUcuvcWN5vbeQPdsSP5y+7tfJegwdAZPXg/ZvKPZ7N4eZ+8G/u923hwX/\nwaEC0cZ+2bSXcf/qMha5RPOss4QHZeH+dBAAUXIVsgoL6ucdeDtSJOm0Uwo/X9zvFbSUnkGpnoBf\nRyHplWUGx80p9PC9jx07hFarNiuHZoymOeNpxWTaMZ3OzKUXbzGQTxjOd1zO+5WZ55dxImc+nXmG\nljyAP31wIRAJBaVcJp0ozrKS/bzFeiaxnac4wVcksxedTljmhbeJ+PIRX+xKBReACxfE/02b3l4p\nTYVCxosv9uDkycfo1q0xGRkljB69igcfXEdOTi2prkolvPYe/LZTtDuKOiBcn7v+uH0DrMe/inri\nu4NxPVen8h+I8f0d4su1EZ97HfvhJiYW4OVuy2CQeUPiRQD0iIlV5+1PkrUA3V+iuWgjjCSYXcmz\n6ggJceePlf1QFWcg0zmRRiNeHS6y9tadG0c7n42EuKSRUtSYHmHXief4tIKJK6/r1rRipoBLpBFF\nCvvJJhoD18n81LrBtB3g19Xu211aRFHs4YBbSTEesXkc926HZAXHTyuYO3MIOLqRV2QgxQQ9z8az\nIrY5+ehobkv+cdlwlOOWdFAPQaGGwPaCEBO2b0eSJEoqOgJQVhh1g09coJlKRoHJnSMlLQigHy24\nny48xyA+ZRxrGMRndOE5QhiNO82QkFNIIhfZxmH+S0Ljh/jgzWfp3mc5OZzF8jcXXpVSZZWanQCx\nsbaxNvtbp74uwsI82b9/GosWDUarVfDLL2do0eILduy4WPvBvfvDvtMwaIRwzz8wQnSBr8ddh3ri\nu4NxPVdnpcVnuEMsvnKbe1RbxxV6fl4xGo0Zi1UG+Xpxg84uGIwic07l1IjkzETkJeUoHLU4yOCk\nqQFqtZyzZ5/Au0wQWrFXKyzI6eMnJq3158cwsfkqAHYlDqCLy+aaF5fJYfxyUNes1C8nn1N8z1rG\nsoOnOcj7RLGASF5lAw8Qyaukc7RmUoZKh+XBtZhcanZ7dc4pJbVY9JPy/vUy0+b9CEBXTqIwWYiR\ntQMgxqLA8eIZ2jSwsr68GT5y0Lk5o8ws5Mjp/aASMmX+/YV1kpaWAUWFOLh2FtfRna017b6Zjefj\njTXfk6HAhQD86UM7pjOAjxnLSvryAa2Zig/tkVmVNAmMZ+DANezhZTYymSMsIoPjWLj5uFcl8bld\nQXxHRDN7OnS46dPVGXK5jKef7sqZM7Pp2zeQ7OwyhgxZwfz5B2qv+/PwhOUb4KmXwGyGOdPgv+/W\nlzzcZbh9Yo/1uO2otPjKrvHE/BPJLX+H+Cp/8nX1TFVUCMvObNYhy7Mlm3h4YCgV7k+Vowc5CYLM\nXFydQa/ngsWDsDBPFAoZWTGisPhckRsquYlGZvH3vuSefD3sUQActSYkexZx59ng27bG5jQOcZAP\nbjjubKLJJhpPWtKFZ9HhhRUzyewj2mkFuvFN6PddzYxR9/wckk1+BLqk0Nwjkt2J/egfuIfHul9k\n+Z6mtGQPZ81yBltNPN8qh437mjBNc5IgBw0x+UWwZjmUF0O2O42UYnGQbgI+HsoERwXGtTKcVIWg\nGQRyR0HqahfQuAiL1KkBODWkkWNDHIyNycARq7V2V6IcNV60xIuWhHEvBeUV9P0qms7tTjCu/wmK\nSSOJ3SSxGxVONKIrfvTCm9ZI1G7+JyKedyOq0zf3i+oVunSxd8TtRZMm7uza9RDvvBPJvHn7eOWV\nXRw9ms6yZaNxcrpBkpNMBm/Oh4aN4ZWn4IM3IC0FPvpC6IHW445H/VO6g+HgIPrxlZWJFO9K6bJK\nceoS7CzdbxE6WxlCSR1Kna5F5WK3rsRXZivUsqKGfBvxuTlfNREXZ6SjBVzUKtDDJbMrwcEirTDH\n5g+7kO9IJ/9M5JZyzuY0x1VzAU9NARklDWjtl1jzwnIl9H7pqk0xrCSHGLI4XcfRQw4xbGE6LZhE\nKgcpQig3y4Jakd/ZCbcjEVft7+OQx58pYfi7pPBY+Hcsj36a/oF7eLhTAh/tGYHVxYeSwkwyVTCq\ncAO+I1SwF5oUZBEDBPy2HaTtAPja3N6XTWA+egjvcKCqifzOG45bC5QAGZoGmHxCUHqGgFcY+LYD\n3/bg4HnD42WoORXdgYsXOvBNfygmlRQOkMJ+ikjhEju4xA50eBPEPQQxEC0eds9VgoF0SlAiIwDx\nxc7IgJMnxYKvR48bDuW2QSaTeOedfnTs2JDJk39n3bpYzp7N5vffJxIWduPPgxlPQoOGMOsB+Okb\nyMyAb1eJH2097mjUE98dDEkCf3+Ii4OUlGri87QlA+TwN/SnroG3LYMuq45dXuyhrskI5eWSbX8z\n6G334KBCbiNfs8FARXYuWsDRds5MqyMNfYV7MicuDoBsvBgeImb901lt6NZoT9XrgcF7al44dIRQ\nbLEhlzjOsvIm7vBqVB6rw4uWPEAAfZHuKYCTgTWK4z0dLmMwK+kbEM3TO4TF2VxxnMjJOWSfyiHm\nDFwyQvfkDPr2B06Bn21NkJij5HLH+2igykYj7cTtByX5+UayZZ3RjX2LQ7ufY3DvOPL0M5Crh6Ci\nFJW5ALmxEMrzoTgDitKhOJ2KghR8yy9D0mVI2n/1Dbn4QcMOENgTAnpBw/ZisWBD1QLH9kycaEwL\n7qcF91NIMinsJ5lISskkhhWcZSW+dCKYITSgPdIVkZWLiJqIIFyr6lJXCS81gwZVu/n/LYwcGcqx\nY48yduxqYmKy6dz5W378cQxjx9bS6HnEOFi3Cx4cCRGbYGx/WLEJPG9R7b0e/wrqie8ORyXxJSVB\nq1ZimydiRZlTh9qrusKnkviuI1V5IyhtE2FFHd2kJrNwg0mSWbSGAVDIqojPqNdjLhLEobUId26e\nRUszR7FDyWWh7lKIC2390wFIyA+mrfdJACxWGXJ71nDriVUvrVg5yXc3HGcIo1DjTDHpJLH7uvvd\nw2JU2GKGOg/o9hTsff+qfULdEyg16FDJjUQ/2rFqex//JE4XIYhPktPdZOb93WNolRfLCNk5JKWC\n8jwjz5Y9if++Uua/uBNNAzXkG4naU8DYrcN4+clTDA54le+/duGFefdWnVunA3d38a9BA/Dzg52T\nLVgcUvks8zwDdBdwLImBjL/g8ikoTBH/YteLE6gcRMZqs6HQbChWXSgg2V3guOCPCw/SkklkcooE\nIkjncNU/Z/wIZRz+9EaGkjO2DN5muANCl/Obb8S5pky54WP5xxAS4kFU1AymT9/ImjUxjBu3hldf\n7cm8ef2Qy2+QDtGlB2z9EyYOheOHYVgPWPMHBAb/e4Ovx02hPrnlDoe/EOcg+YqyIY9/wOKrJL7M\nW7D4XG3hnMI6Ep/RKNZbMqkcTDaCksvQiTmQspwcLAaxXWFTKi6zKnF0VGExmTDp9SDJMKIkyFVY\nfAkFwfi7CBJUya/TmuaKer1cYsnDfgfuDjzJfaynHTNozgQ6M5dx/IYjjezuH8M1kmFdnwCp5k/L\nQVXzeRktCibsngFAYrmExQr58d3Yp38EmQRKhXgwOfGnWL5aWB/eLUUiic6ajIsLJKcLKza0yUU8\nPISLXCYTLvLUVDh9GrZvh6VLIem8jBQHf8Z8OBCnAbPxmv45A3/9k5dKC9nSLI6sXsuwdpgOns3A\nUArxO2Drs7CoOY5fNOFT5zn0V++9roK0hIwGtKc7LzOC72nFFLR4UkQKR1nMVmZxng0cQpSqdKEh\nAGvWiAVeQACMGmX31P8KHB1VrFp1Lx9/fA9yucT77x/g3nvXUF5eS/JOs+aw7RC0bgcJF2BoNzh5\n/N8ZdD1uGvXEd4fDHvFVWny5t9Hi+zuuzkriK6hjro1MrqG4RIVMMoLSdlCFAUebd6j08mUkk9gu\ns4oJ1oQMBwcVFcXCJJU0OkDCUSGCXgUVrgS6isQPJ62dQKVbEDhUu5+SsS8/1Y2XCGbQVW45gHg2\nU0Ka3WPEexnVG5wbiuL4G2DgL6IAP6W8KedK3qSQxpjMJvIt0MZ4hhMmkdbYyGZON9XF8M13vlis\nChq2F/dcYS2nIK2U8I6C8Du0v0hOjigAN5lEMXhiIhw/Dps3w9dfQzNbQ9mgFoIgc3Jg1y74aIGc\nEQ+H4jN0Ko3nfMekI+dY5nuZy71XQLvJoPNEUXiJOQ6f87u2L3zkB1vmQnLUdTMaNbjRnPEMYwmd\neBon/NCTwymW0pWfac95muNKXh48/7w45rXXRNnc/xKSJPHcc93ZsWMKbm4aNmw4x6hRKyktraXX\nXwNf2LgX+gyE7Cy47576Dg93KOqJ7w5HgG2iupL4vKpcnbff4rtceOP97MFBAjlQZgVDHbK6XVw0\n5OTZEgA0tsmk3IiTrRqgMCUFq1rMfmaZYFWtZESSwGhLcbXaavDUcmEZ6o1aXNRiIaBQ2BmE59WF\nYYl2XJcehNGYmlkVqRzkND8AEh14nC48V2OfWNZU/5EZDee32rlzSC70A8BkUWAwKwnUnsNZ7UwW\nQgEmywQD/E4RaxbE2EQl7kmWdonBwyRkisZVOSgJRkhY9xvWixnEbYOUXenErFlD9KpVXNiymfxT\nB9CWxNDUJ41B/cqYOdNKR5vQzLwPobhYfK82bIC33oIRI8DDA9LTRbxt2hwffIc8QMirPzM36zKr\ng6OYX/IS6VIgFKfDwcWwpBssbgl/LoIy+0LOMpQEMoDBfEYPXqOCRmiooBWH2W59gje+20N6uoUu\nXeCRR+ye4n+Cfv2CiIx8GG9vB3bsSGDIkBUUFtbS0NDJGVZugSGjoCAfxg+uV3m5A1Ef47vDYc/i\nc0eDDKF8YcRSVdD+d1DZcuZi9s0fK0ngKYdMs9Ds9Ktlxe7ioiYz24Eg/wLQ2azWYj0etpBI7rlz\nKNThABhsPZmcJANFRRUoK2s8jMKqU0iC+CrMapRy4Y7SKu1MTlcISxspw0zNfdpSc9YtJ5+jfApA\nax4iGGHJxbKGIqq7nyeyi/aWmSj2fgK7377uvRvMIk7Z0iuGmOyWtG9wkuYeX1CYUwEGyDJDs5JL\nZFrVlFllFJUKovdavJUfTvalMDadkixxrgIL/PzQVABWLwXIBSbWvKgNamdnAgOacl/jEDJbhHC6\nTQjuISEM7teKUaNESYHFIlyO+/ZBZKRwkcbHw+JP5Sxu1AUGdeHzkg9YN/woHVWrkJ35BbJjYesz\nsP1laHkfdJ8LjTvWuL6EDAvNWUs/GpPOYPMF9PIU+r64kCbD1jPAYxpyebvrjv9/gTZtfNi/fxoD\nB/7EgQPJDBjwE3/8MRlPzxtkbqpUIrtz/GCI2g/3DYItB0QNYD3uCNQT3x0Oe8QnR4YbWnLRk4ce\nH26xpcIVaCFCLZxNp041XtciUAWZekgy1k58Xl46EpLd6NohDdxsJmZOHlo3cPCUKM0pQ10iLMFS\nm3iok1RBYWEFKkdbEolBEKbepAQl6JRlyCSxr2RP9V9dXStWRpbdcblTUy4kmhWYKKMBHQllXNX2\nTsxl1xWWn9xgwrB2GIqYSPHhdXkczq4XltGVw1AIwm7peZpzeaG0b3CS1r5/cSzdhY7AeYscRW4J\n0/iJT/Ku1kZJ23tNFiYQGBpCrswZX9fjSFaQa3ojKZQYysvRFxdTXlJCeUkp+oICKoqKUJ05Qasz\nJyjZBusrTyJJeIaF0bBjR/x79iSwb19mzQrhscckTCZRVL51K3z/J2QAaeckunzfmUaNOjP94Q95\nfMAmfJK/hfgIOLVC/AvuB71eFF0vbF8mMxY+5zgWJCpO9GLGsDk0HxLJA++twK/VJc7zJnp6047p\naHCz+4z+F2jWzIP9+6cxYMBPHD+eQd++y9ixYwq+vjdoH6HVwoqNMLI3nD0Dk4aL7E/HmsIJ9fj3\nUU98dzgaNxaNaFNTRZ+yyh5lPjiQi55Uim8L8Xk5iZZEeaWQUQANb3LeCVSKJqeJBuhZSxmTv78L\n8Ym2TBbXTJGJkZsLRjXeYRVcOgDaFOE2KzEKK85FqqCoqAK5SoVcpcJsMCDHRGGFFpTgqi6goFyH\nvxPIrHYyOi3VFGK8Tmz02riekTKSiQSgHY8gXVGp6E5I1WuZ0UyPn4+iS8gRReMTVkLoUCz6QmSn\nV1x1TrNFWLAtvQ6xN3kMAOEN8yk9LqzH9Aoz6YA/iZgRP9DKtIrBsyYQVngczeWLfBgp3MtTc2zi\nllVcbj92afbWUeoeSIzKmZOSDp1Wi1xvIic7l6Lk8+TExpITG8vpn0XjXJx8sQQNgmbDUbcYhIeH\nC226i1o7NxXkA2lpMO89JfPeG4eHxzj+82wiEwK+wO3CEmQJeyBhD3rXNlwKfIsTFWOIDD5DVvcc\nytM1/DSkJYZsOWGXBjDQ1JMKNhLLalLYx2WO05qpdmOt/ysEBLjaLL+fiYnJpnfvZezcOYWAgBto\nvbq4wpoIGNYdThyBR+6D5RuFRViP/ynujG9VPa4LlQpathQuqFOnqrcHI35wCdyeHjGSBM1t3sDY\njBvvaw8BNisvqQ419X5+Lpy/aPOtWs8J4V+rFXJ8qjxk6mRRxFZYLiykQFkBqaki88bB2xsAZ4rI\nLROxPg9tLrllYgVul/gqqus0JDul9vYm2BxiMWPAgzCcaFzj/SAGgdVKp3Un8UnIodxRA49FQehQ\nysrg5z9a1DhGLhOWrL9LDsk5HuyOhNyISEKvyDBtqwYnz7Y85wYv2NYHCqDr2jW47riI2lZrb0Z0\n08j1d4NQIBwyO3mS0d6Hy629yArzJN/fBaNGgbysDOfURLolnGb2xSimRu9h8sX9zC06yxxXNZ0c\nWiNT3kO21ItSPKE4A9npH5GtnUD5PE9OPDuEzLU/oKnIJz+FGsjNhcdfC8Rz8gLc5qfw4u4PSS/2\nRVtwmhYn76VtfBt8vddiNcOJSV3p3VbDtm3CnRocoKY54xnM5zQgHCOlnOBL9vAyxaTXvNj/CL6+\nTuzd+zDh4b7Ex+fRq9cPpKTUEhRv4Au/bhd1fbsjhMTZdTJi6/Hvod7iuwvQoYNIST9+HLrbGgFU\nE1/BbbtO84bwZ7xwdw6oOWffEJUNaONqSXwDaNLEjZMxtmZrxhPQpBlkpEGKF34dhU9Xlm6zr30R\nJQAAIABJREFU+ApKsDpBqDyH788JMnRv2pSi1FTcySMmzYHR3tDE7SIZJYJMTfaySwurfcVVNXdX\nwGpH3qwUUS/oQqDd+/CiJeZT3+N/Oh2jWsHeaV0Y7BVGeTmMHg0NMxsxteHVx1isElYrZMZn4xv3\nGvstAGYu40MDMpEDYxwB6ymQVSdMmoCjU9rQKeg0kh8oJ4DRBKaZ4PFU9eLHBzvt0a0IyZZsqMhV\nUpTmTPlFNYoLZpzOF+OWXcowzRmGac4AYJQpiHYNJ1rmTmpxHhUZp2hqjaDp+QjM8bPIazSSom4z\nyHYeRHmFnIwMOHdFh5+iChcWRL3I4qNP8eb0Rcxu/BGty2No/UMMSZ49cV7SHLewmgXeDjSgJ2+R\nyp+c5FtyiWMHc2nPTAIZYHfB8m/D01PH7t0PMXToCg4dSmXEiJXs3z8NZ+cbSJw1CYFV22B0X/jt\nF0GC7y68ve0n6nFTqLf47gJUCvYev6IsKNgWA7mdxFcZ5zudevPHtrH97k/VkvQGEBrqyfkEL0rL\nlGBOhGBbIPOSA/6dQKaQUX42HotGicVoIs8CoYo8kpIKKCsz4ta0KQCeUh6H4oWbN9TjHHG5Ikan\nkdsZRP6lqpc66qaqUak3abmONJzGpKN1hJBPOzmsJUUNnLFgZO5c2LkTyhQ16/4sxnJ+WikjIsKE\nwlJKcCAMu78x3ppQ27Wurg6QpGrPWOvHTsN4oCsoKov96yI4IAFOQDCoOxnxGpOL33Pp+H6diePu\nMtgLxV/pSJ3uS3ZrD+RWM+3zTjAlZyevVJzg+eY+jBg6gHyfzkhWM14p62hyaBiDYgKZd8/7nPgz\nF6sVDAb4abWJzg/nEPJqLN3+2svhJU2Y9dJifrvnIcwaFwJyDuC2oh1se/4qK7x6qBJ+9GQwX+BH\nL8yUc4xPiWLB9Ttk/MtwcdGwefMDhIZ6cPp0JhMm/IrRWEstT7sO8PN68TCXLIZPP/x3BlsPu6gn\nvrsA9ojPD2cUSGRQQtlt0uzsYsuqPHidbj43QmuN+DLFVtSu4KLRKAgK8uLEGZtvtZktUzPOiNoJ\nArp7gcWCrFzcV7oJmslzkawWzp/PxcPWs8ZPIyc2R9R7tPKKJi5XZASarXYEkguSoVRYQ3LUyKgZ\nZ9FzdXd2Z5t7Mw/7H4g2Zh+6onIKfJxIDBdlCn9EWFiyRMxv7y64upNqQSFsWpNHYqIFnRZiPN5g\nck8IP5jBOw77kCOMMzOQ87A7PCGOqyS+8pLq+6qsdbu2t+4twR2cepbReG4GXr/kIttvpeQzLUmT\nG1PUwAnHzHQ6HNnFItMR7gvzI2xED5RBjShKTWX3a6+xwK8Rr80eyeyUb/l1wu/4/LCHsPeicW5d\nREWWmtPvh/Ofl5ZyqGuCEAm3WuDAf2FhGESvtTskFY504Xk6MRcFWlI5wHaeIpc6NI/9F+DurmXr\n1gfx8tIREXGRJ5/cWntnh94D4KvlYjXz7quwb9e/M9h61EA98d0FaNtWJLicPVvdqUGJDH+buG8i\nt1B8ZwcdAkCtEK7OvJtcXOtkEKISLrmYOghdh4f7sveQrUixuc1VFy1qKUIGXL16TtM5o8VIG3km\nR46k0bir6H3npU8kIb87eskFX8fLZJWKhBNPbQ4VVjsJP0kHql4GMbDG24lcPRG5E4oSR4pIIp+a\n/doU54Qo9KWO/lUdeN94Q7z3n/9AaGj1z6u0FH7+BfILwMNTwcxpMEYVj7QN5KVmLrQNxuIkGM5g\nBU9DHuVGQXSyyu6+5urPpbJH444DOj4ZH8LySfB1f3ivhSPvBOp4x1/FO4Fa5jVx4D+hTnzQyYOF\nw71Z9ow7OxcqObsFci6AxZ4giQs49tUT8FIqzhHFlC7XkfRwY0o8dLTOSmLioT95rjyTliNbY+gR\nCvoKVF9vpnHobAJnfE1QQhnDaMLLlu48FDmCimUtOXVEQa