-
Notifications
You must be signed in to change notification settings - Fork 9
/
rebin.py
398 lines (300 loc) · 12 KB
/
rebin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
"""
Rebin 1D and 2D histograms.
"""
import numpy as np
from numpy.random import uniform
import matplotlib.pyplot as plt
try:
import uncertainties.unumpy as unp
nom = unp.nominal_values
except ImportError:
nom = lambda x: x
from bounded_splines import BoundedUnivariateSpline, BoundedRectBivariateSpline
def midpoints(xx):
"""Return midpoints of edges in xx."""
return xx[:-1] + 0.5*np.ediff1d(xx)
def edge_step(x, y, **kwargs):
"""
Plot a histogram with edges and bin values precomputed. The normal
matplotlib hist function computes the bin values internally.
Input
-----
* x : n+1 array of bin edges.
* y : n array of histogram values.
"""
return plt.plot(x, np.hstack([y, y[-1]]), drawstyle='steps-post', **kwargs)
def rebin_along_axis(y1, x1, x2, axis=0, interp_kind=3):
"""
Rebins an N-dimensional array along a given axis, in a piecewise-constant
fashion.
Parameters
----------
y1 : array_like
The input image
x1 : array_like
The monotonically increasing/decreasing original bin edges along
`axis`, must be 1 greater than `np.size(y1, axis)`.
y2 : array_like
The final bin_edges along `axis`.
axis : int
The axis to be rebinned, it must exist in the original image.
interp_kind : how is the underlying unknown continuous distribution
assumed to look: {3, 'piecewise_constant'}
3 is cubic splines
piecewise_constant is constant in each histogram bin
Returns
-------
output : np.ndarray
The rebinned image.
"""
orig_shape = np.array(y1.shape)
num_axes = np.size(orig_shape)
# Output is going to need reshaping
new_shape = np.copy(orig_shape)
new_shape[axis] = np.size(x2) - 1
if axis > num_axes - 1:
raise ValueError("That axis is not in y1")
if np.size(y1, axis) != np.size(x1) - 1:
raise ValueError("The original number of xbins does not match the axis"
"size")
odtype = np.dtype('float')
if y1.dtype is np.dtype('O'):
odtype = np.dtype('O')
output = np.empty(new_shape, dtype=odtype)
it = np.nditer(y1, flags=['multi_index', 'refs_ok'])
it.remove_axis(axis)
while not it.finished:
a = list(it.multi_index)
a.insert(axis, slice(None))
rebinned = rebin(x1, y1[a], x2, interp_kind=interp_kind)
output[a] = rebinned[:]
it.iternext()
return output
def rebin(x1, y1, x2, interp_kind=3):
"""
Rebin histogram values y1 from old bin edges x1 to new edges x2.
Input
-----
* x1 : m+1 array of old bin edges.
* y1 : m array of old histogram values. This is the total number in
each bin, not an average.
* x2 : n+1 array of new bin edges.
* interp_kind : how is the underlying unknown continuous distribution
assumed to look: {3, 'piecewise_constant'}
3 is cubic splines
piecewise_constant is constant in each histogram bin
Returns
-------
* y2 : n array of rebinned histogram values.
Bins in x2 that are entirely outside the range of x1 are assigned 0.
"""
if interp_kind == 'piecewise_constant':
return rebin_piecewise_constant(x1, y1, x2)
else:
return rebin_spline(x1, y1, x2, interp_kind=interp_kind)
def rebin_spline(x1, y1, x2, interp_kind):
"""
Rebin histogram values y1 from old bin edges x1 to new edges x2.
Input
-----
* x1 : m+1 array of old bin edges.
* y1 : m array of old histogram values. This is the total number in
each bin, not an average.
* x2 : n+1 array of new bin edges.
* interp_kind : how is the underlying unknown continuous distribution
assumed to look: {'cubic'}
Returns
-------
* y2 : n array of rebinned histogram values.
The cubic spline fit (which is the only interp_kind tested)
uses the UnivariateSpline class from Scipy, which uses FITPACK.
The boundary condition used is not-a-knot, where the second and
second-to-last nodes are not included as knots (but they are still
interpolated).
Bins in x2 that are entirely outside the range of x1 are assigned 0.
