forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
219 lines (186 loc) · 6.84 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import os.path as osp
import cv2
import paddle.nn as nn
import supervision as sv
from ppdet.core.workspace import create, load_config, merge_config
from ppdet.engine import Trainer
from ppdet.utils.cli import ArgsParser, merge_args
from tqdm import tqdm
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--image",
type=str,
required=True,
help="image path, include image file or dir.",
)
parser.add_argument("--text", type=str, default=None, help="text or .txt file")
parser.add_argument(
"--annotation",
action="store_true",
help="save the annotated detection results as yolo text format.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output visualization files.",
)
parser.add_argument("--topk", default=100, type=int, help="keep topk predictions.")
parser.add_argument(
"--threshold",
default=0.0,
type=float,
help="confidence score threshold for predictions.",
)
parser.add_argument(
"--show", action="store_true", help="show the detection results."
)
parser.add_argument(
"--offline",
action="store_true",
help="first use text model to get offline text feats, then the text model will not be load when inference",
)
args = parser.parse_args()
return args
def run_inference(
runner, data, images, texts, max_dets, score_thr, output_dir, show, annotation
):
pred_instances = runner.model(data)[0]
score_thr_mask = pred_instances["scores"] > score_thr
pred_instances["scores"] = pred_instances["scores"][
score_thr_mask.squeeze(-1), :
].squeeze(-1)
pred_instances["bboxes"] = pred_instances["bboxes"][score_thr_mask.squeeze(-1), :]
pred_instances["labels"] = (
pred_instances["labels"][score_thr_mask.squeeze(-1), :].squeeze(-1).astype(int)
)
if pred_instances["scores"].shape[0] > max_dets:
indices = pred_instances["scores"].topk(max_dets)[1]
pred_instances["scores"] = pred_instances["scores"][indices]
pred_instances["bboxes"] = pred_instances["bboxes"][indices, :]
pred_instances["labels"] = pred_instances["labels"][indices]
for item in pred_instances.keys():
pred_instances[item] = pred_instances[item].cpu().numpy()
if "masks" in pred_instances:
masks = pred_instances["masks"]
else:
masks = None
image_path = images[runner.status["step_id"]]
detections = sv.Detections(
xyxy=pred_instances["bboxes"],
class_id=pred_instances["labels"],
confidence=pred_instances["scores"],
mask=masks,
)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
# label images
image = cv2.imread(image_path)
anno_image = image.copy()
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
if masks is not None:
image = MASK_ANNOTATOR.annotate(image, detections)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image)
if annotation:
images_dict = {}
annotations_dict = {}
images_dict[osp.basename(image_path)] = anno_image
annotations_dict[osp.basename(image_path)] = detections
ANNOTATIONS_DIRECTORY = os.makedirs(r"./annotations", exist_ok=True)
MIN_IMAGE_AREA_PERCENTAGE = 0.002
MAX_IMAGE_AREA_PERCENTAGE = 0.80
APPROXIMATION_PERCENTAGE = 0.75
sv.DetectionDataset(
classes=texts, images=images_dict, annotations=annotations_dict
).as_yolo(
annotations_directory_path=ANNOTATIONS_DIRECTORY,
min_image_area_percentage=MIN_IMAGE_AREA_PERCENTAGE,
max_image_area_percentage=MAX_IMAGE_AREA_PERCENTAGE,
approximation_percentage=APPROXIMATION_PERCENTAGE,
)
if show:
cv2.imshow("Image", image) # Provide window name
k = cv2.waitKey(0)
if k == 27:
# wait for ESC key to exit
cv2.destroyAllWindows()
if __name__ == "__main__":
# paddle.seed(3407)
# np.random.seed(3407)
# random.seed(3407)
# custom import to registry the model
__import__("yolo_world")
# load config
args = parse_args()
cfg = load_config(args.config)
merge_args(cfg, args)
merge_config(args.opt)
# load text
if cfg.text.endswith(".txt"):
with open(cfg.text) as f:
lines = f.readlines()
texts = [[t.rstrip("\r\n")] for t in lines] + [[" "]]
else:
texts = [[t.strip()] for t in cfg.text.split(",")] + [[" "]]
trainer = Trainer(cfg, mode="test")
print(trainer.model.state_dict().keys())
trainer.load_weights(cfg.weights)
for k, m in trainer.model.named_sublayers():
if isinstance(m, nn.BatchNorm2D):
m._epsilon = 1e-3 # for amp(fp16)
m._momentum = 0.97 # 0.03 in pytorch
trainer.model.eval()
if cfg.offline:
trainer.model.reparameterize([list(itertools.chain.from_iterable(texts))])
if not osp.isfile(cfg.image):
images = [
osp.join(cfg.image, img)
for img in os.listdir(cfg.image)
if img.endswith(".png") or img.endswith(".jpg")
]
else:
images = [cfg.image]
trainer.dataset.set_images(images)
loader = create("TestReader")(trainer.dataset, 0)
for step_id, data in enumerate(tqdm(loader)):
if not cfg.offline:
data["texts"] = [list(itertools.chain.from_iterable(texts))]
else:
data["texts"] = None
trainer.status["step_id"] = step_id
run_inference(
trainer,
data,
images,
texts,
cfg.topk,
cfg.threshold,
cfg.output_dir,
cfg.show,
cfg.annotation,
)