9B7oxf/iWZ9x6Fxp1FxuvK8bB6kt0a\nQAmJQPpzD4twpxl6cojkVZJsCUf/awQHu7Fx4yQ0GgXffHOCBQsO1n7Q6PHwwlvCrJ89BXJuoX6o\nHn8b9cR3F0CrhRYt/vkEF7USOomm4ByqQ1/Oa9HBJiwcVQdBma5dG7Fzv83EDI4W7VzOJ0CxmhbD\nro5TJdmEkvsoE4mMTKRRp06gUOFNNGq8iCkRhOfvnEZykQ8umiIKyl1qXjS+untBQzrXeDua5VfF\n+uQoCaQfALHU7OQuyxIZlbl+1SmwJ46q8fGBp56iKoZjtcL6TZCXDz4+MGS0Ny6n4AHDSpCgqK8j\nx1e1QaOoDpBmpvmQW2CzhG2WxIkoH7a8rearfmCwLS7OXiij+M8LXNwLmXFgKigBQxmYDGDQY9WX\nYikuxpCWS9FfWSStzuPPBUZ+fRS+6APvBkssHKpjwzw15yJAf63nXAYObcsIeC4Vxx1lZH/uTnLf\nxqgNJu47eIb34s4xeUgXmgztj8xixWPpbjxDZxDw9I+0y9fw4AQZsbEwb574Hq9dC836duA7xSGs\nI78EpQ5Or4JPW8F5+x3NHfGlH/MJZggWjBzhE87wo9247L+Nrl0b8/PPYwF46aWdrFlTB6WWZ1+D\nrj1FN4enp9f38vsfoJ747hLcKM4Xf5uID6CnLUv/wIWbP7a3zcjaWwf3W7dufhw67keZXgWKGGjf\nVjD7mVBcGkFg75ZV+2bmFGCwQh9lEpGRicjVarzadEDCij+pbI4WwclBwdvZeUmkhVrsNRaM/hXM\nwsTxoWZPPoDz1dVtAIRyL3JUpBFFHld/KFKxSH7ROwvGtxhEoHPCBFt3gXLBItFnIT5BTPz3jlPi\nlVACcWBQKWEoqDoZud+0vqriQgb4OGbSqEEJFisU2UJh+5/O5Ng3FWRd4e1roYIhOpjkBDPdYU4A\nPN8GXuoEL4TDs23hqVCY7gUTnWCYA3TXQIgSXGRgNVkpOlXGya8rWDUNPmoBC7q5snuhkrzqsKiA\nErz65OH/WSr6rWoSpgZQoVXR5OhhJh/ZzeODutN2xHAsZjNHPv2Uz5o2JWrRItRKE2+8IRJgRo4U\nUmqPzpRxz+uzSb/3lBDCLs6AH4fCtheqntGVkKGgA4/TnseQkBHHbxzkfUx2hAj+bdx3Xws++kh4\nEB566HcOHrST9nolFAr4eoUod4jYBEu/+BdGWY8rUU98dwk62tL8Dx+u3tYCoQRxmqyaXcFvET1E\n3sitEZ+tfm9fWe2L2PbtG6DROLBtdxOxobMtb/+IyLhse7931b5Wo5lLRuijSiYro5C4uBxajhYK\nKmFsZcWJbgCMaLqZLfGiO4FCZseHV5olRJcRiSttmFZjl9Msq8rmBNDiTlNGAnCWVVXb9eRiloub\nlNmK7JP+FCm3Nk8slOZgtcI+m4d1YD9QlypxPi3KMpZ/NAH8QCOvIC9fg7FCWLYyCcxWGb9vbs+S\na7zYndQwxRnUNu/nMB/osgqa/Qm+Z8BwxIeYPeEci+jKkZ09ObWnK5cPdkUW25HG0UG02qPmnuXw\nwPswdza83Asmu0IvLfgrbNJzSQXsX2Dksx7wQXtXdn2iouzq8CdavwqCn09CEWEk4ckA9I5qPI8e\nYMyhLcwaN4Sgnj0pLygg4pln+K5LFzJOnMDPT8ij/fKLkEbbtQta9WnKBp99MHg+yORw4GP44R6q\n5GmuQVOG0Yu3UeJAOkfYx1sYKbW777+J55/vzqxZHaioMDN+/K/k5dXi9mjsDwu/Fa/feh5i6t4P\nsh5/H/XEd5egb1/x/44d1WVAgbjgjIoc9KTfpoy3ns1EN/ZDFyH/JueTMBV4yUWT1PO1lDUolXL6\n9w/it622fmddbGSzV9RttRp2Aa1ntcRTnNoJd8rorUjit99iaT5OqKiEsoGE/N6kW4Jw1RRisbpS\nZNDhpcsht8KbGji0uOplU4bbHdtWZlJ+RbZsKGOQoSCDY5TZygVO8i3lDsLC0xYJq+PcgTYABNnc\nxRSlkp4BObng6ABtW4PiiEUk5bcBj5bCUrcoZTzy3GgkW/2hBCz5PYzTR/8i64pw5xw/GDYHgn8H\nyZZFK90/hJ2emyl214EEn7g+yUaH4RxRd+SiqjX5yvbEqztxXNuP3Z5TeTLwc8Z0/5W/nlxLwYeL\nMG16FJ/oVvRdKzHtTXipP0xwhtYqQa6GzAIOfGxgQTs53z7sTsrRqxc1cjcrwbOSUG41ET8jCINa\nQYPIbTyY9Bf3P/owLv7+ZJw4wbedOrHz5ZexGA1MmiTi1cOHQ34+jBkrZ+66lzA+tAccfeBSJHwR\nDqlH7T4fH9oxgAVo8SSXWPbyBhX8jUaStwGSJPH558Po3t2P9PRiHn98S+3JLqPugymPQkUFPHp/\ndQC/Hv846onvLkGLFtCoEWRmipo+ABkSbRHKzqfIvC3XcdVBr2ZgtsAfZ27uWEmCATZ359Y68PCg\nQcFs3tEMg1EJrc6AizPEJ0KKJwpVKh1njKnaN67chNUKE9UxrF4dg1fLljj4h+BADgHk8cupMAAm\ntVzJL9HCGrTr7rwQAWknAJCjoisv2h3bJh4iExFQVeOCF60BK/nEc4HNpHKQYm9hnTrbmhie3Sni\nhurKkq6ssyTZygebhYC8EHTZ5aAEfTc1g0pEMk16gT9vzInEbBCf4R+lkF1yFglhiVX+SDUbgWeB\n5mA0CpPvgLuV3Fbf4yQTk+ZHuW/wbt5/eLbwc6YXfcXI4q8YWfQZIwsXMKrwbZaaHmU942mdP5Gi\nsgWctkQT6dKL3QO+4dILP2BYN5vAwz6MWwzPj4D7nYVbFLOZ9O15fD8aPuruQXzk1QSocDPT9OlL\nGDeouDg4EHlZKaHrljE7wI2uU0WDvT8//JCl3bqRExeHtzds2gT//a/w/C1eDANn9CJv0gkI6AFF\nafBdXzhnX+zbicb04wMcaEA+8UTyGuW30eV/K1AoZPz00xgcHVWsXh3DypXRtR/07kIICYPzsfDG\ns//8IOsB1BPfXQNJgsGDxeuIiOrtlcR38jr6k7eCUTad4E2nbryfPYy0yRduqkN92ahRoRSXaPh9\nW3NQAn1tWZ6Rwv3Z+RElMlsr7vISPUkmuE8dS2x0BmfPZtNh6iQAwlnBwv3DsCBnbLPfWX9eCDfr\nFGWUmO1or+14tWrW9qMn/vS1O759vMGvjGIvb5DJXwAcZTEnER1TC20tLVwzighkACrEzRdUGouX\nz5BpeywNfYHKGvpgqHBTo7WIDBWr0kRoY7FwsVrhRIVQlpjkBP20VKVwLJdtxOr4JqYKMJutSMA9\n8ggmlqyrGnOZzJtcVSdyNKPJ0U4mRzeTHN0jZGsnkaoaxjHCycAXORb8TWl0Kz/EiOKvGJj3KD4F\nj3PacpKdAY8TPW0FFcvnELDPnQdeg6fCoIcGtBKUJ+Wy4gFY0MuThOpEWQAcGpXR5ONEkr5tTG5j\nN9RnTzEoYhXTnpqFa1AQGSdOsCQ8nDO//IIkwbPPwoED0LChEMbuNKAhsd13Q/uHRK3G8lFw/Ae7\nz8cBH/rxAU74UUQSe3kdA7fQSfk2okkTdxYtEj/Uxx/fQnJyLRnXDg5C0Fqlgh+XwOZ1N96/HrcF\n9cR3F8Ee8bVDuPPOkIX5NmW5jbTlfWw9LdRBbgZDHUWcaH9Z7f35GjVyplu3xny7wnbBgTattM0i\noOTovJ5Ojz9Wtf9xpRMeUhlDlPH88MNJwh+dAZKMFvxGYUknDuW3Ryk30bXRCSKT2uOgKqNYb0dR\n40IExG6s+rMDs3HC77rjzKJ6BXBlPCm/ocgcdc0oJIzx+NjaKl2+jCjOzjhBqW13F2eoatnXCFS6\nCiq90w0CM2pkU97nJMpDKj3GZgc17m1CSDRswGA7Ti1BqZOWfebq3n86n0w8PI7g6bYeT9ef8XRZ\ngqfLUrxcfyFbt4VO+ccZXJaO1KAEPI9T5vI1WdqJFMn90Fn1dCs/xMiCtwjNm8pJ80lWNfwPUwO+\nJ2F1FwZ+A3O7wgCdIEB9Qg4/T4BFI3woukZZLKBrKo5rS4iZHIZkNOL381fMahtMm/HjMen1rHvw\nQSKefRaLyUSXLkIIOzwcEhKgW08VB32XQZ9Xhcbqukdg/8d2n40WD/rxPs74U0QKf/IeZupQT/MP\n4pFH2jNqVCiFhRU8/PB6LJZaXJ6t2sLbC8Tr5x+DottTnlSP66Oe+O4iDBwo9JwPHBDNRgG8ccAX\nR0ox3rbszqY+EOYLhfqbT3JxkwuRahOwuQ6L7/HjW7D7QBAZ2d7QPQdcHOBsPFz0B0sGvZ7uUrVv\ndG4xegs8qTnC0qV/oXD3IWjICOQY6cAOXtncE4CnOy5m0VHR2dRVXUC5xY5q9qYnqMzYUKClP/PR\nYScmeAMU2IjPPaMUJ4sPfjbuTEkBEveDxYzRpi2gVEKVMeIOOrcKDLkimUXpbibqQOuq83ZUQ6gK\nCK8WA7A4aUkt+4wgwykqbGSqluCs73vER7wAQKn+xmLlubaFiIcckHSgDEenm4W36yqcvZPBK4Fi\np/nkqDoix0yP8v08bHqC94a9xgmf3iRM/APzpqH0XAZP94S+WlABhScy+aSLij8+cblSCxy1g5GW\nL8VxbklTit0d0ezfxei4Qwx77RVkCgVRCxfyy4gRGEpKaNRIWHxjx0JhIQwaLLFb8R6M/Fyc7I8X\n4OCndu9LjQu9eAstHuRwlsP8Fyu1rLr+QUiSxLffjsTb24E9exJZtCiq9oMenQNdeoi6vnpVl38c\n9cR3F8HdHTp1AqNRiPtWoq1twj55m+J8AKNt7s7V9vMLbogJNsGSX+qQbzBpUmtkMjkfftZBzKLD\nbQf/KswnB6cNtP/gzar9T1qUDFFdxLsoleXLT9Pz2TkAdGURh1PGE1PWAjdtAa28Etid2AGtspzi\ncjvEV5QG62ZUuTxVODGIT/GlZh+568GgU1Hh6obMaIDsOAIDxfbERKoUSSoVVgxGqMq81wCeUHxZ\nuEYjo9uw+efwqvP21gHdobBIW2XxKR0l5hZ+Kc51hcXX2bE5JtsGk0lzw/FeRXz2oAjCyfElPD2O\nIvO6RLL8BTKN3jQ2Z/CoZQGOBZPZrgkjafRWTL/1oc8ieCJYJDVJZgOHPy7kvS4+5Fy6WoMytHs8\nZb9pSegYgCw9lY4/LWbqu2+j8/TkYkQEP/brR2lWFg4OsGYNTJ0qCv6HDYNt+U/A6CXiRFuehiNL\n7A5dhxe9eAclDqQRxV98e8PP4p+Gt7cD330nsoFfeWUXMTG1hCIkCeb9V7z+emF989p/GPXEd5dh\niM2rdaW7Mxwh+BxF2m27zmRRIcDqI1B+k4poE5xFjGp7iegofiM0aODIsGEhLF3ZjnKDI0yw+QPX\nRUMRUL6OYU9Vlx1sLzRiscIc7WEWLTqMf99+eIV3Q0cundjPk7+LeqoXu37E+wffwWSR467Jo8Bg\nJ9YXux52z6v6U4mOHrxBJ56u03224H5UDWwd27Njq4gvPbEMYn4DqhNdKsrBZL3i5+YlFFsAnvn4\ndRRxx6recpIBo6E4yYkym8XX0KXaF1opcamSAAdHTCZBfEbz1cRXaoEjelhRCIty4SXb3Lu+GDYW\nw7kKMF/PC6cI4N2tH9FoXhpfnP6RQkUTvM05jC5aiLVwFhHOEyh96FfU272Z+CRMdAZnGVjSM/m0\nt5YDK69uuurjmY3vN5n8NaENUlkZfh+/wSPPP4VrUBDpx47xQ+/eFGdkoFDA99/D7Nki2XHcODhg\nmAkjPhMn2vAYnFljZ8Dggj89eB0ZSi6ylUR2X+fm/h2MHBnKjBntMRjMPPfc9toP6NAFxt4vZHne\nf/2fH+D/x6gnvrsMlXG+TZuqs+rCaYAWBRcpuG1lDa0aQ3gAFJTBxr9u7lhPBQxxFJqTq+oQrpgx\nI5ySUjXfr+oGTYBu7qDXw5bWgAGF6Wvab/2pav89enhU8xdF5xNYtSqGQe8Ji7AHC4hKeoCD+e1x\nVhfzYMu1fHZsEnKZBbNJwmi1YxHtfhuOflf1p5DJGsBYfqUDT+JD+6t21+JJE4YyhC9pyQNIGls/\nNmNZFfGFS8ugQpi7lQ3jS8ugwiokySwWwBWcTUVYkRGX2xFvhOKHk81YSjE442ooodRGfE4eVgo1\nw7mgan+VqxMHR8xG8czNFg0GK/xcAAOTwP0cdLkEk9PgmczqllFmYHQKhF0ERSx0vwTvZMPhMtHm\nCCAmDZbuB1AwoM1DuHieR+/6C8XyRgSaUhiX9wQn9Z/yV+B6Kt58gtAV8FgohCpBbi5j13M5fDMz\n6CrXp1ZZTpvXz3Dgha5IViseC95k+vTJ+LRpQ+65c3zSsCGrx45Fkqx88QU8+qjggJEj4YzjkzDY\n5gJcOxVSjtj7KuFFS9ozC4ATfEkhSXb3+7cwf/5AXFzURERcZOfOhNoPeP19keiy5mc4deKfH+D/\np6gnvrsMXbqI5rRJSXDokNimQk5XRCeAA9SiGnETmGprgfRjHSQIr8UUm2LYdwW1F7MPHx5CYKAr\nr89vj9HsABNtuo0r80VKY9lXDB88AqtNAuyAHmRWE69r9/HWW5H49x9Igy690JFLH1YxddVEzCiZ\n1nYZkUn3kVzkg4cuj8xiD/sDWP8oRH151SYFaoIZRG/eYTwbGcdaxrGWEXxPOLOr+/OZbc5ISU5g\nIKjl5UwNXlB1nsqG26WlUCYXMbgCrQsUggwrhapAyk3uVfsH2Vyjx6N9cZTKKJBE5zCdF5Q7vY/F\nWvz/2DvrMCvK9o9/5sTunu0uaumlu7sWkBABQRCRUjoEFRQDRRAQEBQQFAQF6RJJpaSlu3PZ7o5T\nz++PZ3aXWtj1XV5/8u73uvY6s3Mmnokz99zx/d7ZHp+tAjg5Y7FIS5iqcaT8TegbBntSpeZnXnA0\nHSZFQ/27UOIGfBIJA9ZLI/h2M5nvRdFgMPTCyesmiY4fY8SWRhkHKR3Tid/sKpLZZjvaX13p2QNa\nS0oh4VvvMKVNOcwP1JpoFUGjvn+xb0pjrIqC49eTeaNvT5zVBOnVzZvZMWoUigILFsicX0KCjHRE\nlH0Par8F5gxZ7Znw5Hu9JG0oQQssGDnKNEz8c/w4Dw97JkyQuef33//j2YUuJUrCW6Pk9CfjCuXM\nnhMKDd+/DBoN9JJV/PzyQHPvxmpV4sECNHy96oFOC7suQkQ+C826OIO3Fi5kwuFniFhotRqGD69D\nfII9Kza2gmaAvy3cCYG9FUEkoU37noZROXptc+NhkN1pxN1bLF58hs7fzQVFoS7zSIxvzJyzrQD4\nuvU7DNr2HWarlqLOoQQnl3jyIH4bDtvHPVEuCyTnT/toRwchIPysnHYvjZMTfNJiJgEud7MXcXSV\nXmZiioZUvTR8UfZeZLXNu5NenAd/hv5qh8zQcPnmkGgvE3IpPt5c1blib00n84EcH45OCKt8sN9x\n8ODuf9ioI8QMk2PheBuw6wz9HuX4K3a4OH2O3us8CfrqeFlj6Ro3gu2mdcSVOkrm13Vo9CH0VdVl\nrFev82mjQDKyAhGKPQqCFp0PsXu61EF1+HIib098L3sXJ+bN4/i8eeh0UuWlUSMIC4NXeygY282H\nUi0gJRJWdpWapI8OEYWaDMWZ4iQTytl/ON83enQ9ihRx4syZCFatygM59p0Pwc0dDu+HXVuf+/j+\nF1Fo+P6F6N1bfq5dS3bVYHV8cETPPRIJLiAVCy9n6FBVktmXHMjfujYKDFLTat89Lrz/GN5+uxbu\n7gZGT6xIJp4wUHUT5iXJEtHUWbRyL0X6QBnrTRVwMcPKdPvdfPTRXnRFy1F9wFtoMdOJ9/lgxzvc\nM5aklNsd3qi8kUkHZRGMu20MEem5UBcOz4bFTSH6at4O8u5BiLkOBncoUgtCTvBurckPLeLgLg3Y\nrSgPnN2lqxat9ySrDul0hC+6BzwSd7XwJDlVxkjTVA8wxbc4d0jAXqQ97PE5OhHrLRdKE08o4vkP\nkFFOCuoMC4fER4okFV05XD1OkOg4Hg2CrslLuZ48jLse6zAOe42A2dDXHewVsAm7yqT6ZUlPVkCk\ngUbmpFu3/5Odk+QLiv2kcYxaszJ7+ztGjuTegQPY2Ulha39/Wc087n099FoPriUg9CTs+YQnQYcd\nDZiABj132UMkZwv03OQHBoOeyZOlkZ84cS+Zmc9IfLu6wbvqcU16L+dHXogCQ6Hh+xeiWjWp5BIT\nA7+rOXM9mucS7hzRUn7O3wvGfHL6BrvJG2xdEoQ+47fr7GzLuHENSE6x4+sfOsIrQDEt3AqBnaXB\nGo02ZQYdFy7MXmdLKtTXXKZuygXGj99N0FfTsPHwozhHqC3O89KyfpgUA29UWUFiZik2XmuGo00q\nNqQQnfl4k1gAgo/Ct1Vh62hIfEpH3vi7sEES5WkwUi67sis22gc8EPdSONhKdzcuyQF3T0k3Sc1w\nAJX3tvmMJ54P8ASzmJjOJlkCmqbIOVbfYiSQgUGkk6nWudhqFYw2ttyrKStg0yhYw5eF7+Kh3M0n\niBIoOlycppHptg6jYkfT9H2kJXThkutUzN2H4r8E+nnJohdD3A0+aV5d5vysEaANQIOF5t2Psmdw\nMxSTCdeJIxi4KYfAvaxZM1IiIvD1hQ0bZIXsvHmwfb879PgFFA0cnAG39z1x3M4UpSI9ATjFAsz/\nIL+vb99qVK7szb17icyfn4dS6f5DoWQZuHkNVj6ZwF+Iv49Cw/cvhKLkeH0rc16SaZId7gwuMNHq\nVhWhUhEIT4R1+aQ2FNdDN2cwAXPy4PWNGFEXd3cDE6cUJ8lcBYaqbsaCNLmR1Fk0Aoy7c8jMPybB\nNMNWVi49wV/nEun2kwxrteIjYmOa8/aO7gDMbjWW+ac+5lhoRdwN8RiNgrDMUk8eiMUER7+Br0rA\nsvZw+Gv5cA09LVvn7HgPvqkijV/RulC6tfQUE0MwWXQ52/GujKNWet+2ljhQaXYuoUkQD0IHu686\n46fNkbZKVi2fr5DrqYWf2Pl4kioysRcZZKrn0tbOjl9TFHQOcqXcPL6+LrCjOLipv/bsBqXAAAAg\nAElEQVSrpcFSASLLwR/F4WMPcHjGS02UBTrfh/GRj1eC2tp1R+txkHSNKzUzz2KJf5XrzhMxtXgX\nr2+gjxvYKeAYfoaPOzQBQFgiQFsOO5FGpRHXONWmGkp8HEW/m077uTl6qovr10cIQf36MGWKnDdo\nEMQ5NYIWH8tw8/q+ZMd/H0F5uuJMCVKJ4MoDIuP/bWi1GqZPlxXHX3xxgKSkZxhhGxsY/5mcXjKv\nMNdXwCg0fP9SZBm+zZtzyOxV8cYVW0JJ4coj3cT/LhQFxrSR03P+yP/vb7xaT7IwHuKfwSnO8vqs\nVg2jPumKeEkDpYD74bCuOpCJkjyRwa3eIrFjrez19qckMsluB2++uRmfxq2oNuAtdGTSg4GsOj2K\nn2+1RK81s7ZLD97fO4+L0QEUcQpDMaVxLbl67gMSVrixE7aPhSUtYUEt2Trn0ExJpgtoAn7VYUkL\nSAzB7FCUNJNqfKq9DsGHcVSNndacRJZdKnpH0k4UP/D1SaWkfU5oNVE1fEV1MqmarlaoOHk6YSuk\nF5iRKOOhtvYGfk8Be0WGSh81fG4aOF4Sfioiq2yzLp2HVnaA8NZBeSMcWAapc4AfoNEzouQzYmVF\naMojIkFafW3s3PeRrjhTO/MUsQm9CXX6EHPQa3hNkxQXDWBz/iBzRzVEIQMhEkBbEl8iSPvSnugi\nHnDqL+okRRCgqrIn3rvH6R/ky8zYsdCwIYSHw5gxQPOPoEht6W3v/+KJ49WgozYjAIVrbCYlWz7n\nv4/27cvQqFEx4uMzWLkyD7m+zt3B0wsuX4CTeSDBFyLPKDR8/1KULAkNGkhB981qCzktGtogWwNs\n52aB7ev1+uDpCCfvwuF8KrnUMkBrB/mgnJcHr2/kyLp4eBj46ReFK6H9YZz6xTfXIcIGMlZSPPMk\nlb77EqF2Jk+0gr3xNIGhhxgxYgcd5s3FrUI1PLjJK3zBwLUTOBZfDQ/7OFZ16UO/31ZxKqIsfo4R\nuGlCORAehFS+zAd0dhB8BE58L9uYl26FMS0TF7skrqQ1BqsJ0mI5HF4Bq2KLxQKhWlm96RmqvpQU\nhxJFEwjQ57SkiVNfDnxUabQ0lcjn6QEuWYYvSf5sbR0cuGUEezVH+Gioc1VRqGPI+T/LWDmpv/rd\nl6D6p/DnNfB1gd8HwaH6EFUO+j2hj28WtqXAS8GPGz9FXx0bj70YFQNNMg5wPG0CRtcfML7SmJJD\noZP6EhCz/hT7t1RAsUaBxhsw0MT2KLu+aY1VUeDbGfSYPCl7u1sHDyYpNBStFn76SXIjly+Ho8d1\n0Gm+fDs7NCvX3KwH5SlBCwSWh1pL/behKAojRkgh84ULTz67e4ONDfRSOaw/PZm4X4i/h0LD9y9G\n377y84G0F20phQY4QggJBdSk02ADQ2Vuni/+RpHZRJXLPCv22V6fk5MtU6fKgodOvcpiaV4FWiGJ\ncLPUZoGJg3jdvy4Ji3OI5vFWaGPdyKEV21mx+ip9tqxH6+BCIL/SUuyixQ8TuZRekSJOYax9pTdv\nb1/BnrvV8HaIpoH3XjZc7U6cpmzOQBQF9Ab59ySY1XNbujVU7o64ewh7Ec3h+w0xlesCF9aSYbHh\n7e0/4ugoH3BzTkhVGLv4TOl+lYaAIvE4p+S8/UeqIUcvSzoWAaY0K4oGnF1i8LTKL3MMnyPx1id7\nfOVtoK3jw0PWqbb96z9AGQBtZkGcygnsXlt25QDw0sHSIrAvlwJYkFqsr4U8HvbU6muhuMicVLek\nxWw0rUTvuh7TCHeqN4DqtqAjk42jtaSm2oLpL7CVIYVOgbvZNbAVisWCYdK79Fi3Lnu724YOBaBM\nGRinvgy98w5Yi9SFWoPky8f23LsbVOI1FLTc40+SCjAHnl+88kognp72nDsXyfHjeRCceOMt+bl5\nDST8s90nXiQUGr5/Mfr0AWdnOHwYTqtcV28cqI0fZgS7uVtg+xrdBpzsJLUhv15fcwfZrijRCl/F\nPHv5gQNrUKeOP7fvZDB32UiYYAsGYOdlOFIKLHewS/6UIf0mkvhSDsE8VQgGKUuZOnget+IN9P51\nA2h0NGQW1cyhNJg/jtvGspRyu8OOnh35cP8iZv/VA73WTPfAdVwL9mBj8FuYda4ypmtKB60NeJQF\n32oQ0BTKBEFgZ6j6GlTqDhHn4OJ6FEsmi88O5Lfo4VQJmwDAsB0jqF/kBrY6WfCy8kpPkhVHFCsk\nOjqCM5RxigBjGsn4ogBxVjAJMMQZSVONisENXC3X8Ff/z0iRE7aODjhpnmz4qj6Bq69XDd8Hmx7/\nbt4eMAyGIT/n9Hts7gDh5SQt5UnYlgKfRD9hP4aeJDuMQouVpomTOa5JQ+/+A0yHtj6y2MUj8yJT\nBqgyROaLoKuBizUW8ygbYn3d4OxJAjHiqqoCXP/tN8LPSCWFCRPA11c2Zd64EQiaCjaOcH1HrsR2\nB3wpSRvAyiVWPfmA/guwtdXRv78Mry9ceOoZSwOlykCz1pLJv27Fcx7d/w4KDd+/GI6OMGCAnP72\n25z57ZGe0U5uYSmgIhcPx5xc36eb87/+FC/5OTcOwp9R4anVapg//yUUBcZ/FEG482QYpn75WQIk\naiDtGwKNl6i55GtMvq7Z65qFhddNS5nQdhyGinV5eYnMD7XnHQKNqVSd+zFnU6Wnt6d3Kw6F9KTr\nhrnEpLvRoOgxOvj/xM+nXmF1+AekGspCRiLE3pAG7u4BuPk7XN0C51fDhTWQGk2wuQYd1mzlSlwV\nvqz5BorVzIxjbdl0fQLTW4wnQ3UOE60t0dhKq3KruCysCbCRJZqhuma4aHQIZCGJEkK2XJmDB3iZ\nr+ErpMeXmaHqi9raUFSXE+pMJ8c7fVLgVsk6709oWJGFRftBOwjS1eJUXx1cL5O78ZsaA0efwA93\ncppGqrYExc0hhKZOItPQGXPJntgNgXaqfbYeOsz5s2XBchv00hi0V/bw6/sd5Xi//Igea9Zkb3Pb\nkCHqtuHjj+W8adNA2HtC/eFyxr6H6SQPogI90KAjhCOk8QSL/V/C22/L/PSaNReJj38GyRXgTalE\nw0+LCotcCgiFhu9fjuHDZVRu1SqIVn/LNfDBFweiSOM0EQW2r3eCwMUAe67AgWv5W7eePbzsBGkC\nJubhmVOnThHeeqsmZrOV7n3dsQ58A6oAYXEwNUA+ABJ608srEOvqT7PzfW4aUBA0jV/Dh5XbUTSo\nE+2/lQr/HRhFBVMSdb+dyO7YxjjapLKxWzeaFrtN1R/+YvnFZtjqjAyotpTOnnNYdbQp44/9wKb0\nr7jr1pdUz4aYPKqS6VWHGK/O7NV8TvvfTtJr5bdMaDiDWS3HoGBlyrGXGL93NYtfGoKnbTjp6WBB\nh6u9Bns7aSXOlJXdGDRhMt+n8atJUZ00bBFquDNFVbi28dDiaE3A33gZAItVHqtGUahuB2ZkJamO\nnNLM64/zuknKOu9qru3gBAidBYv7Pb6s/ZCcZ6yLFk7lUgALMDIiR+osG4oBOxf50tE2ZR07rWfQ\nOX2JtZeW8iWhmA4MIoYFo1VR8MydYNsJHZl4d4whpIw/3LuD3/1bFGsk9VBDjx8n5qrM4/XvD15e\ncOoU7N4NNBorw9LXtkL4kxtJ2uNJERoAVm6TB+3M54QyZdxp3boU6elmli8//+wV2r8M3j5w9RIc\n/xsySoV4DIWG71+OMmWgQwcp6KsWv6FBoR2ymetW8hmXfArcHKTxA5i4Mf8vn195y36zyxLgVB5e\ndL/8sjV+fo4cORLCrGV9YWZlGfLcfhu2B4A1DG3im7zX9G0Spsgu30l6PXXtpEh2QNwRZpStgnfN\n2rSbK1vadGQEDazXaLPoU7440w2romNM3bns6NmdeSenU2PJRnbdrY69Pp1B1Zcwvf5bNLDM5MSR\nNKZtaMfQn0cyaMlIJq1ow5UTEcxt2IvDfRvTpNgBUhU3Xt00iI/2ruCTxnPpFriR8Djp3kRTnqF1\nvkdRPadIvY8UfjkuPb4y5UvhpzIhwlT7lapWoWR6SyUAbYYUvs4+7YpCKwdIFrLLg7OSU5J5NgNi\nH6UoZFX8q4UrDcqAvxsMbAriRxjX9uHFF+7PmS6qh+X+T75OpzLgtyewCbS2bUi2aYCDSMeYNh+z\nrgS4DUQzApqrXp/zzb2cPVcRrOGgk0nGIOMBtg9Rb7TvZhM0M4e+cni61Os0GGC0muL97jvA0Rtq\nDZQzTuSu1FIKGV69wx9Y/8HWRUOGSK9v8eI86HHq9YVFLgWMQsP3AmCUKu23YEGOyENrArBDyxki\nuVVAffpAhju9nGSfvvUnn738gyhrC6Pc5YN79JO8hEfg7m5g6dKXAfhw4lHOa5fDRFXX8vNgCHaC\nzF24pcxm6PjZxPdujCXTxEWdgZ5O4K5VcEgLZ1mjBsTduUvrGTNAUWjJx3RhOZN2TKTV6iEk64tQ\nzec8R99swFvV/6Dfr1spt3ALX59oS0SmD76OkbxaYT2Tm33C4g5vsbxzX+a1HcnwWgso53GDdMWV\neZfaUmzWPNZfmcdHjebxWdNJCEXDkhMyBxmnrcKYet+Q9ayNsvch+hqkRFpw9PWldoCgyCOGL81O\nXsxEHz8ANGZZBJNVgapYrNS0g/Q0KaX2oOED2ZXhQTRUOz6hNszd+EiKaWZPVZdTxbDlD3/f2wWK\n6ngiFuZSsevgKBVImqVt45gIQeMwHtpCgIcMnzqISJZMaSoXNv4FNk2wEamYO2tJcXWEsycp6uyA\nTlX7PrtsGeZMyYEbMEBK+G3dCrGxQO1BcjvnfgHTkwu7vKiME0XIII5w/kbPrQJC587lcXKy4cKF\nKO7fz4MeYFaRy7aNYHyCO1+IfKHQ8L0AaN0aAgMhNFRN9gPO2NJe9frWcqXA9uViD5NfkdPvrc3J\nBeUVH3uBj1bqd/6Y8Ozl27Ytw4gRdTCbrbzW+zAZr/8BbfUyATYqDVKBlI8pn/EnL//4I8lNKpCW\nks4OrSN9nQTV7OST+vic2Rz/dh6VevRAY2ugOj/zJiM5fWsAPlPGsyG6E4pGw7Ba33FrWFkG19jP\ntycW4DfrPJW+X8abvw1k/vmWbItoxJ7YRvwa3oIvTr1M0+WjcJr6CyN/XYGNtiXru/ZmcrNPECis\nzhhF2AXJG6sWmIajLhmsMsGW4OLCtT/l2Eq1bk6gzU3V41OIssgClzQhk3yRPiWwPJi108ppS2oy\nigLmO/Jn7Kt5OKz9eczDQtWjK6sTqmhNj+/g9CPNC5YPyv1aaBQY4f7k73anQvITHCiNTRDpGm+8\nLTHcMe8FXSksDg3QdJYVngBxR0NJz7AD0yGwkRW9bcQpDr5cXy6wbgWtp+c0Z72xbRsAfn6yW4nJ\nBKtXA37VwL8WZCTIllNPQFb3DYBQ/jlunF6vpUULST364488dG0IKAXlKki18zP/nMF+UVBo+F4A\nKEqO1zdtWk4I8mXKoUfDUUIJJp8q00/BoKZQtSjci4XZu569/INw0cIcKdXIe5E55ftPw/TpbQgM\n9OTKlRiGj7mPmLsNSilwywIfIHW+EvrQQkmk3qYfSa9QhLiEFFbiSDuDme7OtiTgQdL9YC6tWYNQ\nhY2Lc5ihtCLA7Ef3H8ZQd/kormmbYK9PZ1y92dweVprfe71Os+KpHLz/ISO27qbjj7tovWgzXZau\n5+Nd6zh4fw6VvIrwVctp3BhWjm6BGxG2zvxs/Zx3Z1koxm1MigPvtNsGVhBp0jqkuDpmK22Vat2Y\nIunXsFHApPhiReb50tUXgxQvLy7aVMo+H3onGS9NTZSevOsdaUFKaB62YrGWh7mT7d1Ab0UaPhkd\npdZn4DtGcvqO3IQ6j9SGRD1CaG+UiyqaGdnl4TEoGqx20mt3yNiJBYHW8Dq8BBVVze+S1n1s26WG\nNhU7QEdp4wVOdFFFCn7fSuWePbM3eWltTj++LMH2rVk0mxoy5M3l3Cuw/JFcughO/aOd2oOCZOL0\n999v5W2FJqp+4MF/ts/gi4BCw/eCoH9/+QZ89mwOod0dQzahfR15FF7OA7QamKM+cKZug5A8ENMf\nRE9naOsACVYYlYfaG3t7PatWdcPOTsePP55l4TpX+GmpfHjvA74DSIf4Trzq4kvp3UvJKO1DVEIK\nPylOlNZm8Il7Kpc1jUjXOSMsOQ87A/H05FW6soSrwQMInDyYdr+N4ZJte4TWjjYld7Og3XBuDytN\n7DseHOnbmi2v9mfLq29y4I2WxIz14tyg6rxbfxZO+mSMpdoz/MoX9J+mIQgZC65czQGDrQVK9kIx\nm4lwc8eaksG9w2Y0OijXvjGGO7LIIUrt/xdmBpOqjZlhdOb3+FY558NFWozUJGmVfGzlNS6ledxz\nGBcJV1V1LCctdM0qgK2Ws0xkkuT0NZr6+Lk3P2IXPHPr3g7cyMX7d7CRUl1FTTcIJQlsmkMFcHKU\n29OLFPb/WkEubDoF+nposKCrZibDwQDXLuNgNqJRi30urVmTTf4OUu3ln3/Kin/KvSRn3Pydh5oB\nPgAniuGAD5kkEleAOfD8IihIRmR277797HZFUGj4ChCFhu8FgZ0dfPCBnP7ssxwuVjcC0aJwkOAC\na1IL0KICdK0FaUYY8Uv+Cl0UBb7zAwcF1ibBmjw4o9Wr+/LDD50AGDVqJ4diW8DC6fIOXghsQIof\nx7VikE9Fiu/9kcwSXkTEJbMEJ/Qig5/d/uK20oo/7V5C5+b10ParspJ3qUJ9othzYTCVP+1FiQXv\nsiRhJJGeQQh7T9wN8TQoeoxOZbfSqexWmhQ7hIddLDj6klG5H8udl1D0gxZ8t1qhERkEcBStrR2d\nm0eBeymihcxlBRf3w3XDMYQFSjcDg5Me5ZpsRHtZSM5IqDknX6u317FmdY7H4+yuClcnJJNiSsXH\nvwJJKbb4aSLwUR5/k+gQDEmqDRilhipt6sKzNK3n95HFLw8i/Cke+qNKLtnQyQrWEub78h7UBWLV\n26OpmpMzvH9ataimU2Ajz1MF5R6X6peX80/9Rf133sneZPxtaeR9fKRoe3q62p/Ssyy4l4b0eAh5\nMqdPQcEPWU0awT/X7LVMGXdKlHAhNjadM2fyIKXWsJn88Zw4Ig+4EH8bhYbvBcJbb8n2LefO5Xh9\nXtjTghJYgfUFmOsDmNtLktp/PZP/QpeSNjBLDXkOi3g2tw+gT5+qjBlTT1Icuq/lfsXB8IUq4/E5\nsAew3EaJa8OQIrUpfvBnMsr7ExufzPfCkRSLmbXOm2irSeTz+EFY2o3Bu3KVh/bRjrF8RAXacprI\n2H4MWtAB37FBGCaP4pWjXzEjYRrrbKewxXkGqx3m8knqzzTZPgXnN0vRd0I00dF1aEg6rZExw+4d\nM7B3MUDvjZyaLxOw11tUxn3lYQAqdQZuR4DRyH1tcW4jRZzDzDLPB1DKKYrL31cjViOtkLOPfFNI\nsQiO3j9CnTrFOHVOVqXU1j1+IW6boON9yLBCQ3vo6AhGDbQcB6/UemxxAHa8A8NaPj5/26MdGh6A\nXW6qb1opnu5sTSKKNFC0WHXlISDHgzRGp2Iy6SWnT63uDDSFcadygFzgwhn8a+UMNvJcDmWhXj35\neTar81Bp6WESfDTXsXpSEYB48hhmfA5QFCXb68tTuNPdAypXl8Utxw8/59G92Cg0fC8QcvP6uhOI\nBoW93C2wXn0ARd1h+qtyesQvEJdPh/JtVwhykPqU/cOeXeUJ8NVXQbRoEUBkZCrt2/9C/KuTYdww\nmed7HzgBmK+gxLVmsH81KhxcRWrNkiQnpLAw05YbZg3jDYfZ5ryG73bpWWo3gubLt1I9SwlARQPm\n8L5SlQ5spgS1MWX2Y/O+RoxfEEiPT/14eYITvSbaMHmulUOHfDGZuuGldKAXswnifQDatobASnbQ\nZws7zxgIVFVFLpTxxungFWwcILAdcFk+9K5qShJFFbRArDWnU0Ogwx3S79vz/T1Z2eeuSonFW+Ds\nvaO4+Rq4eluKFnTR7nnieTuYBs3vyXO90E8anL3p4PYKmJeA8XuInis/xY/Qrsrj27ieCd88Jaxd\nyiaXLxSZg7QRJqwqGUOruIFrjm6oo4ggPErlSyhSa83LEk1webXT/Z1b+FStmr3JqIs5HS2qqWHb\nbFvor6r5ZDUJfgJc1cKvBPJQWPIc0aaNzPPt33/vGUuqaKqGvAvDnf8RCg3fC4ZBg6BIETh/Hjap\n0lT+OBFESazAT+SBMJsPDG4mNR6jkmDcmmcv/yAUBX70l90CdqXC7Dw0lNDpNKxf34MKFTy5dCma\nl19eTfror+HNvmAEhgPHAfMFlNim9HUrQbM/N5PwSl3M6ZmsTBYc1jjQSnebix6L8D63n6CBZ7hQ\n8k3eTUqj95Jp2NmBuxvoRBp1WEh/mjNeqcJrTKMZ56iKjtKUpDQlqYwNzfmLAbzNcFGF8vyGjQ28\n+grUb+kD/XYSZl+PJf1mEqBNJN7Dh9R90vOu9irYOilwWaoBnDV5ARp81fBfhBqeLK27TpUqsGSW\nNM5uAXJ+vBU8Lt1gJ7dINqr6puYN6HNR6/krXfbVu2eCdUXBoMjK2qB7EGYFTyfQ50JXuJgBbYNl\nd6gnXktyL3xBSNK+GR2KGhNXFCnZZqt6iTakEB2rtvJQDaWjNY44XzU2GxGGS/Hi2ZtMCsnplVhR\nOm/cyErX+akdN55i+BzxRYeBdGLJIA/lxc8J1avLsMfVq3nQ8oPCPF8BodDwvWB40OubNAmy6jh6\nUQkDOk4QzgWiCmx/Gg388CbY6mDZYdicz5RJET0sU1/0P4iCY0+Qv3oU7u4Gdu7sQ5EiThw8GEzv\n1zdhnroYer0J6UjjdxSw3ISYSnSw1fL6+o1ET3oNrILd0ams1rvjZEliq/MqvtevZ9Yn26lc9XtO\nO3Tg/dDbjPzlXYaMdKNBPXB3B1uRSCBbaMGndKUvb9CON2hHd3rTnM8pzmH0eqhVA0YMgYpdX4YR\nZ0lwq0enjisZlSnLX891a43Hsv2gKNTpD2iKwBl50g4lOeGricjm82XB0xLF8CF3ub1Bimh7qVra\nkWYod+oGa7lC+UadiY61