-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
VIX Calculator.py
416 lines (296 loc) · 14.9 KB
/
VIX Calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# coding: utf-8
# In[1]:
#check cboe white paper on the details of computation
# http://www.cboe.com/micro/vix/vixwhite.pdf
#check this awesome article on the connection between vix and variance swap
# https://berentlunde.netlify.app/post/the-fear-index-vix-and-variance-swaps
#check this paper on the variance swap
# https://www.researchgate.net/publication/246869706_More_Than_You_Ever_Wanted_to_Know_About_Volatility_Swaps
import pandas as pd
import datetime as dt
import dateutil
import decimal
import os
import numpy as np
os.chdir('K:/ecole/github/televerser/données')
# In[2]:
#fill weekend and holiday missing cmt rate
def cmt_rate_fill_date(cmt_rate):
#get missing date as well
complete_date=pd.date_range(cmt_rate['Date'].min(),cmt_rate['Date'].max())
#reindex to fill missing date
cmt_rate=cmt_rate.pivot(index='Date',columns='maturity',values='value')
cmt_rate=cmt_rate.reindex(complete_date)
#cleanse
cmt_rate.index.name='Date'
cmt_rate.reset_index(inplace=True)
#ffill
cmt_rate.fillna(method='ffill',inplace=True)
#revert to the original form
cmt_rate=cmt_rate.melt(id_vars='Date',value_vars=['1 Mo', '1 Yr', '10 Yr', '2 Mo', '2 Yr', '20 Yr', '3 Mo',
'3 Yr', '30 Yr', '5 Yr', '6 Mo', '7 Yr'])
return cmt_rate
# In[3]:
#get settlement day in datetime format
#you can scrape the following website of cme instead
# f'https://www.cmegroup.com/CmeWS/mvc/ProductCalendar/Options/{futures_id}?optionTypeFilter=&optionTypeFilter='
#however it has some conflicts with cme globex s own holiday calendar
# https://www.cmegroup.com/tools-information/holiday-calendar.html
def get_settlement_day(current_day,time_horizon,
expiration_day,expiration_hour,
public_holidays):
#get month end at expiration hour
month_end=current_day+dateutil.relativedelta.relativedelta(day=31,hour=expiration_hour,
minute=0,second=0,
microsecond=0,
months=+time_horizon-1)
#adjust to the nth last day of the month
settlement_day=month_end
#use loop to skip non trading day
correct=False
#count the month end if its a weekday
counter=1 if dt.datetime.weekday(settlement_day) in range(5) else 0
while not correct:
#cannot be a weekend day or a federal holiday
if (dt.datetime.weekday(settlement_day) in range(5)) and \
(str(settlement_day)[:10] not in public_holidays) and \
counter>expiration_day-1:
correct=True
else:
settlement_day-=dt.timedelta(days=1)
#weekday is counted even if its federal holiday
if (dt.datetime.weekday(settlement_day) in range(5)):
counter+=1
return settlement_day
# In[4]:
#get time to expiration
#instead of current day+settlement day+other days
#we can directly use timedelta to obtain the result in minutes
#no need to skip any holidays in this calculation
def get_time_to_expiration(current_day,time_horizon,
expiration_day,expiration_hour,
public_holidays):
#get settlement day
settlement_day=get_settlement_day(current_day,time_horizon,
expiration_day,expiration_hour,
public_holidays)
#convert seconds to minutes
#divided by minutes in a year
return (settlement_day-current_day).total_seconds()/60/525600
# In[5]:
#get forward level and strike price no larger than forward
def get_forward_strike(options,
interest_rate,
time_to_expiration):
#cleanse
options=options.sort_values('options-strikePrice')
find_forward=options.pivot(index='options-strikePrice',
columns='options-optiontype',
values='options-priorSettle')
#find the forward level with the least put call disparity
min_diff_ind=(find_forward['call']-find_forward['put']).apply(abs).idxmin()
min_diff=float(decimal.Decimal(find_forward['call'][min_diff_ind].astype(str))-decimal.Decimal(find_forward['put'][min_diff_ind].astype(str)))
forward=min_diff_ind+np.e**(interest_rate*time_to_expiration)*(min_diff)
