-
Notifications
You must be signed in to change notification settings - Fork 6
/
filter.c
489 lines (454 loc) · 15.8 KB
/
filter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#include <Python.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h> // Use native C99 complex type for fftw3
#include "quisk.h"
#include "filter.h"
#include "filters.h"
void quisk_filt_cInit(struct quisk_cFilter * filter, double * coefs, int taps)
{ // Prepare a new filter using coefs and taps. Samples are complex.
filter->dCoefs = coefs;
filter->cpxCoefs = NULL;
filter->cSamples = (complex double *)malloc(taps * sizeof(complex double));
memset(filter->cSamples, 0, taps * sizeof(complex double));
filter->ptcSamp = filter->cSamples;
filter->nTaps = taps;
filter->decim_index = 0;
filter->cBuf = NULL;
filter->nBuf = 0;
}
void quisk_filt_dInit(struct quisk_dFilter * filter, double * coefs, int taps)
{ // Prepare a new filter using coefs and taps. Samples are double.
filter->dCoefs = coefs;
filter->cpxCoefs = NULL;
filter->dSamples = (double *)malloc(taps * sizeof(double));
memset(filter->dSamples, 0, taps * sizeof(double));
filter->ptdSamp = filter->dSamples;
filter->nTaps = taps;
filter->decim_index = 0;
filter->dBuf = NULL;
filter->nBuf = 0;
}
void quisk_filt_differInit(struct quisk_dFilter * filter, int taps)
{ // Prepare a new classic differentiating filter. taps must be odd.
int j, k;
filter->dCoefs = (double *)malloc(taps * sizeof(double));
for (k = - (taps - 1) / 2; k <= (taps - 1) / 2; k++) {
j = (taps - 1) / 2 + k;
if (k == 0)
filter->dCoefs[j] = 0;
else
filter->dCoefs[j] = pow(-1, k) / k;
printf("%4d taps %8.4lf\n", j, filter->dCoefs[j]);
}
filter->cpxCoefs = NULL;
filter->dSamples = (double *)malloc(taps * sizeof(double));
memset(filter->dSamples, 0, taps * sizeof(double));
filter->ptdSamp = filter->dSamples;
filter->nTaps = taps;
filter->decim_index = 0;
filter->dBuf = NULL;
filter->nBuf = 0;
}
void quisk_filt_tune(struct quisk_dFilter * filter, double freq, int ssb_upper)
{ // Tune a filter into an analytic I/Q filter with complex coefficients.
// freq is the center frequency / sample rate. Reverse coef if ssb_upper == 0.
// This is used for both quisk_dFilter and quisk_cFilter with a cast.
// Filter can be re-tuned repeatedly.
//
// The tuned low pass filter has a loss of 0.5 when applied to real signals.
// There is no loss applied to complex signals. Coeffs of the tuned filter are not symetric(??).
int i;
complex double coef, tune;
double D;
if ( ! filter->cpxCoefs)
filter->cpxCoefs = (complex double *)malloc(filter->nTaps * sizeof(complex double));
tune = I * 2.0 * M_PI * freq;
D = (filter->nTaps - 1.0) / 2.0;
for (i = 0; i < filter->nTaps; i++) {
coef = cexp(tune * (i - D)) * filter->dCoefs[i];
if (ssb_upper)
filter->cpxCoefs[i] = coef;
else
filter->cpxCoefs[i] = cimag(coef) + I * creal(coef);
}
}
complex double quisk_dC_out(double sample, struct quisk_dFilter * filter)
{
complex double csample;
complex double * ptCoef;
double * ptSample;
int k;
// FIR bandpass filter; separate double sample into I and Q.
// Put samples into buffer left to right. Use samples right to left.
ptSample = filter->ptdSamp;
*ptSample = sample;
ptCoef = filter->cpxCoefs;
csample = 0;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
csample += *ptSample * *ptCoef;
if (--ptSample < filter->dSamples)
ptSample = filter->dSamples + filter->nTaps - 1;
}
if (++filter->ptdSamp >= filter->dSamples + filter->nTaps)
filter->ptdSamp = filter->dSamples;
return csample;
}
#if 0
complex double quisk_cC_out(complex double sample, struct quisk_cFilter * filter)
{
complex double csample;
complex double * ptCoef;
complex double * ptSample;
int k;
// FIR bandpass filter; filter complex samples by complex coeffs.