x8fpPmt9cn/gx1qg0V1YnwRL/cFLC3vToOxN6B8KW5MhzCRpELFm+CMF\nhoRD1dtw9ynh6A6OOd3jH4NFikJHaz3xUFTrKJIhLYeMb0WLyay2m1eVaLQik2Q3VWk7KQG9fY5l\njbmSE7b3U7mHkWpXe7zUQpm4m7kmnxU0OCMNaTJPaTj8nBEQ4IpWq3D/fiIZGXkoca7XGHQ6SWlI\nTX3+A3xBUWj4XkAMHAjFi8PFi7BkiZznhh1dkYUCSzmfHXIqCJT3gy9lv1cGLYOwfPLlOzrBGHdZ\nEt81RD54n4XixV3YubMPLi62bN58lb79t2CetRj6DIIMYAQy5ydSIaYytU0X+fDT70nc8BEWJwPX\nI+P4xuzAdfS8aXeOm57zaRv+B6+/tpbabf5gTdKbeMwII2jJRkZ+34+R4zzp+jI0qAeVK0KpAChd\nEioGQsP60LMbjBtrS8f3e+I09hD02UxwvIFWrX6m4qVdNNEHY3F1Z8fdYDRGM6V7NpUGzFocTkk+\n2RGzJ0U1wfg/YvisKdDrlQ0oQsPx4Dq4Fgd7V0gVUOLgVVKsGQQ3TWXjDhniqx8zg/c8nn7+5sfD\na6HQwCALTEzAskTodB+K3ADbK+B5HYKCYVE8z7xbPvB8ypcmmXcM1flTROVRWCwhkJhTEJOOB472\n6ltPlnFEYNGpjyjzw0YhIzGnIspHJeRnGz5bJ9k2ypQu+ybmAgPSm/wnPT69XkvJkm4IAbdu5aE8\n2skJipeUeYz7d5/7+F5UFBq+FxB2dpDF9/3oI8h6RnShHO7YcZN4DhZwa5bRrSGoEsSmwJtLcvKL\necUMH2hmL6sGu4bIQoxnoXJlb7Zvfx1HRxtWrbrIG2/+innGdzBgmAx7joVsIf64dvgnfcbUVz7B\n8/wakptUIDM5lVWxJjYZvLEzp7DQcRsXPb6n2IW99HptHeUqLuKLTR7crfU17l9FUeXH2wQt2UC3\nRTN5Y+F4+swby6tzP6DNnAUEztiH7eQEeG01lqIN+PHHM9SsuQjrudMscNoOwKFuXbFfdRCh1/HS\nhw3luK57Qno6ST4BxAgHAgx3H/P4xFVw0q+lbVs4tqc+igJF68jvYiISKX/2Nru1d4kt1g8AN7uN\nTPeIYEwuZPMHsSUFQvLgaDwNw91k0UxuSMuUhPMrttUohjOIdBTLPUSw9EABYimLr7dquRR5AkyK\nM/pMdXA2DycQLQ+ol6iiLjmCJooCTmrlVEokucEOye34Jw0fQNmy8kLduJFHXlAxNcl7P495wUI8\nhkLD94KiZ09o1EgKV3+hNqe2RcfrSPmO5VwgswDJuxoNLBsoG9buvgyz86kBrFdk3qm4Xuaihobn\njSLRsGExdu3qg5OTDatXX6RP382YvpgLEz6XBS9TgVlIqbDUWdhF2DCqWC267dtJ9Iw3seq1nA+J\nYo7RwF8GD8qJSDY7r+G61yKahe1j6se7KFlyLnXrLWbirNv8HlqNiDKDEUFfwkuzZEucekMxF2/K\nucsJTJ9+iEqVFjBw4BYqJF5ln+dKnMgkud3L7FkpS22LfTYG96JqQuqs7B9000Mmqoo5x+KhAb1O\nn32MmZc0KKbjjBlxl2MnpZpJGbU/4nUTvLntFgK4+qo3v+2rgK2Nkeg745jtk9ML8XmhuT3M9n3K\nAtZYbDJ+A8Bs2x4dGjAeRmM1Yj2nIUa9BdPt/PF0jwJsQciZqVo3nBJUj83lYV6Fg7f30wdmqwqS\nZuZehmqrGr7M/yeG7/r1PCS5AYoWGr7/FIWG7wWFosDcuTmfWYn/lgQQgAtRpLGugOkNfq6wVC2O\n/GADHLyev/W9dPBrMVl0sSwRvs3jC/CDxm/Nmkt0fnkNKUPGwzc/glYLy4DhCtniNVFFaJD0PpPH\nzcThwi8kBlXDnJrOzpBY5uo9OGfvTilLJEsdfyXG+2t+dPkN57MHmTl1P23brkCXBvsAACAASURB\nVMDPbxYuLtMoVWouFSrMp0SJORgMU6hefRETJuwh7vo9Fvvs5U+3n3E1J5PZLIgF12+hDYnB2KAC\nfd6dBMY/5Vj+lJ73n+YAAAI8UlAUcHH2yT6+lIsyeda68WruhsnihvIqcfuWEUqv+JWKJhcStJns\nqzUck0mDh2EV1swjfOENK4uAfT4bzOcFXZ1ge3Gwecq2zalz0JHJSdsa1NE1ljMztsI1sCZYuZvV\neLeq6rbpq4JF3qxRWn+8g9V8dJFi2RqdQHafPpAC7SBTXznIemvKfXBapBdp5T90ef9DlCsn49I3\nbuTR8GV5fCGFhu/votDwvcCoVQv69ZNE6HfflfO0KAylJgAbucr9AqQ3AHSsDu+1k4ofry7If76v\nul1OscvYyKfzxh5EgwbF2LOnL15e9uzceZMWLX4iqnUPWP+H5D8dFvC6F9kCNhlrcIv04n2/0wzY\n9jMJmz4ms5QPSZGxbL4fxxxbL457BaA1pdNfd4rdzstJ8pnJseLrmOm6n06ZJylx/wwON87hHXqZ\nIOUqk/1Oc6bCViK85jLQfACNsJLYdyjf3rxPxomLZJb0psumtdhaj4I1GlJLw5EToNWyNEQedBkf\nmeeyccipYLSGmeAeKBmL6dvPmwtXKuPsD0XrydzcxdAYJvwWjhM23CzvzergILRaQVJwN7Am0ssF\nzpeGJs8grOcVbhpY4gfri4LhaU8Q8x1I+QqAo45vUBVvsKZgTV8Gm+COCcwCovW1adNe1c20aQJG\nOX1JX5xi19TCk9LliL+Vw3VzLlYsezpKtY1PdAKV3A2fQMbTlacYx/8GihWT3mlYWB75QIWhzv8Y\nhYbvBcfUqbJh7ZYtat8yoAKetKUUZgQLOIUowEIXgKndoEWglMLqvgCM+Xyh7uECH3nK6OSrIXA4\nD5WeIHv4HT48gJIlXTl5MowGDZZw2aMy7D4JVarDvWjorYefvCArh5g6g8rR1ZjV9AJdzn5G3JIR\nZJT2ITk8mh1X7zIj046NJapw068kOlMG9VIvMU67n1+cNrLP5SdOuv7ACdcf2Oa8ko+MW6gedRKN\nsGBs/RJHBozjmx9+IvX8FTLK+VFt90rq+FSGNLW1zLEqYDZjqtWIC/fN2NvrKekuDzZTVyb7uNIE\nJO9zQLHcon/v3fxxqBsARd+QHLDjGeA8YzwfWOqhQ2FToze4FFMMN6cIom90AmGktA3sLyG9v1I5\nUdR8obItzPaBu2VhgNtTbQqIDDISuqMjk/12jWlp00camPTFaFISsWzTcEJtoHDe1IVer6hcGLtX\nwfgHAH/ZlKHSCTVUUbMu0ZcvZ2/eq0KF7OlwVfTEJ8dJzglx2jg8bZDq5z/7GLRThdRNpjymHooW\nenz/KQoN3wsOX1+YOFFODx2ao3TUlyq4YMslYthLwf6AdFpYMwSKucPRWzBqZf57933uBYNcIV1A\nx2C48OQuM4+hbFkPjhwZSM2afty+HU+9eovZcjYTth2WRS8mE8yMhuE14YG6B03mZuqmDGHOSysZ\nfKwJTj93JbV5BaxpGVw4fYFfLt7hS5MDy0pW40CNZlyv2YSYyjVJq1AVU6XqpDduQXTHHlx6fShb\n2vXmq98P88eMmVhT0oh/pS5Vj2ygR6mWYLoMGRsAG9gguVu3KsqEXbVqPrjbyAd2jDlHTDPeAhl7\nZS7Q1ryAEoGvA1C/ZQRaPweiLXD5UiSVl89hLPWwKjZ8U+E94jIc8XI+SNSNV0CY0CjQywWulIHV\nRWQxEcCeEnAsAH7wg/c9YIgb9HGRnx97ymXvlIELpeEdD3B+il4nAMJMZkIf7EynidR6ccflMyrh\nBZZIrMmTYDFEx1m5aQKL1h77+oH4eYeBNgDQguUeGRovIpO9KHXutoxh1qpP8KFD2bvwrV49ezrL\nHpYvn7V/Aclhctox9wSkGRkj1fI33wQKCDY28oQajXk0fIUe33+MXOiqhXiRMHYsrFgBly5JRZdp\n08AJGwZQja85zo+cow5+OGNbYPv0coYNw6HJl7BoP5T1hnHt8r5+lp5nrAU2JUvy9OEAKXX2LPj6\nOnLgQD8GDNjC2rWX6NJlNZMmNWfil9+ibdUeRg+AQ6ehmyu8Wws678l+BVREHAGm9YxtDdbWNpy7\nV4llO0pjt/kc9ufvce/kuTy/JqTUL0vaBz3p13kodfAHYYWkoYCAiK5wcDXY27PDsR5wnBo1fHFJ\nkYnIW3H+ZPl8F4zQ9UwspmAtuuJb6PLyFI7taUX9Gnvw7dWe0Nk72JsG5SZNp3Hrl6FoPWZq/+Lz\noh/xRcRneDttJ/p6Y7zKbgeNBzYK9HSRf9czoayNPN/1CiIUak0lI7E3dhlbSFUMrHabwjBNMxAC\nkTgUzd1ELD/B76oXf8IyiE8++Fr+YxgI6YsBOGnXhLpbT6GxWKBFEDg5cer777N345XFWidHsSVb\n2CU9HsyZYOMIto65DjUdmVOzIw/lr88R+TZ8/kVlNVlkuCxltcnDj6IQD6HQ4/sfgI0NLF4sH24z\nZ8JplWTenOJUxZtkjPxA7qTnv4s6JeFntb/be+tgQz71PHWKDM21UGkObe5BSB44fgAODjasXt2N\nqVNlMcinn+4nKGgF4VWbwYEL0KYDJCbAx3ugX1W41fCxbWgwUqNkFFMmrSHo3H5s7m0kYuU4oka0\nI6lNVTJL+WB2c8Bqq8fs5kBGaR8SOtQk9PMexJ+eR/Oj25nV+VNp9ACSPwTjAdB4wfdZKuKvs+OI\n9PyaNCmBXg3RxRmdKNG+60PjufdbcRQE2rTJuBeXsmgdXj+BtlxJ4q2wPxKsw1vSOMPIJKUJUbry\nfOLzMbHCBS/n48TfqIw5dfdD2yxn+4yQZX5gukB6bN1so7fIfRr99X3Ro4XU6SiJm7CMUziXLPN7\nRp0nukb1aVjnMCgeYOgJaT8DsMq+MW1XqH2bXu5BzLVrmNVwReArr6Boch5dBw7Iz9q11RlRqgvo\nUfapw80yfPY8g/T4nJFvw6fTgcFeerYPFPwUIh8QQjztrxAvEEaPFgKEqFFDCJNJzgsVSaK72CA6\nibXikLj/XPb75VYh6C+E3dtCHLuZ//UTzULUuiUEl4QodV2Iu5n5W3/nzhvCy2uGgEnC2/sr8dtv\n14SwWoXYvFaISv5CeCCEl0aIke2EOF9DiDBy/qKqC2E8n70tq7CKUJEs/hKhYqO4Kn4W58UicVr8\nKM6KNeKyOCiCRZRIfXgAVrMQie+r29QKcXy+EJ6KEL56kXHtujAYvhAwSURGpgjRpaUQHoiWut1i\n3ZTfxCQQk0CkuyESAp2F8Z5WWMMUIYxnxJ2TjYUIQ3w7qpeYpFHEJBA3nBDmd5yEMF0ToSJZjLL+\nLvqZvxPXo0tlH1PE1VeEMN3O/4XIDZZYYUwcJyxhOiHCEPcj/cXXxmUiWagXKnWRECEI0RcR7oKY\noo61ju0Sce9EgBxX8gwhEgYLEYa4HttUjD01VV6XAGchUlLEnokTs8/F5Y0bs3cdGirvaXt7ITIy\n1JlHvhHiQ4TYMOCpw94uBou1opNIEHcK7lz8DZw7FyFgkqhSZUHeVypqkOcnJeX5Dezfj1xtW6HH\n9z+EL76AEiXgzBmYNUvO88eJfsgY0QJOEU8ek2n5wPiXZPPaDBO8NAcuheZvfWct/F4CatvJTgNN\n78HtfHR+b9u2DOfODaFVq5JERaXSqdMq3ui7mdjGHeDoFRjyjnR7Vu6Edpfhm66Q3ECubD4LMVUh\nugYkT0ExXcFfOFAXf16hPG9QhbepQX+q0YMKNKYYXln9foQA40GIbQSpMwAd6BfCyG/kd2+N4mCw\nlvR0M1Wr+uDt7QBG+QafiS1xrq2zj+GAmysu0Ulc2FsJBQGJwylS4WusVoUh764lpYbkkaxPgfil\nyVgmV8U/4wizlFYEaZswwW0Kvzj2wIQOH+dNmCPKEn6lA9aMvdm8uXxBCDBdwJQ4ElNUCfSps9Bg\nZod9EAc91zNS/waOQg8pMyF+MHwOSVtgZQqYrIILSh+GTdtP8SJ3QVcT9HUgbRECHXOcXub16Wqz\n2f5DMWu1HJwyJXvXZdu3z57O0qNt0QJssyL1IWqHcr8auQ7fRBophKNBh2NWS/p/CFqtdLlNpnyo\nPmRpEWqflXAtxJNQaPj+h+DoCFlpkkmT4JrURqY9pamOD8kYmc/JAq/yVBRY0Ac6VoO4VGgzE27n\nUy7UXQu7S0iJrWATNL0LN/IR5fHzc2LXrj7Mnh2EwaBjxYrzVKy4gA2/h8AXs+HQJejSU4aOftgI\nLU7Dl90g5DVQnKUBTPkIYipBlB/E94CUqZCxGYx/gfkGmG/KfnLpGyHpA4ipDrFNwfSX1OR03AIj\nNsHNaxBYCT6YzOrVsstAp06yFU9W6MqIDbfu2WWP/2ioLHX3WRhFonAB0xH0nCVNeQedzsLguXtJ\nKd6RTAE/JUH8N5mIiW3Rxr9PL1GGb7UduG8YzVCvOew1NEXRCvxct6OJb0XyHQ9CL3chLeYbSSWw\nRD5cjSQEWJPAdBbSlmNKHE5GdADEVEWfNg+9SOGMTVXmesyjrMtqemkaoLWmYE14HSLfg3chbi0s\nTYZkC4RqG1N8QBX69VwOGMB1MSSNAGC3w6t474+m5p6z4OAIw9/l9OLF2UNp/MEH6Oxyzsvy5fKz\nd291htUqm9AClGqe6/0Qz01A4ELAP17cEhMjE54eHoa8r5QljVRo+P4enuYO/iPOaSGeO/r2leGh\n2rWFyFSjUdEiVbwmNolOYq34QxRgGOwBpGUK0Xy6DHuWfE+I0Lj8byPJLESTOzLs6XNViBNp+d/G\njRuxomnTpQImCZgk2rdfIS5fjpJfnj8jxOudZRgp669zUyGWjRYi+DUhInweDoU+6y/cQ4ikj4QI\nuSxEh8Zye+U8hbh+RSQnZwoXly8FTMrZf5MqQnggqmrPiq5dhdjYp092iC+yupcQHoitK4LUbTsI\nYTwr0u5VFyIMseunZuI9r6ZiEoivNIj7zgjxEsJ0pawQGbuEEELcFvFiVtoxMTD1O7E6qasIi3zy\n8ZhCtCIt2E4k33UUphDtE5dJiHASOxJai2+Ni8QJESaswipDyOmbhTnCX4j9CEsDRdxzRnylleHN\nIdo6om/H+TnbSV0uRNxrQoQhEiOLizdjF4roavI4xbyZIiMxMfv4J4FIDg/Pvo6nT8v72MlJiNSs\n6HLISRnmnF5MjiUXXBHrxFrRSZwS+QgvPiesWnVBwCTRvfvavK/kqchzZDY/v4H9+1EY6ixEDubO\nlSHPkyfh00/lPE/seRsZGvqBswXarT0LBhvYMlIWvdyJgZZf5Z/g7qSFHcWhjQNEWqD5XdieR5J7\nFsqUcWffvjeZN689zs627NhxkypVvmPUqB3E+peDFb/CsWuS/mAwwOEDMG4uNNgMY2rD1o8h9guw\nHwO27UFfC7SlQFsadFXBtjM4vAfuu8B8FOYp0LAOHDsEfkUkqb5sIIsWnSQxMZOGDYtRoYLaEV71\n+DKFLVeuQLu5c7PH/VNzKTxQf+oJDpkaSAHuhDcw+K3AaPYlqM2f1P7EjTi31qRaYWkSHP8TtJ1u\nwE9tscS0omTmGcba1eUb+4F4OsxijvILox1mstB5APvtGnNLV5IkxRGdxoJBl4GjTQo6jYV0xZYQ\nrT+H7eqz0rEnCzzm8bv3Eaq4bGSE/m1qC1+UzP1Y45pCaBe088Ow9IQj5wTLkiDVIrinaYW+d3eW\nLhyhXszZYLkLGauxKA5MdB3J0FGL8QyJhpp14e1R7Mni4gCNxo/H0TeHnvCV5MYzaBBkN264uE5+\nlu/w1KqdcE4B4KVK+P2TCA+XN7Cv79M4hw9A2ns5rSl8hP8dKOLpBKuCjXkV4v8NDh2CZrLKnD17\nZI5EIJjBMQ4TQilcmUFLbCj4UEpsCrScAedDoIw37H1fcv7yA6OAQWGwPBG0SOrDW27PXO0xREWl\n8skn+/jhh9NYrQJnZ1tGj67HmDH1cXc3QFIibFkPa5fDkT8fXtnVDarUgIDSssTcYC9LaOPjIDwU\nzhyHyxdyHlIvdYGZC8Hbh/j4dAID5xMVlcrWrb3o0EENddYIgPv3KJN0mzuWkiQlwUzHnAf4gKCK\nFDt1mR2D2lBz7GV8LKFg2w4cP8MS3QatJonf97Vg6bDyBCYuBCBABy85gFcNYBiYmwWicxgKdt1A\nWwSBIJJUrpvjuBwbTUhmMqnGJARGNMIIZicMGkfKOrjToGhRiuOCIYsJZQmFjPVY0r5Hm3QZfgXr\n9wqh4YLtqTk9BY9qxtL+kwxGv71AznD8QopRJ09AoDDDbQJei+8zYNIKcHGFfWe4dzeYZc2aZR/7\nhKQkbJ1kd4eLF2UDWo0Gbt2S3UiwmGFGMUiJgLcPQ4nHK3UBMkliC31R0PAyK9BTQJI2fxPjx//B\njBlHmDKlJR9+2OTZK1gs4KOTBx9VcHq7LyCeIttTGOr8n8XHH8tXxyJFhIiNlfNShFG8JbaJTmKt\n+E6cem77jkkWosanOWHPO9H534bVKsTESBn25JIQ4yOEMOce3Xoqzp+PEG3a/Jwd/nR0nComTPhD\n3L+fmLNQWKgQK5YI0a+bEBV8Hw6H5vbnbyvEwJ5CHP7zgXFbRe/eGwRMEo0b/yisD4bk1O22qhQq\nQIjDh4U4MmtWdqjvnU1jhdVbK4QHYv7WQSIlwlWGDOO6C5H5lzCHytDl9UNlRMdiX4qPbT3FJBCf\ng/jNFhHvihB1EGIGQpxFGKNrCJE4Roi0tUIYLwphTX/KCU8VwnhZiLRVQiSMFKaoGkKEIsROhBiN\nsJSU4dVf9DmhyXe1xUXLIt+Js7urCRGGsIbphUj9WYjED9X/FfF96lAx55ehOeds60aREhX1UIjz\nyubND1339u3lvTtixAPju7RJhjlnl39qmPO2+EOsFZ3En+KT/Nwizw1vvLFRwCSxZMnpvK2QkSHP\nk4/u+Q7s349cbVuhx/c/DLMZmjSBY8egWzdYt05Gh24Rz3vsxYyV96hPE4o9e2N/A/Gp0HY2nLgD\nRd1g51io9DcK7L6Ph2HhUuKsnQOsLApuf9NRPXw4mMmTD7