"""
m = y1.size
n = x2.size - 1
# midpoints of x1
x1_mid = midpoints(x1)
# constructing data for spline
# To get the spline to flatten out at the edges, duplicate bin mid values
# as value on the two boundaries.
xx = np.hstack([x1[0], x1_mid, x1[-1]])
yy = np.hstack([y1[0], y1, y1[-1]])
# strip uncertainties from data
yy = nom(yy)
# instantiate spline, s=0 gives interpolating spline
spline = BoundedUnivariateSpline(xx, yy, s=0., k=interp_kind)
# area under spline for each old bin
areas1 = np.array([spline.integral(x1[i], x1[i+1]) for i in range(m)])
# insert old bin edges into new edges
x1_in_x2 = x1[ np.logical_and(x1 > x2[0], x1 < x2[-1]) ]
indices = np.searchsorted(x2, x1_in_x2)
subbin_edges = np.insert(x2, indices, x1_in_x2)
# integrate over each subbin
subbin_areas = np.array([spline.integral(subbin_edges[i],
subbin_edges[i+1])
for i in range(subbin_edges.size-1)])
# make subbin-to-old bin map
subbin_mid = midpoints(subbin_edges)
sub2old = np.searchsorted(x1, subbin_mid) - 1
# make subbin-to-new bin map
sub2new = np.searchsorted(x2, subbin_mid) - 1
# loop over subbins
y2 = [0. for i in range(n)]
for i in range(subbin_mid.size):
# skip subcells which don't lie in range of x1
if sub2old[i] == -1 or sub2old[i] == x1.size-1:
continue
else:
y2[sub2new[i]] += ( y1[sub2old[i]] * subbin_areas[i]
/ areas1[sub2old[i]] )
return np.array(y2)
def rebin_piecewise_constant(x1, y1, x2):
x1 = np.asarray(x1)
y1 = np.asarray(y1)
x2 = np.asarray(x2)
# the fractional bin locations of the new bins in the old bins
i_place = np.interp(x2, x1, np.arange(len(x1)))
cum_sum = np.r_[[0], np.cumsum(y1)]
# calculate bins where lower and upper bin edges span
# greater than or equal to one original bin.
# This is the contribution from the 'intact' bins (not including the
# fractional start and end parts.
whole_bins = np.floor(i_place[1:]) - np.ceil(i_place[:-1]) >= 1.
start = cum_sum[np.ceil(i_place[:-1]).astype(int)]
finish = cum_sum[np.floor(i_place[1:]).astype(int)]
y2 = np.where(whole_bins, finish - start, 0.)
bin_loc = np.clip(np.floor(i_place).astype(int), 0, len(y1) - 1)
# fractional contribution for bins where the new bin edges are in the same
# original bin.
same_cell = np.floor(i_place[1:]) == np.floor(i_place[:-1])
frac = i_place[1:] - i_place[:-1]
contrib = (frac * y1[bin_loc[:-1]])
y2 += np.where(same_cell, contrib, 0.)
# fractional contribution for bins where the left and right bin edges are in
# different original bins.
different_cell = np.floor(i_place[1:]) > np.floor(i_place[:-1])
frac_left = np.ceil(i_place[:-1]) - i_place[:-1]
contrib = (frac_left * y1[bin_loc[:-1]])
frac_right = i_place[1:] - np.floor(i_place[1:])
contrib += (frac_right * y1[bin_loc[1:]])
y2 += np.where(different_cell, contrib, 0.)
return y2
def rebin2d(x1, y1, z1, x2, y2, interp_kind=3):
"""
Rebin 2d histogram values z1 from old rectangular bin
edges x1, y1 to new edges x2, y2.
Input
-----
* x1 : m+1 array of old bin x edges.
* y1 : n+1 array of old bin y edges.
* z1 : m-by-n array of old histogram values. This is the total number in
each bin, not an average.
* x2 : p+1 array of new bin x edges.
* x2 : q+1 array of new bin y edges.
* interp_kind : how is the underlying unknown continuous distribution
assumed to look: {3}
3 - bivariate cubic spline
Returns
-------
* z2 : p-by-q array of rebinned histogram values.
The cubic spline fit (which is the only interp_kind tested)
uses the BivariateSpline class from Scipy, which uses FITPACK.