// Put samples into buffer left to right. Use samples right to left.
ptSample = filter->ptcSamp;
*ptSample = sample;
ptCoef = filter->cpxCoefs;
csample = 0;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
csample += *ptSample * *ptCoef;
if (--ptSample < filter->cSamples)
ptSample = filter->cSamples + filter->nTaps - 1;
}
if (++filter->ptcSamp >= filter->cSamples + filter->nTaps)
filter->ptcSamp = filter->cSamples;
return csample;
}
#endif
int quisk_cInterpolate(complex double * cSamples, int count, struct quisk_cFilter * filter, int interp)
{ // This uses the double coefficients of filter (not the complex). Samples are complex.
int i, j, k, nOut;
double * ptCoef;
complex double * ptSample;
complex double csample;
if (count > filter->nBuf) { // increase size of sample buffer
filter->nBuf = count * 2;
if (filter->cBuf)
free(filter->cBuf);
filter->cBuf = (complex double *)malloc(filter->nBuf * sizeof(complex double));
}
memcpy(filter->cBuf, cSamples, count * sizeof(complex double));
nOut = 0;
for (i = 0; i < count; i++) {
// Put samples into buffer left to right. Use samples right to left.
*filter->ptcSamp = filter->cBuf[i];
for (j = 0; j < interp; j++) {
ptSample = filter->ptcSamp;
ptCoef = filter->dCoefs + j;
csample = 0;
for (k = 0; k < filter->nTaps / interp; k++, ptCoef += interp) {
csample += *ptSample * *ptCoef;
if (--ptSample < filter->cSamples)
ptSample = filter->cSamples + filter->nTaps - 1;
}
if (nOut < SAMP_BUFFER_SIZE * 8 / 10)
cSamples[nOut++] = csample * interp;
}
if (++filter->ptcSamp >= filter->cSamples + filter->nTaps)
filter->ptcSamp = filter->cSamples;
}
return nOut;
}
int quisk_dInterpolate(double * dSamples, int count, struct quisk_dFilter * filter, int interp)
{ // This uses the double coefficients of filter (not the complex). Samples are double.
int i, j, k, nOut;
double * ptCoef;
double * ptSample;
double dsample;
if (count > filter->nBuf) { // increase size of sample buffer
filter->nBuf = count * 2;
if (filter->dBuf)
free(filter->dBuf);
filter->dBuf = (double *)malloc(filter->nBuf * sizeof(double));
}
memcpy(filter->dBuf, dSamples, count * sizeof(double));
nOut = 0;
for (i = 0; i < count; i++) {
// Put samples into buffer left to right. Use samples right to left.
*filter->ptdSamp = filter->dBuf[i];
for (j = 0; j < interp; j++) {
ptSample = filter->ptdSamp;
ptCoef = filter->dCoefs + j;
dsample = 0;
for (k = 0; k < filter->nTaps / interp; k++, ptCoef += interp) {
dsample += *ptSample * *ptCoef;
if (--ptSample < filter->dSamples)
ptSample = filter->dSamples + filter->nTaps - 1;
}
if (nOut < SAMP_BUFFER_SIZE * 8 / 10)
dSamples[nOut++] = dsample * interp;
}
if (++filter->ptdSamp >= filter->dSamples + filter->nTaps)
filter->ptdSamp = filter->dSamples;
}
return nOut;
}
int quisk_cDecimate(complex double * cSamples, int count, struct quisk_cFilter * filter, int decim)
{ // This uses the double coefficients of filter (not the complex).
int i, k, nOut;
complex double * ptSample;
double * ptCoef;
complex double csample;
nOut = 0;
for (i = 0; i < count; i++) {
*filter->ptcSamp = cSamples[i];
if (++filter->decim_index >= decim) {
filter->decim_index = 0; // output a sample
csample = 0;
ptSample = filter->ptcSamp;
ptCoef = filter->dCoefs;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
csample += *ptSample * *ptCoef;
if (--ptSample < filter->cSamples)
ptSample = filter->cSamples + filter->nTaps - 1;
}
cSamples[nOut++] = csample;
}
if (++filter->ptcSamp >= filter->cSamples + filter->nTaps)
filter->ptcSamp = filter->cSamples;
}
return nOut;
}
int quisk_cCDecimate(complex double * cSamples, int count, struct quisk_cFilter * filter, int decim)
{ // This uses the complex coefficients of filter (not the double). Call quisk_filt_tune() first.
int i, k, nOut;
complex double * ptSample;
complex double * ptCoef;
complex double csample;
nOut = 0;
for (i = 0; i < count; i++) {
*filter->ptcSamp = cSamples[i];
if (++filter->decim_index >= decim) {
filter->decim_index = 0; // output a sample
csample = 0;
ptSample = filter->ptcSamp;
ptCoef = filter->cpxCoefs;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
csample += *ptSample * *ptCoef;
if (--ptSample < filter->cSamples)
ptSample = filter->cSamples + filter->nTaps - 1;
}
cSamples[nOut++] = csample;
}
if (++filter->ptcSamp >= filter->cSamples + filter->nTaps)
filter->ptcSamp = filter->cSamples;
}
return nOut;
}
int quisk_dDecimate(double * dSamples, int count, struct quisk_dFilter * filter, int decim)
{ // This uses the double coefficients of filter (not the complex).