Brl9SF1GoVunQJZNiwOjRvHoBGo75E\nCgGh9+HqJbh3W5KJ09NlVaarG3j5QOXqUK1WTt8c5Ivmp5/uZ/LkAxgMOs6cGUz58g+0UCjjDgnx\njGwXw7xfPJgzB0YONzNZLwswrHZ66szoR8fPfiDF1ZFvtg1mnMtCbEUq2ASB8zREQn8U8zmMRj1f\nfjWay0tiqZixDBAoQDk91LCD0noZmaUOUA0IBOEDFr0HQnEGxQkwg8hAEYnorLGQAgQDF4GTIE5B\nagRcMcKZDAhXHRCzxp6TumE0f8fMO8MWYKM3ynCw87eQthAyf0OgZYHLCNJ2wruDv5Hd2T+fhWXQ\nCBbVrEn0pUsAVB8wgJezGksi79MePcDZGW7eBC8v9XosagD3/4KXZkOjd3K9xnt5n1iuUosRlCLo\n790oBYhWrX5m7947bN/em/btn849BODeHahVCnz94WI+S6T/t5Crx1do+P7Hcfs2VK8OycmwYIGU\nNQPYzk0WcgYDOr6mNf5qA9GCRmIadJwLh26Aqz1sHQ2N8vDbfxR7U6FHiFR6Ka2HzcWgst2z18sN\nf/0VwuzZx9i48Qpms6ygK1rUmddeq8Srr1aidm3/HCOYR8TGpjF69E5++eUCGo3Cpk096dy5/MML\nBThDSjI/T0rgzZEudOokdVZ/f/ddjqoclJu/jWfmqhP47NpLZAlv5v/6FhP0C7C3xoO2LLj+Auk/\nQdp8AIJDi/H5R0NI3nORCpa1KCp9Qa9AaZ1sBVVEJ6NnNv/X3n2HZUG9DRz/Puy9QaYMByq4t6KG\nI01NLbMcuTMz9dcwzYa+ZalllmWa5swyR5kjR5a4Zw7QXCgqyJa917PePw4IDhSQKedzXc8Fzz4g\ncnPOuc99G4DCETAHTBDryDlANmjjQZsEqRqxwhahhDAVRBWpxZqrY81/+qNp+qoJ7769EnvbeHGH\n8QQwGiiyN9Vh5CksWGA5CefVUYz99FcR9D74DPXUGWzo149b+YVlzZ2dmXrjBvr5fzzExYGvr2i3\ntXw5TJyY/8Y398OanmBiB9PDiq3RmUIo+3gLPUx4np/Q4wl+SMqBVqvF1nYByck5hIe/fbdg9SMd\n2gcvPQsdu8LOw49/fO0lA59UvI0bRTq4vj4cPgwdO4r9vq84xTEicceSBXQv3NcpZ9l5MOxH2BEE\nRvqw6Q0YWPwRrGKF5cELkXA+B0wV8IMTjLJ6srFFR6ezcuU51q49z+3bhV2/7exM6NnTiw4dXGjd\n2pkWLRwxM3uwdFRenprTp6P4448rrF17ntTUXIyN9fjllxcYPLjJA4+nrilkZRF1Ih1XbzPMzCAx\nEXS0ucwtksZ/I3w5K8etwCgokGgvJ77f9Dpvma/HUXUTMASzWWDQCdKmgSoIEAFw+bIRXPhdQf3c\nPdjkXXjg7Y0VYKUDhgoRGHUVoNSKPdUsDSRrCut7F1ArDLmp7UG2Zzt6jYtg5NDNmJnmJ0fpdwaz\njyBnswjGQIx+Y+YYvc7gD3bQc+Mh8bgPP0c9ZTob+vfn1r59d1/7nchILFzEMoBaDX36iGLr/v7i\no44OoFHDsnYQHQg9Pwf/jyjOWZYQyj/Upx8tmVjs4yrL9euJeHsvwcnJjKiod1GUpIzO2uUwfRKM\nGAffrX7842svGfikR3vrLVi8GJydRUmzOnUgCyXT2E8U6XTAhZl0RKeCWrio1DB5Paw4LJZbFwyB\nab1LX04rSwOvx8Cv+TFqlCUsdQKzJ0x+02q1nDwZyYYNF9m16/o9QbCAlZURLi7mGBvro9FoSUrK\nJiIiFbW68L9Rz55eLFny3L3Lm0U5G4r6i5HZ+LQ24soV+PtvePZZuLJlC78PGQJAroc9Wae+YeHQ\nr9C7+B9JjjYsXDOV3g1P0i07/xybXhMwmwPadHGAXiX6L2o0Ck6c7cSe7Z0IDtBHEx2Dm845bDTX\n0NE8/nBkpq4LceqGJJv4YNXYnA4D79D/uX24uUQUPsigJ5iMA+V/kLUEtBloMGSr2YucDmnM1Kkr\nRMshExNY+jM5XXuyvndvov799+5LTL56FbtGje5enzkTvvxSLG0GBYFLwbL42dWw7TWwdIW3g4ud\n7WUQy14moUVLH5Zgjutjv9aK9ssvFxg1ajuDBjVi27ZXSvak2e/BD1/Dx/Pg7Q8qdoA1mwx80qMp\nldC9e2G2Z0CAKAkYRTrvsZ9MlAylCcPxqbAxaLUwdxfMyq/GMaYzLB8FhqU8X6zVwpoUmBorujs0\nNBA1P1uX4nzwo19fy/XriRw4EMq5czGcOxfD5ctxxVbeaNzYjp49vRgzpgWtWjk9+sXr6ImpTUwe\nn87T55NPYNgw2LBB3L3O35+wQ4cASBrWGd1lb/PlyMXonziKWk+XdbOGEzrWnXczfsZaHS6epNcc\nTKeBjhlkb0Kbsx0FhaVv8vL0uRjclGs3GnD7uh1xoUbkpCvIzdRBq9RgYKrFwAwsbJXU9Umlfv0I\nvOtfw9Xpvv0lHWcwfhX0moLyKGT/Ko5cAFcN27FcMZgu35/ghaU70VVroL43rNhIgoExy1u0QF2k\n7uT9Qe/HH+GNN8R57b//hh498u9Ij4XFvpCVCC9vgObDiv3WnuE7wtiPO/60o/g9wMo0Zcoeli49\nw/z5PZg5069kTxo5CP7aAat/g4FDKnaANZsMfNLjxcRAq1YQGys6OhSUNQskljkcRQO8T0c6V/Bf\nyn+chZGrxBJop/rw+yRwLsNRhSu58EokXMoVW1Uz7USbHcMKOPpUMMOLjk4nN1eFQqHAwsIQd3dL\nDA1LuESs1YJ9/uDi1NyO0MHTU5TiiowEW1vITUvjC8vCfaCE8d3J/f5NFs49gMVycVQgpEU9Viwc\nQ6MGYQzL2ImJJr9MjsISjIeKJBjyIHc/KI+jVQWLMmilpTAH/XZg0BV0XUF9W1SyUf139yHXDNux\n1qAvHpvDGf7VH1gkpKJVKFBMehftzDlc2r6drSNG3H28gZkZU65dw9zZ+e5t69fDqFHi27NqFYwf\nX+T7tX4gBO+E+r1gzN/FLhEkc5MApqEA+rAMMx7zB0gladt2JWfPRnPgwCj8/T1L9qQuTeHqJTgQ\nCM3KsCdQe8jAJ5XM8ePwzDMi4/OXX+DVV8Xt27nOGi5giC5f4E89yhCJSiHwNgxYDFHJ4GABGydC\n98aPf979sjXwQRwsThI/zD6GosN7m3Ka/ZWrgvNZCgXEi9ljv36wZw988IFoKgyQGhHBt3ULO7Sn\nd21M5O6PeP9YNi1mfIoiWnQtPz6gA3+8O4D6XmG8kHUMJ2VhI1cUpmDgJwKXXiPQ5gBaUMeAJlrM\n1LRZoFWCwgx0TEXg1HUGjIBc8Zi8s6LjhDbx7kvnKsw5bOzPvty2+G68Sv9Vf2Mbk39/+84w52vS\n6riwbeTIu7NXAM/u3Xl561aMigT2NWtgwgRRoWvuXPjwwyLfr3+XwZ9vgpEl/O+SWOp8CC1q9jOD\nZEJowABa8Fpp/2UqRGpqDvb2X6FWa0lJeR9z8xK0BdNowN1MZBCHpoK5RcUPtOaSgU8quaVLYcoU\nkeEXECCOPGjR8h1nOMBtbDDiK3oUFmOuIHdSYfgKOHAVdBQwZxB80K9sxSqOZcG4aAjJE7O/6bYw\n2x6Mq1PhC5UKencQgS9AFFo+fRratwdTUwgOBtf83+0J166xtMhSIEDwyc9p49uetxbsQW/1D3er\nwFzo2pR9w/2JetaJ7pylQ+4F7FU3HjIABeg4igCnYwkKExH4UII2WwRETcJDh56hY0+gYSsO6TZH\n56QWvz9O0mnPGQyy85cvG/nAh3NRduvJv99/z/4P7t2bem7JEtq++ebd5I6CQDd7trh/zhyYNavI\nE8JPwqpuoFY+donzBrsJ4keMsaU3S6v8wHqBgv29Z57x4ODB0SV70s0QqFgztwAAIABJREFUaN8Q\nHOrAldiKHWDNJwOfVDpTp8KSJWJ57dQpqF8flKj5hKNcJB43LPgSf8yo2CaYag18ugM+2ymu+zeC\nda+VvtILiMSX2XHwTf7sz0MfFtWBgebl2JOuAgweDFu3itnfzp2FY02NiGBpo0Yos7LuPlY74Xmm\nz1uNqTIPlnwF636EHNFxI8vClLPdm3OuV0vCO7lSxy6epspQGilvY6++g7k6BsUDOZv30qBLpo4t\nCXpOXNdzI1jPlTuxDtQ5FUerAxdoefgiZilFyt117w1vvIOqY1eCfvqJPW++ec/rmbu48OrevTj4\nFpYOS06G0aMLv9bFi8UfYoUPuC3O7KXHQKe3oN+3xY43lXACeBcNeXRkJq48vJpLVRgwYCM7d15n\n6dK+vPlm25I9qSCjc+AQsccnPYoMfFLpqFQwcKBYZmvYEE6eBBsbyCCPmRwknDR8sGMOXUWj0Qq2\n9yKMXg1xaeK837KRMLR92V7rZBZMjIGL+ZORZ03hO0doVH4N6MtVdDQ0aQKpqSKrccaMwvtUOTns\nnjSJ8z/9dM9zus6aRbspUzA1NICtm2DDGgg6c89jEp1sud7Si6j6zsR4ORHvZgPWCtSWOuiaatBH\niRodNBpd9FOVaJJ10E1WYxuVjPPNaNxComhw/hbmSfcVS23YGF4aAYOHk6ZnwJkffuBYwTptEQPW\nrKHF6NH3NJU9dw5eegnCwsDKCn7+GZ5/vsiTshJhhR/EB4NnNxi7D3Qfnv2kJpf9vEcqt/GgB215\nqyTf7kqRmpqDg8NCVCoNUVHv4uhYfKf4e4wZDLu2wjcrYNSEih1kzScDn1R66elimfPCBejaFf75\nRyRaxJPFdPaTRA5dcGMa7SvsmENRcWkwfi3syj9+NqQNfD8C6pTgzO/9VFpYlixmgCka0AOm2MCH\ndmBfMccVn8iOHTBokJgBrV9fpA1PvlsBAfzSq9cDz/MdOpSW48fj4e+PTngY7NsN+/+Cs6dEB/ry\nYO8ArTuI2Z1/b3Ksbbm6dSsnv/nmbvWVorrOmkXHadPu2cvLyRF7mF98ITKMW7cWFVo8i+Z7ZKfA\n2mch6gzU8YUJR8H44Qc1tWg5zTeEcxgznOnFIvSoPhu7ZVrmVKuhoZ34dwsMhboeFTrGp4AMfFLZ\nREZCu3Yi43PoUPFLV1cXQklhJgfJRkUfvJhEKxSVEPy0WvjxELz3G2TmgrUpLBoKozqVbbkyXgUf\nxsHqFPHDbqYD02zgXVvRALc6+eILkeSioyPS+1+7L0dDlZPDuZUr2fu//z30+S3GjqVBv354+vtj\nbGUFN6/DhUC4FSIuURGQkgRJiZCRXvgNVSjA2gZs7MDOHuo4Qb2G4jhC05Yobe2JCQoi9MABzi5b\nRkZMzEPfv+eXX9Jm0qS7haYL7NsHb74pyo+B+Pzrr8GoaFGV7OT8oHcWrD1gwjGwLL6+3RU2c5lf\n0cWI7nyJFSXMmKwk/ftvYPfuEH74oS+TJpVwmTPwNDzbHjzrwZmH7dFK95GBTyq7wECR6ZmeLkqa\nLV0qfhf+RxyfchQlGl7AmzE0rZTgBxCWABPXwT/5Ewr/RmL2V5ZanwBB2fBRPPyVvz1lqysSYCZZ\nV68A+NlnhQkfr78uWkwZ3Vd1S5WTw4VffiFgxgxyUoqf1TXo2xeX9u2x8vTE2ssLM0dHjKysMLK0\nREevcNqr1WjITk4mKz6ezPh4MmJjSQoJITYoiCtbtjxyvB7PPEOn6dOp17s3Ovc1TQ0MFA2Rd+bv\n3zZpIsqQdbm/QUFKBPzcF+5cAhsvGH8QrOpSnDD2c4bvAAWd+Qhn2j1yjJXtxo0kGjb8Hn19XSIi\n3sHBoYTtiL6ZC/M+hjFvwMJlFTvIp4MMfNKTOXgQnntOJAp+/LH4BQxwhhjmcRw1Wkbgwys8pAxX\nBdFq4ZcT8M4m0dldVwem9oBPBoJlGRP3jmaKGeCxbHHdUgcm28BbNuBQTZZAV6+GyZPFv4W3t5j9\nFenec4/YCxe4tGkTx7/4otLGV79PH5qPHk395567ZzmzQGCg+PnZvl1cNzERP1PTpolM4nvE/gfr\n+kJaFNg3gjH/gFXxRdPDOcK/fANoaMFrNGBA+X1h5WTy5N388MNZxo1rwerVA0v+xIH+cPwQrN0C\nzw+usPE9RWTgk57cjh0iw1CthkWL4O23xe3HiGAhp9AA42nOQBpW6riSMkS1l+WHQKMFWzP4uD9M\n8i991RcQAfWfTJifAIfzEyaNFDDUQgTB6nAG8Nw5GDECrl0T1wcMECn/zZsX/5yU27e5FRBAxPHj\nnF+7ttzG0uiFF/Ds3h33rl1x8PW9J1mlQE6O2LNbtkwkSoGYqU6eLJJ1HBwe8sL/bYat40CZBe5+\n8OoOMCk+nTecw5xmEVo0+DCCJpSwBFglSkjIom7dRWRnq7h0aRI+Pg/7wh8iOQmaOIqss5BE0QFE\nehwZ+KTysW4djBkjPl+zBsaOFZ8HEMpizgJVE/wAzofDWxvgyHVx3d1WnP0b3gH0yrhceTJLBMCd\nRTL02xnBJBsYYgGmVXgOMDdX7PstWAAFJxr8/UUwef75h8ye7qNRqUgNDyfx+nXSo6PJjI8nKz6e\nnNRUVNliyqtQKDCwsMDY2hpDS0uMbWywcnfHysMDy7p10X3Em6hUcOiQCHh//CGKbQNYWsK4cTB9\nOjg9rICKKhf+fh9O5HefbzkKBv4I+sV3UghhF+dZAUAjhuDLq5W27F4an312mNmzD9G3bwN27x7+\n+CcU+PE7+OhtkUD0296KG+DTRQY+qfwsWiRKmikUsHatOHMFsIebLCcQgLE04wW8H/EqFUOrhd0X\n4IM/CluVedmLg++jOoFBGZcrb+TBsiRYmyI6FACYKOAFCxhhAb3MQK+Kfs/euQPz58PKlYUB0Npa\nHEcZPFgsg5pXTFepB0RFwf794rJnDyQUOe/esqVIXBk2TBzIf6i4q/DbcIg5Dzp6ordehynFZi5p\nUHORn7jODgCaMQZvXiznr6p8ZGcrcXf/lvj4rNKVKNNqwc8Xrl2Bn/6A/tXz66uGZOCTytf8+aJ8\nlEIBP/0kaikC7OUWP3AOgNE0ZTCNin+RCqTWwPqT8PlOuJFfqtLVGqb2hNe6gE0Jj03dL0sDm9Ng\nZTKczC683VoHnjOD/ubQx6zsjXCfREqKmJGvXAlFTxHo6ooarN26id6Lvr5ib/D+pJjS0GpFkLt2\nDc6fh7NnxeXGfcmG3t4wZIi4NG36iMxbVS4cni8u6jywqScqsrgVn5iSRwan+Io7BKFAl9ZMxpOe\nZf+iKljBbK9NG2dOn36tZC2IAE6fgL6dRbWWCxGif5hUEjLwSeVv3jz46CPxy2zdOhg5Utz+D6Es\n5SxaYAQ+vEzjKlt2Uqnh9zMwdzdczp8BGhuI2d/EbtDSveyvfSsPNqSKFkjBhc0O0AFaGEFnE+hk\nDE0NoYEhGBT5FhT8t6uoijFXrojlxV27xH6gWn3v/To64oyci4toReXoCGZmYiZmairGpVSKDkl5\neZCUJGaWBZewMMjMfPB9zcxEgO3ZE3r1Epmaj/0aQ4/AjoniUDpAm9fETM+w+GlqIsGcYiFZxGGA\nBZ2YiT2+xT6+qkVGpuHtvYSsLCWHDo2mWzePkj95yhjYtA7emgmz5lfUEJ9GMvBJFWPuXJGRd//M\nbz9hLOYMWmAgDRlHsyrdc9Fo4O9L8O2+wiMQAC3rwvguogqMbRlngQDXc2F3BuxKhyNZoLrvfl3A\nTR/ClIW31TeAM55gVcGzw/R0OHFCFCC/dEnMBm/cEN+TJ2FnJ6r6+PpC27bQpg34+JRiQpIWDQGz\n4Nya/Bf0hkErwLNrsU/RoOYaf3CZDWjRYE19OvI+ptR5si+mgr366lZ+/fUigwc3ZsuWl0v+xNQU\n8HUWRanP3BBn+KSSkoFPqjiff15YQHjJEpFcASLb8xv+RYWWHngwhdboUvVVoa9Gw7KDsP4UJOfP\nWnR1oEdjGNIWBrUEuyfYE8vUwOlsURj7dLZojxSqfPA/k40uXK8HtlVwTCInB0JDRWGC6Ggxi8vM\nLLxotSI5Rl9fXGxsRHNiBwfx0c1N3FYm2clwZAGc/A6U2aBrAN0+hG4zQa/4unGphHGGxSQj1lMb\nMoimjESH6r30d/JkBJ06rcHQUJerVyfj6VmKjMzVS+H9KdC1B2wNqLhBPp1k4JMq1sKFIksPxCzw\ngw/ELDCQWOZzglzUdMCF92iPQSXU9iyJHCXsCIK1xyDgitgXBDHudp7wXFPo4wut3EH/CYNTtgai\nVHAiC3QV4K4PLY2qNiu00uVlwqklcPgLyMk/WO/zIvSaB/bFJ0IpyeIKGwlhF1rUmOBAGyZTh+rf\ni06pVNOx42rOnYvhww/9mDu3x+OfVPhk6NgIwm7Byk3wQvU7nlHNycAnVbyVK2HiRDFbmD5dFFRW\nKOAqCczhGJkoaYwtH9EZC6pXRejEDNgeCL+dgUPXIK/IWqWJAXSoB34NoI0HNHcT3SGqc0eHaiUj\nTgS8U0shO0nc5uUPz37xyOQVDWrC2M9lfiWHZEBBPZ6jKaOqTWuhx/nkk0N8+ulhXF0tuHp1MmZm\npehmUtCJob43HLsEetWkgkLNIQOfVDk2bxbNa1Uq0Sl72TKxVBZGKnM4SgLZuGDO/+GHI0+wqVaB\nMnLgYDD8dVHMBEPuPPgYa1PwdYF69uK4RD0HcLIUTXPtzcV+oW5tms09TEIIHPsagtaBSrRGwrUd\n9PxMdEx/xBGFSI5zhU2kI5rq2uBNK97Ampqzx3XqVCR+fmvQaLTs31+K4wsgzqW0rQ93YkT7oYFD\nKm6gTy8Z+KTKs2ePaC2TnQ19+ogDzGZmkEAWczhGGKlYYshs/GhAWTeKKs+dVDhxA47fgKBwkVGe\nmPHo5ygUsGkivFy9ykRWPFUeXN0BZ1bAzSJ7Uo2eB7/3wKNLsQFPTS5h7Oca28lENFk1xRFfXsUN\nPxTVYH+4pDIy8mjRYjk3bybz3nsd+eqrZ0v3AosXwJz3oVkr0ZS4LN2XJRn4pMp16pSoHpKQIM6Q\n7d4tUuazUDKfE1wgDgN0eJt2+FF87cXqSKuF6BSRJHMrvvByJw3i0iE+XdQO/ftd6OVT1aOtJPHX\nRHZm4FrIjBe36RlB8xHgNw0cGhf71GySCCOAEHaSSyogAp43L+JJj2qfvPIwEyb8yapVQTRrVofT\np1/D0LAUy5SpKdDaC1KSRZWW7r0rbqBPNxn4pMp344YobH3jBri7w19/QePGoETDMs4RQBgAQ2nC\nUJpUSk+/yqLKPzdX1lJpNUJqFFzcDBc2QPS5wtvr+ELb16HFq2D88AxGDSpiOEsoAcRyFm1+53cr\n6tGIwbjSEUU1SYIqrZUrz/H667swNNTlzJkJNG1ayqMW82fB159Dp26w46DcTC47GfikqhEfLwoo\nnzoFFhZiD7BPH9EodAch/MQFNEBnXHmLthghN/CrtbRosZR56XcIPVR4Et/QHHxegrYTwK3DQ39Z\na1CTwCWiOEUEx+7O7hTo4kxb6vEcDrSoljU2S+rQoTB69foFlUrDmjUDGDu2lJmn4WHg5yP2+P46\nAW07Vsg4awkZ+KSqk5Ul6nlu2SK2KhYuFJ0dFAo4SwxfcYpsVNTFgpl0wpVKKiwplUzCdbiyTVwi\n/i28Xc8QvPtBs+Hg3Rf0H2xbkUc6cVwkmtPEcIY80u/eZ44bnvTEnWcwouZ3G7h5M4l27VaRlJTN\ntGkdWbiwlPt6Wi289CwcDoCBL8PqzRUz0NpDBj6pamk0om3Op5+K6+PGwQ8/gKEhhJPGfE4QRTrG\n6PEWbemEa9UOuDbLyxKzuet/iUvSzcL79IygQW9o8gI0GQRG9/bbyyWVJK4TxyXi+I8UblH014g5\nrrjQARc6Yk39Gj27Kyo1NYeOHVdz9WoC/fo1YMeOoeiWNq3355Xw7utgYwvHr4B9CVsWScWRgU+q\nHn7/Xcz+srOhQwdx3dVVJL18z1mO56evD6Qho2mKXg3K5KuxtFpIuJYf6PZC2GFRNLqAsbWY2TV5\nQQQ9A1O0aMgkjjQiSCOcZG6QRAhZxN3z0jroYUtj6tACFzpi8RT+QZORkUfv3us5cSICHx97TpwY\nj4VFKc+pRkVAZx/ISIcfN8DgYRUz2NpFBj6p+ggMhEGDICIC7O3Fvp+/v9j3+5MQfuI/1Ghpgh3T\n6YAt1aDz69MmJRxuHYRbB8TH1Ii7d2kVCrTOrVA27EJOw3akuTiRpZtMJnfIIp4s4sggBjV5D7ys\nLkZYUw87GuNAc+xohG41K1ZQnrKylPTrt4FDh8Jwc7Pg6NGxuLtble5FtFoY2hf274XnBsLP22RC\nS/mQgU+qXhISYPhw2LdP7PvNny+qvSgUcIUEFnCSJHKwwpDpdKApctkHxB8HSjLJJYVc0lCRi5qc\n+z7moUGJBiVqVGjIQyctAbPQYMxvhWBx6wbGScn3vG6eiRHxDVyJbViHqAYW5Jo+PsnICBsscMOC\nuljhgQ0NscC1xmZjllZOjoqBAzfxzz83cXIy48iRsdSvX4ZzqRt/gqljRVf1Y5fB8WHdeaUykIFP\nqn7Uavi//xO1PQH69xcdHmxtIZkcFnKKi8SjAAbTiGH4oP+UL31q0ZJDMulEkUksGcSSSSyZ3CGb\nRHJIRftA74f7X0SLWUImdreT7l7ME+/tIZRnpEe8hy3xXnbE1bMj1cEcdAp/T+hhgiEWGGKBEdaY\n4IApDphgjykOmOKIQTWtvFMZsrOVDBnyO7t3h2Bvb8Lhw2No3Ni+9C8Ucg16tRVLnEvXwSujyn+w\ntZcMfFL19eefYt8vJUX0h9u4Ebp0ATUaNnKFLVxFA9THmndp/9RkfSrJJJVwUrlNKmGk5X9eNPPx\nYfQwwQhLDLBADyP0VXpYxCRieTsC87AwzMJvopd572toDIzIdW9Grlcr8rzaoXH2QUfHCB300cUg\n/6MeuhhigAW6NfDQeGVJSspmwICNHD8egY2NMQcPjqZZszK0RUpPg2fbQ0gwDHhJlCaTS5zlSQY+\nqXq7fRuGDYOTJ8XS5yefiA7vurpwmXgWcZo4sjBEl/E0pzdeNS4jMIdkrvMnadwmldtkEf/Qx+lj\nigVumOGEKXUwxREzHDHGDiONObpJERB5Ov9yBmKC7k1GATCrI8qDufuJi2Nz0JVnJJ9UREQqffr8\nypUr8bi6WrB37wh8fMqwDK/RwJjBsGc7NPKBvadEXT+pPMnAJ1V/SiXMng1ffCGud+oEv/wCXl6Q\niZIfCeQQ4QC0w4mptMWyBiVO5JDCTgqXsnTQxwI3LHHHEg8sqYslHhhhI4K6VisOjEedEQEu8rT4\nPCf1wRe387430Nl4ydlDObt8OY4+fX4lMjKNJk3s2bt3BG5ulo9/4sN8MxfmfQwWlrDvDNRrUL6D\nlUAGPqkm2bcPxowRDVLNzOC772DsWPF7/AjhLCOQTJRYYsgkWtWoM39X+R1znLHEHTOcChNBlDkQ\ndwXu/AcxFyD2P4i9AFmJD76IuRO4tgfXtqLbgUsbMC5lJqFUKtu2XWXUqO1kZOTh51eXHTuGYmNT\nxmzjfXtgeH/x+a874dl+5TdQqSgZ+KSaJTERJk0S5/xAFLxetkzsAcaTxbec5mL+UmEnXJhIK6wx\nqsIRl4BWC1kJoqBzQsHluviYGAIa9YPPMbYG51YiwLm2A5e2YOlS+WOvpdRqDbNnH2TevGMAvPKK\nD2vXDsTYuIx7oNeuQN/OohD1B5/BtI/LcbTSfWTgk2oerRZ+/RUmT4a0NFHr86uv4LXXAB0te7nF\nOv4jGxVm6DOeFnTHver2/jRq0XQ1PUZcUm4XuYSJgFfQefx+Ch2wayj24hybFX60dJVLllUkKSmb\nESO2snfvDXR0FCxY0JN33+2Ioqz/HrdDoZ8fxEZDvxdg7RbZbqhiycAn1VyRkfDmm7Bzp7jerZvo\n9t6ggZj9LeUcgfn921pSh8m0xgHTyhvgrrfg4m+QGQdazaMfa2gh9uPsvcG2ofho5w22DcCgZnQV\nrw0OHAhl1KhtREWlY2trzObNL9Gjh1fZXzA2Bvr7Qdgt6NhVtBsyloUZKpgMfFLNptXCb7/B1Kmi\n44ORkaj7+e67oKun5SC3WcV5MlBiiC5DacIAGlbOub9tE+DsKvG5qT2YOYp9OKu6YOUB1u5g5S6C\nm1kdOYOrxnJzVXz00QG+/vokAB06uLJp0+DSV2MpKikRBnSD4MvQog1s2w/mFuU0YukRZOCTng6J\niSLY/fyzuN6qlZj9tWolDr2vIOhuvU83zJlIK5pVdNWXtGgx0zOrA7ry/FtNdeFCLKNHb+fChTvo\n6iqYPbsbH37YBT29J/jjKT0dBveEwNPg3QT+PAy2duU3aOlRZOCTni5798LEiRAeLiZQ48eLCjAO\nDhBILCsIIpoMALrixliay5qf0kNlZSmZM+cwCxeeQK3WUq+eNevXv0iHDk+YLZyeBiMGwInD4O4J\nu46Ck0xMqkQy8ElPn4wMUfJs8WJQqcDSUlyfMgXQV7ON6/zGVfJQY4weL9OY52mAQS2pJSk93j//\n3OSNN3YRGpqCQgFTprRj7tzumJs/4fnQhHh45Tm4cA7qOMHuY+DxBHuEUlnIwCc9vYKD4Z13xCwQ\noFEjWLRIdHq/QyarOM+/RAPggAmjaYYfrjWu8otUfm7eTGLGjAC2br0KQLNmdVixoj/t25fDmdDI\ncBjcC25eB8968Ps/MuhVDRn4pKebVgt79ogAGBIibuvfX1SB8fGBIO6whgvcRlQ9aYQt42hOI2yr\ncNRSZUtNzeHzz4+wePFp8vLUmJjoM2tWV6ZN64i+fjmsBFy7Irqox0SBb3PYvBfqOD7560plIQOf\nVDvk5YmlzzlzRF6BQgEjRojanx71tAQQynoukYqobdkRF17FFzdklt3TLDtbyfLlZ5k37xgJCVkA\njBrVnHnzuuPiUk7/9oGnxfJmchJ08BNVWSxlRZ0qJAOfVLvExsLnn8OKFaIGqJ4ejBsHs2aBjauS\nLQTzJ9fJQ4MO4I8HQ2lCnco8/ydVuNxcFStXBjJv3lFiYkSyk59fXRYt6k2bNs7l90Z/bIS3x0N2\nNvTqJzotmMhzmVVMBj6pdgoLE+f9fv5ZFMQ3NBSH4adPBwOnbDZzhX2EokaLHgqexYvBNMIe+Uur\nJsvIyGPVqkC+/vokkZFpALRs6cicOf7069eg7NVX7qdWw2cfwJKvxPUR42HhMtCXx1qqARn4pNot\nOFhkfP72m7huYCB6AE6bBhbeGWzkMocJRwvoocAfDwbTCOda3Gy1JoqLy+T77/9l6dIzJCfnAODr\n68CcOc8waFCj8gt4ACnJMGEoHPxHLCnM/RbGvSkLFFQfMvBJEkBQEHz2GWzfLhJiFAoYNAhmzACn\nDqn8zlWOEYEG0AH8cGMIjXGnjO1npEpx5kwUS5acYfPmS+TmimLfHTu68v77nXn+eW90dMo5GAVf\nhpEDIfSmOJC+Zgt07la+7yE9KRn4JKmoa9fg669h3TqREAPQtavoB9i4RzpbCOYgt1Hn/xdojzOD\naEgT7GrFMQg1GoK4QwBheGDJUJpU9ZAekJGRx++/X2bZsrOcOSOOqygU0L9/Q2bM6IyfX93yf1Ot\nFjashQ//B5mZ0LQl/LwN3NzL/72kJyUDnyQ9TEyMyAJdtgxSU2H+fJg5U9wXTxZbucY+bpGHKD7t\nhRXP04CuuKH/FB6EjyKdAMI4SBhJiKVCB0xYSd9qEfC1Wi3Hj0ewdm0QmzdfJjNTCYC1tRHjx7dk\n0qS2eHlZV8ybpyTDtImwI79X1ksj4JsVMoml+pKBT5IeJS0NVq0SmZ9W92WgJ5PDbm6wl5ukIaaH\nlhjSAw964YkL5lUw4vITTxYniOQoEVwn6e7tzpjRAw+641Hl5d4uXrzDxo2X2LjxEmFhha2dOnd2\nY9y4lgwd6ouJSQUmlBw/DG+OhKgIMDWDBUvh5ZFyP696k4FPkp5UHmqOEM5OQgjNPwgP4IMdPfGk\nIy6YUDOy+WLI4DTRHCeSYAq7vBuhix9u9MSTxthW2SxPo9Hy77+R/PnnNXbsuMbVqwl373N2NmfU\nqGaMGdMCb+8KLvisVMKCT+Db+WKZs3V7WP6rqMgiVXcy8ElSedGiJZhE9hHKUSLIRSRT6KNDa5zo\nghttccIIvSoeaaFc1ASTSCAxnCGGSNLv3meALm1wwg9X2lThuLOylAQE3OLPP6+xc+d14uIy795n\nY2PMSy81ZvjwpnTp4l7+ySoPc+5feGcCXLkoGsa+8yG8N1seVag5ZOCTpIqQhZKjRHCYcC4Tf/c/\njB46+GBHa5xojSOumFfq7CkLJSEkcZVELhJHMIkoKWySa4o+rXCkPc60xRnjKgh2arWGoKBYDhwI\n5cCBUA4fvk1Ojuru/R4eVgwY0JABA7zp2tW9fEqKlURGBsz/GFYsFrM8z3rw3Rro1LVy3l8qLzLw\nSVJFSySb40RyjAiukXjPfx5LDPHGBm9saYgtrphjg9ETB0MVGmLIIJJ0IkgjkjRukUIEafe8vwLw\nwIoWONAWZxpji25lNOktOlaVhosX73DkyG0OHAjj8OEwUlNz73lMu3Yud4Odr69D+Z67K4mAv+C9\nN0ShaV1deHMaTP8/mcBSM8nAJ0mVKY1cgrjDOWII4s7d2qBFGaOHC+Y4YooFhvkXA0wxeOCx2ahI\nI5d0ckkjjzRyiSOLWDLuHrkoSg8FnljhjS2+2OOLPRY8YaudUoqJSefUqcj8SxRnz0aTlaW85zFe\nXtZ07+5B9+6e+Pt74uhYRQUDIsPhkxmwfbO43qwVfLsKmrWsmvFI5UEGPkmqKlq03CGTYBIJJpFb\npBBFOun5GaJPQgE4YIor5rhigSvmuGOJF1aV1ndQrdZw61Yy58/HEhQUy/nz4lJQG7OoevWs6dTJ\nLT/QeeDuXsVFnLOy4PsFsGSBqLNpbAwzP4OJb4lqLFJNJgOfJFVGaldnAAAE/ElEQVQ3aeQSSTrx\nZN0zk8tE+cBjjdDDAoN7ZoY2GOOMGYaVsD+nUmkID0/lxo2ku5eQEPHx1q1k8vLUDzzH3NyAdu1c\n6NDBlQ4dXGnf3gV7+2pSBFyrha2b4NMZEB0pbhv4MnyyQB5Gf3rIwCdJ0qMplWrCwlLuCWoFl9DQ\nFFQqTbHPdXExp2VLJ1q0qEOLFo60aOGIp6d15WRflta/x0XAO31CXG/aEuZ9Bx27VO24pPJW7A+f\nnMtLUi2Sm6siNDSFkJDEIoEtmRs3krh9OwW1uvi/dV1dLahf34b69a1p0MA2/3MbvLysMTN7cF+y\n2vkvCOZ9DAF7xHV7B/hoHgwbIxJZpFpDBj5JegolJ2dz+XI8V67Ec+JEBH/8cRVbW2PCw1MpbpFH\noQB3d8v8oGZ9N7AVBDdj4xp6fi0kGL6YXVhqzNQU3ngHJr8HFrL4eG0klzol6SkREHCLRYtOsWdP\nSLGP0dVV4OFhdU9QK7h4elphaPgU/S0cEgzffQG//VLYjHHcZHhrJtjZV/XopIon9/gk6Wl25Mht\nunX76ZGPCQgYSZcu7hgYPOXLeufPwXfzYddWkcSipycaxE77GJxdq3p0UuWRe3yS9DRzcTHH19eB\nS5fiAHjxxcZ07OhK585utGrl9HTN5B5Gq4UTR+DbeaIxLIhuw8PGwtQZ4OFVteOTqhU545MkqebK\ny4M/t8CK7yDwtLjN1BTGTBL7eE7OVTs+qSrJGZ8kSU+RxAT4eQWsXgqxogkt1jYw4X/w2hSwsa3a\n8UnVmgx8kiTVHOfPwU/LYct6yBGNcvFuAhPfFo1hZU1NqQRk4JMkqXrLyIBtm0TAu3Cu8PaefeGN\nt6FbT9kQVioVGfgkSap+tFq4eB5+WQm/r4eM/P6BVtbwymgY8wY08K7aMUo1lgx8kiRVH3F3YMuv\nsOkn0QC2QPvOMHoiPP+SKCQtSU9ABj5JkqpWTg78sws2rYP9f4E6v+C1ja3Ytxs5ARr7Vu0YpaeK\nPM4gSVLlU6ngyH7YuhF2b4P0NHG7nh706gdDR4uPBjWgBqhUXcnjDJIkVTGNRnRE2LoR/vwdEuIL\n72vWCl4ZBYOHy3JiUoWTgU+SpIqjUsHJo7Bzi5jZ3YkpvK++N7w4TFzqN6y6MUq1jgx8kiSVr9xc\nOHZQ1Mrcs00cNi/g5g4DhoiZXdMW8hiCVCVk4JMk6cklJcK+3bD3TzjwN2RmFN7n1QCeHywyMpu3\nksFOqnIy8EmSVHpaLQRfhoC/REbmv8fEHl6Bpi2g9wAY8JLIyJTBTqpGZOCTJKlkMjLg6AHRwTxg\nD0RFFN6npwdde0CfAeLiWrfqxilJjyEDnyRJj7duBXwwVXRDKGDvAD2ey7/0kd3MpRpDBj5Jkh6v\nXkNQKqF1e1Ejs2dfsV+no1PVI5OkUpMH2CVJejylElJT5Bk7qSYpdmNZBj5JkiTpaVRs4JPrFJIk\nSVKtIgOfJEmSVKvIwCdJkiTVKjLwSZIkSbWKDHySJElSrSIDnyRJklSryMAnSZIk1Soy8EmSJEm1\nigx8kiRJUq0iA58kSZJUq8jAJ0mSJNUqMvBJkiRJtYoMfJIkSVKtIgOfJEmSVKvIwCdJkiTVKjLw\nSZIkSbWK3mPuL7aRnyRJkiTVRHLGJ0mSJNUqMvBJkiRJtYoMfJIkSVKtIgOfJEmSVKvIwCdJkiTV\nKjLwSZIkSbXK/wOSG3SDerlRLQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" ] }, "metadata": {}, @@ -752,11 +195,255 @@ }, { "data": { - "text/html": [ - "" - ], "text/plain": [ - "" + "(array([ 0. , 0.004004 , 0.00800801, 0.01201201, 0.01601602,\n", + " 0.02002002, 0.02402402, 0.02802803, 0.03203203, 0.03603604,\n", + " 0.04004004, 0.04404404, 0.04804805, 0.05205205, 0.05605606,\n", + " 0.06006006, 0.06406406, 0.06806807, 0.07207207, 0.07607608,\n", + " 0.08008008, 0.08408408, 0.08808809, 0.09209209, 0.0960961 ,\n", + " 0.1001001 , 0.1041041 , 0.10810811, 0.11211211, 0.11611612,\n", + " 0.12012012, 0.12412412, 0.12812813, 0.13213213, 0.13613614,\n", + " 0.14014014, 0.14414414, 0.14814815, 0.15215215, 0.15615616,\n", + " 0.16016016, 0.16416416, 0.16816817, 0.17217217, 0.17617618,\n", + " 0.18018018, 0.18418418, 0.18818819, 0.19219219, 0.1961962 ,\n", + " 0.2002002 , 0.2042042 , 0.20820821, 0.21221221, 0.21621622,\n", + " 0.22022022, 0.22422422, 0.22822823, 0.23223223, 0.23623624,\n", + " 0.24024024, 0.24424424, 0.24824825, 0.25225225, 0.25625626,\n", + " 0.26026026, 0.26426426, 0.26826827, 0.27227227, 0.27627628,\n", + " 0.28028028, 0.28428428, 0.28828829, 0.29229229, 0.2962963 ,\n", + " 0.3003003 , 0.3043043 , 0.30830831, 0.31231231, 0.31631632,\n", + " 0.32032032, 0.32432432, 0.32832833, 0.33233233, 0.33633634,\n", + " 0.34034034, 0.34434434, 0.34834835, 0.35235235, 0.35635636,\n", + " 0.36036036, 0.36436436, 0.36836837, 0.37237237, 0.37637638,\n", + " 0.38038038, 