The boundary condition used is not-a-knot, where the second and
second-to-last nodes are not included as knots (but they are still
interpolated).
Bins in x2 x y2 that are entirely outside the range of x1 x y1
are assigned 0.
"""
m, n = z1.shape
assert x1.size == m+1
assert y1.size == n+1
p = x2.size - 1
q = y2.size - 1
# midpoints of x1
x1_mid = midpoints(x1)
y1_mid = midpoints(y1)
# constructing data for spline
# To get the spline to flatten out at the edges, duplicate bin mid values
# on the interpolation boundaries.
xx = np.hstack([x1[0], x1_mid, x1[-1]])
yy = np.hstack([y1[0], y1_mid, y1[-1]])
c1 = np.hstack([z1[0,0], z1[:,0], z1[-1,0]])
c2 = np.vstack([z1[0,:], z1, z1[-1,:]])
c3 = np.hstack([z1[0,-1], z1[:,-1], z1[-1,-1]])
zz = np.hstack([c1[:,np.newaxis], c2, c3[:,np.newaxis]])
zz = nom(zz)
# instantiate spline, s=0 gives interpolating spline
spline = BoundedRectBivariateSpline(xx, yy, zz, s=0.,
kx=interp_kind,
ky=interp_kind)
# area under spline for each old bin
# todo: only integrate over old bins which will contribute to new bins
areas1 = np.zeros((m,n))
for i in range(m):
for j in range(n):
areas1[i,j] = spline.integral(x1[i], x1[i+1], y1[j], y1[j+1])
# insert old bin edges into new edges
# into x
x1_in_x2 = x1[ np.logical_and(x1 > x2[0], x1 < x2[-1]) ]
x_indices = np.searchsorted(x2, x1_in_x2)
subbin_xedges = np.insert(x2, x_indices, x1_in_x2)
# into y
y1_in_y2 = y1[ np.logical_and(y1 > y2[0], y1 < y2[-1]) ]
y_indices = np.searchsorted(y2, y1_in_y2)
subbin_yedges = np.insert(y2, y_indices, y1_in_y2)
# integrate over each subbin
ms = subbin_xedges.size-1
ns = subbin_yedges.size-1
subbin_areas = np.zeros((ms,ns))
for i in range(ms):
for j in range(ns):
subbin_areas[i,j] = spline.integral(
subbin_xedges[i], subbin_xedges[i+1],
subbin_yedges[j], subbin_yedges[j+1],
)
# make subbin-to-old bin map
subbin_xmid = midpoints(subbin_xedges)
x_sub2old = np.searchsorted(x1, subbin_xmid) - 1
subbin_ymid = midpoints(subbin_yedges)
y_sub2old = np.searchsorted(y1, subbin_ymid) - 1
# make subbin-to-new bin map
x_sub2new = np.searchsorted(x2, subbin_xmid) - 1
y_sub2new = np.searchsorted(y2, subbin_ymid) - 1
# loop over subbins
z2 = [[0. for i in range(q)] for j in range(p)]
for i in range(ms):
for j in range(ns):
# skip subcells which don't lie in range of x1 or y1
if ( x_sub2old[i] == -1 or x_sub2old[i] == m or
y_sub2old[j] == -1 or y_sub2old[j] == n ):
continue
else:
z2[x_sub2new[i]][y_sub2new[j]] += (
z1[x_sub2old[i],y_sub2old[j]]
* subbin_areas[i,j] /
areas1[x_sub2old[i], y_sub2old[j]] )
return np.array(z2)
if __name__ == '__main__':
# demo rebin() ---------------------------------------------------
# old size
m = 18
# new size
n = 30
# bin edges
x_old = np.linspace(0., 1., m+1)
x_new = np.linspace(-0.01, 1.02, n+1)
# some arbitrary distribution
y_old = np.sin(x_old[:-1]*np.pi)
# rebin
y_new = rebin(x_old, y_old, x_new)
# plot results ----------------------------------------------------
import matplotlib.pyplot as plt
plt.figure()
edge_step(x_old, y_old, label='old')
edge_step(x_new, y_new, label='new')
plt.legend()
plt.title("bin totals -- new is lower because its bins are narrower")
plt.show()