int i, k, nOut;
double * ptSample;
double * ptCoef;
double dsample;
nOut = 0;
for (i = 0; i < count; i++) {
*filter->ptdSamp = dSamples[i];
if (++filter->decim_index >= decim) {
filter->decim_index = 0; // output a sample
dsample = 0;
ptSample = filter->ptdSamp;
ptCoef = filter->dCoefs;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
dsample += *ptSample * *ptCoef;
if (--ptSample < filter->dSamples)
ptSample = filter->dSamples + filter->nTaps - 1;
}
dSamples[nOut++] = dsample;
}
if (++filter->ptdSamp >= filter->dSamples + filter->nTaps)
filter->ptdSamp = filter->dSamples;
}
return nOut;
}
int quisk_cInterpDecim(complex double * cSamples, int count, struct quisk_cFilter * filter, int interp, int decim)
{ // Interpolate by interp, and then decimate by decim.
// This uses the double coefficients of filter (not the complex). Samples are complex.
int i, k, nOut;
double * ptCoef;
complex double * ptSample;
complex double csample;
if (count > filter->nBuf) { // increase size of sample buffer
filter->nBuf = count * 2;
if (filter->cBuf)
free(filter->cBuf);
filter->cBuf = (complex double *)malloc(filter->nBuf * sizeof(complex double));
}
memcpy(filter->cBuf, cSamples, count * sizeof(complex double));
nOut = 0;
for (i = 0; i < count; i++) {
// Put samples into buffer left to right. Use samples right to left.
*filter->ptcSamp = filter->cBuf[i];
while (filter->decim_index < interp) {
ptSample = filter->ptcSamp;
ptCoef = filter->dCoefs + filter->decim_index;
csample = 0;
for (k = 0; k < filter->nTaps / interp; k++, ptCoef += interp) {
csample += *ptSample * *ptCoef;
if (--ptSample < filter->cSamples)
ptSample = filter->cSamples + filter->nTaps - 1;
}
if (nOut < SAMP_BUFFER_SIZE * 8 / 10)
cSamples[nOut++] = csample * interp;
filter->decim_index += decim;
}
if (++filter->ptcSamp >= filter->cSamples + filter->nTaps)
filter->ptcSamp = filter->cSamples;
filter->decim_index = filter->decim_index - interp;
}
return nOut;
}
double quisk_dD_out(double samp, struct quisk_dFilter * filter)
{ // Filter double samples.
int k;
double * ptSample;
double * ptCoef;
double dsample;
*filter->ptdSamp = samp;
dsample = 0;
ptSample = filter->ptdSamp;
ptCoef = filter->dCoefs;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
dsample += *ptSample * *ptCoef;
if (--ptSample < filter->dSamples)
ptSample = filter->dSamples + filter->nTaps - 1;
}
if (++filter->ptdSamp >= filter->dSamples + filter->nTaps)
filter->ptdSamp = filter->dSamples;
return dsample;
}
int quisk_dFilter(double * dSamples, int count, struct quisk_dFilter * filter)
{ // Filter double samples.
int i, k, nOut;
double * ptSample;
double * ptCoef;
double dsample;
nOut = 0;
for (i = 0; i < count; i++) {
*filter->ptdSamp = dSamples[i];
dsample = 0;
ptSample = filter->ptdSamp;
ptCoef = filter->dCoefs;
for (k = 0; k < filter->nTaps; k++, ptCoef++) {
dsample += *ptSample * *ptCoef;
if (--ptSample < filter->dSamples)
ptSample = filter->dSamples + filter->nTaps - 1;
}
dSamples[nOut++] = dsample;
if (++filter->ptdSamp >= filter->dSamples + filter->nTaps)
filter->ptdSamp = filter->dSamples;
}
return nOut;
}
int quisk_cFilter(complex double * cSamples, int count, struct quisk_cFilter * filter)
{ // Filter complex samples using the double coefficients of filter (not the complex).
return quisk_cDecimate(cSamples, count, filter, 1);
}
int quisk_cDecim2HB45(complex double * cSamples, int count, struct quisk_cHB45Filter * filter)
{ // This uses the double coefficients of filter (not the complex).
