-
Notifications
You must be signed in to change notification settings - Fork 29
/
utils.py
221 lines (177 loc) · 6.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import sys
import time
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
from scipy.ndimage.interpolation import rotate
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 35.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
if msg:
L.append(' ' + msg)
L.append(' | Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def submatrix(arr):
x, y = np.nonzero(arr)
# Using the smallest and largest x and y indices of nonzero elements,
# we can find the desired rectangular bounds.
# And don't forget to add 1 to the top bound to avoid the fencepost problem.
return arr[x.min():x.max()+1, y.min():y.max()+1]
class ToSpaceBGR(object):
def __init__(self, is_bgr):
self.is_bgr = is_bgr
def __call__(self, tensor):
if self.is_bgr:
new_tensor = tensor.clone()
new_tensor[0] = tensor[2]
new_tensor[2] = tensor[0]
tensor = new_tensor
return tensor
class ToRange255(object):
def __init__(self, is_255):
self.is_255 = is_255
def __call__(self, tensor):
if self.is_255:
tensor.mul_(255)
return tensor
def init_patch_circle(image_size, patch_size):
image_size = image_size**2
noise_size = int(image_size*patch_size)
radius = int(math.sqrt(noise_size/math.pi))
patch = np.zeros((1, 3, radius*2, radius*2))
for i in range(3):
a = np.zeros((radius*2, radius*2))
cx, cy = radius, radius # The center of circle
y, x = np.ogrid[-radius: radius, -radius: radius]
index = x**2 + y**2 <= radius**2
a[cy-radius:cy+radius, cx-radius:cx+radius][index] = np.random.rand()
idx = np.flatnonzero((a == 0).all((1)))
a = np.delete(a, idx, axis=0)
patch[0][i] = np.delete(a, idx, axis=1)
return patch, patch.shape
def circle_transform(patch, data_shape, patch_shape, image_size):
# get dummy image
x = np.zeros(data_shape)
# get shape
m_size = patch_shape[-1]
for i in range(x.shape[0]):
# random rotation
rot = np.random.choice(360)
for j in range(patch[i].shape[0]):
patch[i][j] = rotate(patch[i][j], angle=rot, reshape=False)
# random location
random_x = np.random.choice(image_size)
if random_x + m_size > x.shape[-1]:
while random_x + m_size > x.shape[-1]:
random_x = np.random.choice(image_size)
random_y = np.random.choice(image_size)
if random_y + m_size > x.shape[-1]:
while random_y + m_size > x.shape[-1]:
random_y = np.random.choice(image_size)
# apply patch to dummy image
x[i][0][random_x:random_x+patch_shape[-1], random_y:random_y+patch_shape[-1]] = patch[i][0]
x[i][1][random_x:random_x+patch_shape[-1], random_y:random_y+patch_shape[-1]] = patch[i][1]
x[i][2][random_x:random_x+patch_shape[-1], random_y:random_y+patch_shape[-1]] = patch[i][2]
mask = np.copy(x)
mask[mask != 0] = 1.0
return x, mask, patch.shape
def init_patch_square(image_size, patch_size):
# get mask
image_size = image_size**2
noise_size = image_size*patch_size
noise_dim = int(noise_size**(0.5))
patch = np.random.rand(1,3,noise_dim,noise_dim)
return patch, patch.shape
def square_transform(patch, data_shape, patch_shape, image_size):
# get dummy image
x = np.zeros(data_shape)
# get shape
m_size = patch_shape[-1]
for i in range(x.shape[0]):
# random rotation
rot = np.random.choice(4)
for j in range(patch[i].shape[0]):
patch[i][j] = np.rot90(patch[i][j], rot)
# random location
random_x = np.random.choice(image_size)
if random_x + m_size > x.shape[-1]:
while random_x + m_size > x.shape[-1]:
random_x = np.random.choice(image_size)
random_y = np.random.choice(image_size)
if random_y + m_size > x.shape[-1]:
while random_y + m_size > x.shape[-1]:
random_y = np.random.choice(image_size)
# apply patch to dummy image
x[i][0][random_x:random_x+patch_shape[-1], random_y:random_y+patch_shape[-1]] = patch[i][0]
x[i][1][random_x:random_x+patch_shape[-1], random_y:random_y+patch_shape[-1]] = patch[i][1]
x[i][2][random_x:random_x+patch_shape[-1], random_y:random_y+patch_shape[-1]] = patch[i][2]
mask = np.copy(x)
mask[mask != 0] = 1.0
return x, mask