0.38438438, 0.38838839, 0.39239239, 0.3963964 ,\n", + " 0.4004004 , 0.4044044 , 0.40840841, 0.41241241, 0.41641642,\n", + " 0.42042042, 0.42442442, 0.42842843, 0.43243243, 0.43643644,\n", + " 0.44044044, 0.44444444, 0.44844845, 0.45245245, 0.45645646,\n", + " 0.46046046, 0.46446446, 0.46846847, 0.47247247, 0.47647648,\n", + " 0.48048048, 0.48448448, 0.48848849, 0.49249249, 0.4964965 ,\n", + " 0.5005005 , 0.5045045 , 0.50850851, 0.51251251, 0.51651652,\n", + " 0.52052052, 0.52452452, 0.52852853, 0.53253253, 0.53653654,\n", + " 0.54054054, 0.54454454, 0.54854855, 0.55255255, 0.55655656,\n", + " 0.56056056, 0.56456456, 0.56856857, 0.57257257, 0.57657658,\n", + " 0.58058058, 0.58458458, 0.58858859, 0.59259259, 0.5965966 ,\n", + " 0.6006006 , 0.6046046 , 0.60860861, 0.61261261, 0.61661662,\n", + " 0.62062062, 0.62462462, 0.62862863, 0.63263263, 0.63663664,\n", + " 0.64064064, 0.64464464, 0.64864865, 0.65265265, 0.65665666,\n", + " 0.66066066, 0.66466466, 0.66866867, 0.67267267, 0.67667668,\n", + " 0.68068068, 0.68468468, 0.68868869, 0.69269269, 0.6966967 ,\n", + " 0.7007007 , 0.7047047 , 0.70870871, 0.71271271, 0.71671672,\n", + " 0.72072072, 0.72472472, 0.72872873, 0.73273273, 0.73673674,\n", + " 0.74074074, 0.74474474, 0.74874875, 0.75275275, 0.75675676,\n", + " 0.76076076, 0.76476476, 0.76876877, 0.77277277, 0.77677678,\n", + " 0.78078078, 0.78478478, 0.78878879, 0.79279279, 0.7967968 ,\n", + " 0.8008008 , 0.8048048 , 0.80880881, 0.81281281, 0.81681682,\n", + " 0.82082082, 0.82482482, 0.82882883, 0.83283283, 0.83683684,\n", + " 0.84084084, 0.84484484, 0.84884885, 0.85285285, 0.85685686,\n", + " 0.86086086, 0.86486486, 0.86886887, 0.87287287, 0.87687688,\n", + " 0.88088088, 0.88488488, 0.88888889, 0.89289289, 0.8968969 ,\n", + " 0.9009009 , 0.9049049 , 0.90890891, 0.91291291, 0.91691692,\n", + " 0.92092092, 0.92492492, 0.92892893, 0.93293293, 0.93693694,\n", + " 0.94094094, 0.94494494, 0.94894895, 0.95295295, 0.95695696,\n", + " 0.96096096, 0.96496496, 0.96896897, 0.97297297, 0.97697698,\n", + " 0.98098098, 0.98498498, 0.98898899, 0.99299299, 0.996997 ,\n", + " 1.001001 , 1.00500501, 1.00900901, 1.01301301, 1.01701702,\n", + " 1.02102102, 1.02502503, 1.02902903, 1.03303303, 1.03703704,\n", + " 1.04104104, 1.04504505, 1.04904905, 1.05305305, 1.05705706,\n", + " 1.06106106, 1.06506507, 1.06906907, 1.07307307, 1.07707708,\n", + " 1.08108108, 1.08508509, 1.08908909, 1.09309309, 1.0970971 ,\n", + " 1.1011011 , 1.10510511, 1.10910911, 1.11311311, 1.11711712,\n", + " 1.12112112, 1.12512513, 1.12912913, 1.13313313, 1.13713714,\n", + " 1.14114114, 1.14514515, 1.14914915, 1.15315315, 1.15715716,\n", + " 1.16116116, 1.16516517, 1.16916917, 1.17317317, 1.17717718,\n", + " 1.18118118, 1.18518519, 1.18918919, 1.19319319, 1.1971972 ,\n", + " 1.2012012 , 1.20520521, 1.20920921, 1.21321321, 1.21721722,\n", + " 1.22122122, 1.22522523, 1.22922923, 1.23323323, 1.23723724,\n", + " 1.24124124, 1.24524525, 1.24924925, 1.25325325, 1.25725726,\n", + " 1.26126126, 1.26526527, 1.26926927, 1.27327327, 1.27727728,\n", + " 1.28128128, 1.28528529, 1.28928929, 1.29329329, 1.2972973 ,\n", + " 1.3013013 , 1.30530531, 1.30930931, 1.31331331, 1.31731732,\n", + " 1.32132132, 1.32532533, 1.32932933, 1.33333333, 1.33733734,\n", + " 1.34134134, 1.34534535, 1.34934935, 1.35335335, 1.35735736,\n", + " 1.36136136, 1.36536537, 1.36936937, 1.37337337, 1.37737738,\n", + " 1.38138138, 1.38538539, 1.38938939, 1.39339339, 1.3973974 ,\n", + " 1.4014014 , 1.40540541, 1.40940941, 1.41341341, 1.41741742,\n", + " 1.42142142, 1.42542543, 1.42942943, 1.43343343, 1.43743744,\n", + " 1.44144144, 1.44544545, 1.44944945, 1.45345345, 1.45745746,\n", + " 1.46146146, 1.46546547, 1.46946947, 1.47347347, 1.47747748,\n", + " 1.48148148, 1.48548549, 1.48948949, 1.49349349, 1.4974975 ,\n", + " 1.5015015 , 1.50550551, 1.50950951, 1.51351351, 1.51751752,\n", + " 1.52152152, 1.52552553, 1.52952953, 1.53353353, 1.53753754,\n", + " 1.54154154, 1.54554555, 1.54954955, 1.55355355, 1.55755756,\n", + " 1.56156156, 1.56556557, 1.56956957, 1.57357357, 1.57757758,\n", + " 1.58158158, 1.58558559, 1.58958959, 1.59359359, 1.5975976 ,\n", + " 1.6016016 , 1.60560561, 1.60960961, 1.61361361, 1.61761762,\n", + " 1.62162162, 1.62562563, 1.62962963, 1.63363363, 1.63763764,\n", + " 1.64164164, 1.64564565, 1.64964965, 1.65365365, 1.65765766,\n", + " 1.66166166, 1.66566567, 1.66966967, 1.67367367, 1.67767768,\n", + " 1.68168168, 1.68568569, 1.68968969, 1.69369369, 1.6976977 ,\n", + " 1.7017017 , 1.70570571, 1.70970971, 1.71371371, 1.71771772,\n", + " 1.72172172, 1.72572573, 1.72972973, 1.73373373, 1.73773774,\n", + " 1.74174174, 1.74574575, 1.74974975, 1.75375375, 1.75775776,\n", + " 1.76176176, 1.76576577, 1.76976977, 1.77377377, 1.77777778,\n", + " 1.78178178, 1.78578579, 1.78978979, 1.79379379, 1.7977978 ,\n", + " 1.8018018 , 1.80580581, 1.80980981, 1.81381381, 1.81781782,\n", + " 1.82182182, 1.82582583, 1.82982983, 1.83383383, 1.83783784,\n", + " 1.84184184, 1.84584585, 1.84984985, 1.85385385, 1.85785786,\n", + " 1.86186186, 1.86586587, 1.86986987, 1.87387387, 1.87787788,\n", + " 1.88188188, 1.88588589, 1.88988989, 1.89389389, 1.8978979 ,\n", + " 1.9019019 , 1.90590591, 1.90990991, 1.91391391, 1.91791792,\n", + " 1.92192192, 1.92592593, 1.92992993, 1.93393393, 1.93793794,\n", + " 1.94194194, 1.94594595, 1.94994995, 1.95395395, 1.95795796,\n", + " 1.96196196, 1.96596597, 1.96996997, 1.97397397, 1.97797798,\n", + " 1.98198198, 1.98598599, 1.98998999, 1.99399399, 1.997998 ,\n", + " 2.002002 , 2.00600601, 2.01001001, 2.01401401, 2.01801802,\n", + " 2.02202202, 2.02602603, 2.03003003, 2.03403403, 2.03803804,\n", + " 2.04204204, 2.04604605, 2.05005005, 2.05405405, 2.05805806,\n", + " 2.06206206, 2.06606607, 2.07007007, 2.07407407, 2.07807808,\n", + " 2.08208208, 2.08608609, 2.09009009, 2.09409409, 2.0980981 ,\n", + " 2.1021021 , 2.10610611, 2.11011011, 2.11411411, 2.11811812,\n", + " 2.12212212, 2.12612613, 2.13013013, 2.13413413, 2.13813814,\n", + " 2.14214214, 2.14614615, 2.15015015, 2.15415415, 2.15815816,\n", + " 2.16216216, 2.16616617, 2.17017017, 2.17417417, 2.17817818,\n", + " 2.18218218, 2.18618619, 2.19019019, 2.19419419, 2.1981982 ,\n", + " 2.2022022 , 2.20620621, 2.21021021, 2.21421421, 2.21821822,\n", + " 2.22222222, 2.22622623, 2.23023023, 2.23423423, 2.23823824,\n", + " 2.24224224, 2.24624625, 2.25025025, 2.25425425, 2.25825826,\n", + " 2.26226226, 2.26626627, 2.27027027, 2.27427427, 2.27827828,\n", + " 2.28228228, 2.28628629, 2.29029029, 2.29429429, 2.2982983 ,\n", + " 2.3023023 , 2.30630631, 2.31031031, 2.31431431, 2.31831832,\n", + " 2.32232232, 2.32632633, 2.33033033, 2.33433433, 2.33833834,\n", + " 2.34234234, 2.34634635, 2.35035035, 2.35435435, 2.35835836,\n", + " 2.36236236, 2.36636637, 2.37037037, 2.37437437, 2.37837838,\n", + " 2.38238238, 2.38638639, 2.39039039, 2.39439439, 2.3983984 ,\n", + " 2.4024024 , 2.40640641, 2.41041041, 2.41441441, 2.41841842,\n", + " 2.42242242, 2.42642643, 2.43043043, 2.43443443, 2.43843844,\n", + " 2.44244244, 2.44644645, 2.45045045, 2.45445445, 2.45845846,\n", + " 2.46246246, 2.46646647, 2.47047047, 2.47447447, 2.47847848,\n", + " 2.48248248, 2.48648649, 2.49049049, 2.49449449, 2.4984985 ,\n", + " 2.5025025 , 2.50650651, 2.51051051, 2.51451451, 2.51851852,\n", + " 2.52252252, 2.52652653, 2.53053053, 2.53453453, 2.53853854,\n", + " 2.54254254, 2.54654655, 2.55055055, 2.55455455, 2.55855856,\n", + " 2.56256256, 2.56656657, 2.57057057, 2.57457457, 2.57857858,\n", + " 2.58258258, 2.58658659, 2.59059059, 2.59459459, 2.5985986 ,\n", + " 2.6026026 , 2.60660661, 2.61061061, 2.61461461, 2.61861862,\n", + " 2.62262262, 2.62662663, 2.63063063, 2.63463463, 2.63863864,\n", + " 2.64264264, 2.64664665, 2.65065065, 2.65465465, 2.65865866,\n", + " 2.66266266, 2.66666667, 2.67067067, 2.67467467, 2.67867868,\n", + " 2.68268268, 2.68668669, 2.69069069, 2.69469469, 2.6986987 ,\n", + " 2.7027027 , 2.70670671, 2.71071071, 2.71471471, 2.71871872,\n", + " 2.72272272, 2.72672673, 2.73073073, 2.73473473, 2.73873874,\n", + " 2.74274274, 2.74674675, 2.75075075, 2.75475475, 2.75875876,\n", + " 2.76276276, 2.76676677, 2.77077077, 2.77477477, 2.77877878,\n", + " 2.78278278, 2.78678679, 2.79079079, 2.79479479, 2.7987988 ,\n", + " 2.8028028 , 2.80680681, 2.81081081, 2.81481481, 2.81881882,\n", + " 2.82282282, 2.82682683, 2.83083083, 2.83483483, 2.83883884,\n", + " 2.84284284, 2.84684685, 2.85085085, 2.85485485, 2.85885886,\n", + " 2.86286286, 2.86686687, 2.87087087, 2.87487487, 2.87887888,\n", + " 2.88288288, 2.88688689, 2.89089089, 2.89489489, 2.8988989 ,\n", + " 2.9029029 , 2.90690691, 2.91091091, 2.91491491, 2.91891892,\n", + " 2.92292292, 2.92692693, 2.93093093, 2.93493493, 2.93893894,\n", + " 2.94294294, 2.94694695, 2.95095095, 2.95495495, 2.95895896,\n", + " 2.96296296, 2.96696697, 2.97097097, 2.97497497, 2.97897898,\n", + " 2.98298298, 2.98698699, 2.99099099, 2.99499499, 2.998999 ,\n", + " 3.003003 , 3.00700701, 3.01101101, 3.01501502, 3.01901902,\n", + " 3.02302302, 3.02702703, 3.03103103, 3.03503504, 3.03903904,\n", + " 3.04304304, 3.04704705, 3.05105105, 3.05505506, 3.05905906,\n", + " 3.06306306, 3.06706707, 3.07107107, 3.07507508, 3.07907908,\n", + " 3.08308308, 3.08708709, 3.09109109, 3.0950951 , 3.0990991 ,\n", + " 3.1031031 , 3.10710711, 3.11111111, 3.11511512, 3.11911912,\n", + " 3.12312312, 3.12712713, 3.13113113, 3.13513514, 3.13913914,\n", + " 3.14314314, 3.14714715, 3.15115115, 3.15515516, 3.15915916,\n", + " 3.16316316, 3.16716717, 3.17117117, 3.17517518, 3.17917918,\n", + " 3.18318318, 3.18718719, 3.19119119, 3.1951952 , 3.1991992 ,\n", + " 3.2032032 , 3.20720721, 3.21121121, 3.21521522, 3.21921922,\n", + " 3.22322322, 3.22722723, 3.23123123, 3.23523524, 3.23923924,\n", + " 3.24324324, 3.24724725, 3.25125125, 3.25525526, 3.25925926,\n", + " 3.26326326, 3.26726727, 3.27127127, 3.27527528, 3.27927928,\n", + " 3.28328328, 3.28728729, 3.29129129, 3.2952953 , 3.2992993 ,\n", + " 3.3033033 , 3.30730731, 3.31131131, 3.31531532, 3.31931932,\n", + " 3.32332332, 3.32732733, 3.33133133, 3.33533534, 3.33933934,\n", + " 3.34334334, 3.34734735, 3.35135135, 3.35535536, 3.35935936,\n", + " 3.36336336, 3.36736737, 3.37137137, 3.37537538, 3.37937938,\n", + " 3.38338338, 3.38738739, 3.39139139, 3.3953954 , 3.3993994 ,\n", + " 3.4034034 , 3.40740741, 3.41141141, 3.41541542, 3.41941942,\n", + " 3.42342342, 3.42742743, 3.43143143, 3.43543544, 3.43943944,\n", + " 3.44344344, 3.44744745, 3.45145145, 3.45545546, 3.45945946,\n", + " 3.46346346, 3.46746747, 3.47147147, 3.47547548, 3.47947948,\n", + " 3.48348348, 3.48748749, 3.49149149, 3.4954955 , 3.4994995 ,\n", + " 3.5035035 , 3.50750751, 3.51151151, 3.51551552, 3.51951952,\n", + " 3.52352352, 3.52752753, 3.53153153, 3.53553554, 3.53953954,\n", + " 3.54354354, 3.54754755, 3.55155155, 3.55555556, 3.55955956,\n", + " 3.56356356, 3.56756757, 3.57157157, 3.57557558, 3.57957958,\n", + " 3.58358358, 3.58758759, 3.59159159, 3.5955956 , 3.5995996 ,\n", + " 3.6036036 , 3.60760761, 3.61161161, 3.61561562, 3.61961962,\n", + " 3.62362362, 3.62762763, 3.63163163, 3.63563564, 3.63963964,\n", + " 3.64364364, 3.64764765, 3.65165165, 3.65565566, 3.65965966,\n", + " 3.66366366, 3.66766767, 3.67167167, 3.67567568, 3.67967968,\n", + " 3.68368368, 3.68768769, 3.69169169, 3.6956957 , 3.6996997 ,\n", + " 3.7037037 , 3.70770771, 3.71171171, 3.71571572, 3.71971972,\n", + " 3.72372372, 3.72772773, 3.73173173, 3.73573574, 3.73973974,\n", + " 3.74374374, 3.74774775, 3.75175175, 3.75575576, 3.75975976,\n", + " 3.76376376, 3.76776777, 3.77177177, 3.77577578, 3.77977978,\n", + " 3.78378378, 3.78778779, 3.79179179, 3.7957958 , 3.7997998 ,\n", + " 3.8038038 , 3.80780781, 3.81181181, 3.81581582, 3.81981982,\n", + " 3.82382382, 3.82782783, 3.83183183, 3.83583584, 3.83983984,\n", + " 3.84384384, 3.84784785, 3.85185185, 3.85585586, 3.85985986,\n", + " 3.86386386, 3.86786787, 3.87187187, 3.87587588, 3.87987988,\n", + " 3.88388388, 3.88788789, 3.89189189, 3.8958959 , 3.8998999 ,\n", + " 3.9039039 , 3.90790791, 3.91191191, 3.91591592, 3.91991992,\n", + " 3.92392392, 3.92792793, 3.93193193, 3.93593594, 3.93993994,\n", + " 3.94394394, 3.94794795, 3.95195195, 3.95595596, 3.95995996,\n", + " 3.96396396, 3.96796797, 3.97197197, 3.97597598, 3.97997998,\n", + " 3.98398398, 3.98798799, 3.99199199, 3.995996 , 4. ]),\n", + " array([[[ -2.48933986e+00, 6.60973480e+00, -1.49965688e+01],\n", + " [ -2.14077645e+00, 6.18646806e+00, -1.48962127e+01],\n", + " [ -1.82130748e+00, 5.82299967e+00, -1.47853208e+01],\n", + " ..., \n", + " [ 6.87667416e+00, 1.07734499e+01, 1.78286316e+01],\n", + " [ 7.03431517e+00, 1.10115546e+01, 1.79410297e+01],\n", + " [ 7.19515729e+00, 1.12517722e+01, 1.80659207e+01]],\n", + " \n", + " [[ -5.93002282e+00, -1.05973233e+01, -1.22298422e+01],\n", + " [ -6.13136261e+00, -1.15193465e+01, -1.18344052e+01],\n", + " [ -6.36138540e+00, -1.24619735e+01, -1.14104771e+01],\n", + " ..., \n", + " [ -1.11085203e+01, -1.62261151e+01, 2.32341935e+01],\n", + " [ -1.13121656e+01, -1.63640151e+01, 2.37150767e+01],\n", + " [ -1.15128567e+01, -1.64827701e+01, 2.42098140e+01]],\n", + " \n", + " [[ -9.41219366e+00, -4.63317819e+00, -3.09697577e+00],\n", + " [ -9.24717733e+00, -5.76936651e+00, -2.87083263e+00],\n", + " [ -9.13260659e+00, -6.87477643e+00, -2.60897637e+00],\n", + " ..., \n", + " [ 8.94933599e+00, 1.00204877e+01, 2.61339939e+01],\n", + " [ 8.99188828e+00, 1.00458891e+01, 2.62149083e+01],\n", + " [ 9.03371359e+00, 1.00685518e+01, 2.62975123e+01]],\n", + " \n", + " ..., \n", + " [[ 1.40478473e+01, -5.59727466e+00, 5.76967847e+00],\n", + " [ 1.33015844e+01, -4.35137818e+00, 5.43762841e+00],\n", + " [ 1.26324566e+01, -3.15868945e+00, 5.18607122e+00],\n", + " ..., \n", + " [ -5.62183444e+00, -9.08227752e+00, 1.57576353e+01],\n", + " [ -5.76241216e+00, -9.32397964e+00, 1.57989149e+01],\n", + " [ -5.90705639e+00, -9.57059699e+00, 1.58506576e+01]],\n", + " \n", + " [[ 1.12916746e+01, 1.18381999e+01, -1.24486737e+01],\n", + " [ 1.13481065e+01, 1.36039497e+01, -1.17430178e+01],\n", + " [ 1.14710812e+01, 1.53431579e+01, -1.09606825e+01],\n", + " ..., \n", + " [ -1.47677316e-02, -1.23193351e-02, 1.01977111e+01],\n", + " [ -1.46914304e-02, -1.33208729e-02, 1.00894066e+01],\n", + " [ -1.46573919e-02, -1.43208005e-02, 9.98225246e+00]],\n", + " \n", + " [[ -1.38283565e+01, -9.90508741e+00, 1.13442751e+01],\n", + " [ -1.36915606e+01, -1.07690154e+01, 1.17903119e+01],\n", + " [ -1.35933180e+01, -1.15964765e+01, 1.22727276e+01],\n", + " ..., \n", + " [ 1.61306741e+01, 1.93584734e+01, 3.43088188e+01],\n", + " [ 1.62473985e+01, 1.88446346e+01, 3.51764615e+01],\n", + " [ 1.63382575e+01, 1.82747191e+01, 3.60076113e+01]]]))" ] }, "metadata": {}, @@ -764,81 +451,110 @@ } ], "source": [ - "%matplotlib notebook\n", - "import pandas as pd \n", - "import matplotlib.pyplot as plt \n", - "from ipywidgets import * \n", - "from IPython.display import display \n", - "from IPython.html import widgets \n", - "plt.style.use('ggplot')\n", - "\n", - "NUMBER_OF_PINGS = 4\n", - "\n", - "#displaying the text widget\n", - "text = widgets.Text(description=\"Domain to ping\", width=200) \n", - "display(text)\n", - "\n", - "#preparing the plot \n", - "data = pd.DataFrame() \n", - "x = range(1,NUMBER_OF_PINGS+1) \n", - "plots = dict() \n", - "fig, ax = plt.subplots() \n", - "plt.xlabel('iterations') \n", - "plt.ylabel('ms') \n", - "plt.xticks(x) \n", - "plt.show()\n", - "\n", - "#preparing a container to put in created checkbox per domain\n", - "checkboxes = [] \n", - "cb_container = widgets.HBox() \n", - "display(cb_container)\n", - "\n", - "#add button that updates the graph based on the checkboxes\n", - "button = widgets.Button(description=\"Update the graph\")\n", - "\n", - "#function to deal with the added domain name\n", - "def handle_submit(sender): \n", - " #a part of the magic inside python : pinging\n", - " res = !ping -c {NUMBER_OF_PINGS} {text.value}\n", - " hits = res.grep('64 bytes').fields(-2).s.replace(\"time=\",\"\").split()\n", - " if len(hits) == 0:\n", - " print \"Domain gave error on pinging\"\n", - " else:\n", - " #rebuild plot based on ping result\n", - " data[text.value] = hits\n", - " data[text.value] = data[text.value].astype(float)\n", - " plots[text.value], = ax.plot(x, data[text.value], label=text.value)\n", - " plt.legend()\n", - " plt.draw()\n", - " #add a new checkbox for the new domain\n", - " checkboxes.append(widgets.Checkbox(description = text.value, value=True, width=90))\n", - " cb_container.children=[i for i in checkboxes]\n", - " if len(checkboxes) == 1:\n", - " display(button)\n", - "\n", - "#function to deal with the checkbox update button \n", - "def on_button_clicked(b): \n", - " for c in cb_container.children:\n", - " if not c.value:\n", - " plots[c.description].set_visible(False)\n", - " else:\n", - " plots[c.description].set_visible(True)\n", - " plt.legend()\n", - " plt.draw()\n", - "\n", - "button.on_click(on_button_clicked) \n", - "text.on_submit(handle_submit) \n", - "plt.show() " + "w = interactive(solve_lorenz, angle=(0.,360.), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n", + "display(w);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The object returned by `interactive` is a `Widget` object and it has attributes that contain the current result and arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t, x_t = w.result" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'N': 1,\n", + " 'angle': 93.3,\n", + " 'beta': 5.93333,\n", + " 'max_time': 6.5,\n", + " 'rho': 23.9,\n", + " 'sigma': 45.3}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.kwargs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After interacting with the system, we can take the result and perform further computations. In this case, we compute the average positions in $x$, $y$ and $z$." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { - "collapsed": true + "collapsed": false }, "outputs": [], - "source": [] + "source": [ + "xyz_avg = x_t.mean(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 3)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xyz_avg.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating histograms of the average positions (across different trajectories) show that on average the trajectories swirl about the attractors." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion\n", + "\n", + "Hopefully you've enjoyed using widgets in the Jupyter Notebook system and have begun to explore the other GUI possibilities for Python!" + ] } ], "metadata": {