// Half band filter, sample rate 96 Hz, pass 16, center 24, stop 32, good BW 2/3, 45 taps.
int i, nOut;
complex double * samples, * center;
static double coef[12] = { 0.000018566625444266, -0.000118469698701817, 0.000457318798253456,
-0.001347840471412094, 0.003321838571445455, -0.007198422696929033, 0.014211106939802483,
-0.026424776824073383, 0.048414810444971007, -0.096214669073304823, 0.314881034738348550,
0.500000000000000000 }; // Rate 96, cutoff 16-24-32, atten 120 dB. Coef[0] and [44] are zero.
nOut = 0;
samples = filter->samples;
center = filter->center;
for (i = 0; i < count; i++) {
if (filter->toggle == 0){
filter->toggle = 1;
memmove(center + 1, center, sizeof(complex double) * 10);
center[0] = cSamples[i];
}
else {
filter->toggle = 0;
memmove(samples + 1, samples, sizeof(complex double) * 21);
samples[0] = cSamples[i];
// output a sample
cSamples[nOut++] =
(samples[ 0] + samples[21]) * coef[0] +
(samples[ 1] + samples[20]) * coef[1] +
(samples[ 2] + samples[19]) * coef[2] +
(samples[ 3] + samples[18]) * coef[3] +
(samples[ 4] + samples[17]) * coef[4] +
(samples[ 5] + samples[16]) * coef[5] +
(samples[ 6] + samples[15]) * coef[6] +
(samples[ 7] + samples[14]) * coef[7] +
(samples[ 8] + samples[13]) * coef[8] +
(samples[ 9] + samples[12]) * coef[9] +
(samples[10] + samples[11]) * coef[10] +
center[10] * coef[11];
}
}
return nOut;
}
int quisk_dInterp2HB45(double * dsamples, int count, struct quisk_dHB45Filter * filter)
{ // Half-Band interpolation by 2
int i, k, nOut, nCoef, nSamp;
double out;
double * samples;
static double coef[12] = { 0.000018566625444266, -0.000118469698701817, 0.000457318798253456,
-0.001347840471412094, 0.003321838571445455, -0.007198422696929033, 0.014211106939802483,
-0.026424776824073383, 0.048414810444971007, -0.096214669073304823, 0.314881034738348550,
0.500000000000000000 }; // Rate 96, cutoff 16-24-32, atten 120 dB. Coef[0] and [44] are zero.
if (count > filter->nBuf) { // increase size of sample buffer
filter->nBuf = count * 2;
if (filter->dBuf)
free(filter->dBuf);
filter->dBuf = (double *)malloc(filter->nBuf * sizeof(double));
}
nCoef = 12;
nSamp = (nCoef - 1) * 2;
memcpy(filter->dBuf, dsamples, count * sizeof(double));
samples = filter->samples;
nOut = 0;
for (i = 0; i < count; i++) {
memmove(samples + 1, samples, (nSamp - 1) * sizeof(double));
samples[0] = filter->dBuf[i];
if (nOut > SAMP_BUFFER_SIZE * 8 / 10)
continue;
dsamples[nOut++] = samples[nCoef - 1] * coef[nCoef - 1] * 2;
out = 0;
for (k = 0; k < nSamp / 2; k++)
out += (samples[k] + samples[nSamp - 1 - k]) * coef[k];
dsamples[nOut++] = out * 2;
}
return nOut;
}
int quisk_cInterp2HB45(complex double * cSamples, int count, struct quisk_cHB45Filter * filter)
{ // Half-Band interpolation by 2
int i, k, nOut, nCoef, nSamp;
complex double out;
complex double * samples;
static double coef[12] = { 0.000018566625444266, -0.000118469698701817, 0.000457318798253456,
-0.001347840471412094, 0.003321838571445455, -0.007198422696929033, 0.014211106939802483,
-0.026424776824073383, 0.048414810444971007, -0.096214669073304823, 0.314881034738348550,
0.500000000000000000 }; // Rate 96, cutoff 16-24-32, atten 120 dB. Coef[0] and [44] are zero.
if (count > filter->nBuf) { // increase size of sample buffer
filter->nBuf = count * 2;
if (filter->cBuf)
free(filter->cBuf);
filter->cBuf = (complex double *)malloc(filter->nBuf * sizeof(complex double));
}
nCoef = 12;
nSamp = (nCoef - 1) * 2;
memcpy(filter->cBuf, cSamples, count * sizeof(complex double));
samples = filter->samples;
nOut = 0;
for (i = 0; i < count; i++) {
memmove(samples + 1, samples, (nSamp - 1) * sizeof(complex double));
samples[0] = filter->cBuf[i];
if (nOut > SAMP_BUFFER_SIZE * 8 / 10)
continue;
cSamples[nOut++] = samples[nCoef - 1] * coef[nCoef - 1] * 2;
out = 0;
for (k = 0; k < nSamp / 2; k++)
out += (samples[k] + samples[nSamp - 1 - k]) * coef[k];
cSamples[nOut++] = out * 2;
}
return nOut;
}