forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
argument.py
125 lines (112 loc) · 6.35 KB
/
argument.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
import json
from typing import List, Optional,Tuple,NewType,Any
from pathlib import Path
from paddlenlp.trainer import TrainingArguments
from paddlenlp.trainer import PdArgumentParser
DataClass = NewType("DataClass", Any)
@dataclass
class TrainingArguments(TrainingArguments):
benchmark: bool = field(default=False, metadata={"help": "Whether runs benchmark"})
profiler_options: Optional[str] = field(default=None, metadata={"help": "Whether runs profiler"})
warmup_start_lr: float = field(default=1e-6, metadata={"help": "Initial learning rate of warm up."})
eta_min: float = field(default=1e-5, metadata={"help": "The minimum value of learning rate."})
lr_scheduler_name: str = field(default="CosineDecayWithWarmup", metadata={"help": "The scheduler name to use."})
group_by_modality_length: bool = field(default=False)
mm_projector_lr: Optional[float] = None
@dataclass
class DataArgument:
dataset: dict = field(default=None, metadata={"help": "config for dataset"})
task_name: str = field(default=None, metadata={"help": "Additional name to select a more specific task."})
mixtoken: bool = field(default=False, metadata={"help": "Whether to use MIXToken data stream"})
src_length: int = field(default=1024, metadata={"help": "The maximum length of source(context) tokens."})
max_length: int = field(
default=2048,
metadata={
"help": "The maximum length that model input tokens can have. When mixtokens is set to True, it's also the maximum length for InTokens data stream"
},
)
eval_with_do_generation: bool = field(default=False, metadata={"help": "Whether to do generation for evaluation"})
save_generation_output: bool = field(
default=False,
metadata={"help": "Whether to save generated text to file when eval_with_do_generation set to True."},
)
lazy: bool = field(
default=False,
metadata={
"help": "Weather to return `MapDataset` or an `IterDataset`.True for `IterDataset`. False for `MapDataset`."
},
)
chat_template: str = field(
default=None,
metadata={
"help": "the path of `chat_template.json` file to handle multi-rounds conversation. If is None, it will not use `chat_template.json`; If is equal with `model_name_or_path`, it will use the default loading; If is directory, it will find the `chat_template.json` under the directory; If is file, it will load it."
},
)
splits: Optional[List[str]] = field(default=None, metadata={"help": "The splits of dataset"})
@dataclass
class ModelArgument:
model_name_or_path: str = field(
default=None, metadata={"help": "Build-in pretrained model name or the path to local model."}
)
use_flash_attention: bool = field(default=False, metadata={"help": "Whether to use flash attention"})
freeze_include: Optional[List[str]] = field(default=None, metadata={"help": "Modules to freeze"})
freeze_exclude: Optional[List[str]] = field(default=None, metadata={"help": "Modules not to freeze"})
# LoRA related parameters
lora: bool = field(default=False, metadata={"help": "Whether to use LoRA technique"})
lora_path: str = field(default=None, metadata={"help": "Initialize lora state dict."})
lora_rank: int = field(default=8, metadata={"help": "Lora attention dimension"})
lora_alpha: int = field(default=16, metadata={"help": "Lora attention alpha"})
lora_dropout: float = field(default=0.05, metadata={"help": "Lora attention dropout"})
lora_target_modules: List[str] = field(default=None, metadata={"help": "Lora target modules"})
# prefix tuning related parameters
prefix_tuning: bool = field(default=False, metadata={"help": "Whether to use Prefix technique"})
num_prefix_tokens: int = field(default=128, metadata={"help": "Number of prefix tokens"})
from_aistudio: bool = field(default=False, metadata={"help": "Whether to load model from aistudio"})
save_to_aistudio: bool = field(default=False, metadata={"help": "Whether to save model to aistudio"})
aistudio_repo_id: str = field(default=None, metadata={"help": "The id of aistudio repo"})
aistudio_repo_private: bool = field(default=True, metadata={"help": "Whether to create a private repo"})
aistudio_repo_license: str = field(default="Apache License 2.0", metadata={"help": "The license of aistudio repo"})
aistudio_token: str = field(default=None, metadata={"help": "The token of aistudio"})
neftune: bool = field(default=False, metadata={"help": "Whether to apply NEFT"})
neftune_noise_alpha: float = field(default=5.0, metadata={"help": "NEFT noise alpha"})
text_model_name_or_path: str = field(default=None, metadata={"help": "The text tokenizer model name or path"})
@dataclass
class GenerateArgument:
top_k: int = field(
default=1,
metadata={
"help": "The number of highest probability tokens to keep for top-k-filtering in the sampling strategy"
},
)
top_p: float = field(
default=1.0, metadata={"help": "The cumulative probability for top-p-filtering in the sampling strategy."}
)
class PdMIXArgumentParser(PdArgumentParser):
def parse_json_file(self, json_file: str) -> Tuple[DataClass, ...]:
"""
Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the
dataclass types.
"""
import dataclasses
data = json.loads(Path(json_file).read_text())
outputs = []
for dtype in self.dataclass_types:
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
inputs = {k: v for k, v in data.items() if k in keys}
obj = dtype(**inputs)
outputs.append(obj)
return (*outputs,)