#find the strike price no larger than forward level
strike=find_forward.index[find_forward.index<=forward][-1]
return forward,strike
# In[6]:
#select out of money call options
#with zero prior settle exclusion
def get_options_call_inclusion(options,strike):
options_call=options[options['options-optiontype']=='call']
#select outta money options
#cuz they are usually more liquid
options_call_otm=options_call[options_call['options-strikePrice']>strike]
#sort by strike price
options_call_otm=options_call_otm.sort_values('options-strikePrice')
options_call_otm.reset_index(inplace=True,drop=True)
#find all zero prior settle options
options_call_otm_zeros=options_call_otm[options_call_otm['options-priorSettle']==0]
options_call_otm_zeros.reset_index(inplace=True)
#as we dont have bid and ask
#we use prior settle instead
#once options with consecutive strike prices have zero prior settle
#any further out of money options would be excluded
if options_call_otm_zeros[options_call_otm_zeros['index'].diff()==1].empty:
ind=len(options_call_otm)
else:
ind=options_call_otm_zeros['index'][options_call_otm_zeros['index'].diff()==1].iloc[0]
#exclude all zero prior settle options
options_call_inclusion=options_call_otm[options_call_otm['options-priorSettle']!=0][:ind]
#cleanse
options_call_inclusion.reset_index(inplace=True,drop=True)
return options_call_inclusion
# In[7]:
#select out of money put options
#with zero prior settle exclusion
def get_options_put_inclusion(options,strike):
options_put=options[options['options-optiontype']=='put']
#select outta money options
#cuz they are usually more liquid
options_put_otm=options_put[options_put['options-strikePrice']<strike]
#sort by strike price
options_put_otm=options_put_otm.sort_values('options-strikePrice',
ascending=False)
options_put_otm.reset_index(inplace=True,drop=True)
#find all zero prior settle options
options_put_otm_zeros=options_put_otm[options_put_otm['options-priorSettle']==0]
options_put_otm_zeros.reset_index(inplace=True)
#as we dont have bid and ask
#we use prior settle instead
#once options with consecutive strike prices have zero prior settle
#any further out of money options would be excluded
if options_put_otm_zeros[options_put_otm_zeros['index'].diff()==1].empty:
ind=len(options_put_otm)
else:
ind=options_put_otm_zeros['index'][options_put_otm_zeros['index'].diff()==1].iloc[0]
#exclude all zero prior settle options
options_put_inclusion=options_put_otm[options_put_otm['options-priorSettle']!=0][:ind]
#cleanse
options_put_inclusion.reset_index(inplace=True,drop=True)
return options_put_inclusion
# In[8]:
#compute sigma based upon variance swap formula
def compute_sigma(forward,strike,
options_call_inclusion,
options_put_inclusion,
interest_rate,time_to_expiration):
contributions=0.0
for i in [options_call_inclusion,
options_put_inclusion]:
for j in i.index:
#interval between strike prices
if j-1<0:
delta=abs(i['options-strikePrice'][j]-i['options-strikePrice'][j+1])
elif j+1==len(i):
delta=abs(i['options-strikePrice'][j]-i['options-strikePrice'][j-1])
else:
delta=abs(i['options-strikePrice'][j-1]-i['options-strikePrice'][j+1])/2
contributions+=i['options-priorSettle'][j]*np.exp(interest_rate*time_to_expiration)*delta/(i['options-strikePrice'][j])**2
#replace bid ask spread midpoint with prior settle
sigma=contributions*2/time_to_expiration-((forward/strike-1)**2)/time_to_expiration
return sigma
# In[9]:
#weighted avg of vix
def compute_vix(time_to_expiration_front,
time_to_expiration_rear,
sigma_front,sigma_rear,
num_of_mins_timeframe,
num_of_mins_year):
sum1=time_to_expiration_front*sigma_front*(time_to_expiration_rear*num_of_mins_year-num_of_mins_timeframe)/(time_to_expiration_rear*num_of_mins_year-time_to_expiration_front*num_of_mins_year)
sum2=time_to_expiration_rear*sigma_rear*(num_of_mins_timeframe-time_to_expiration_front*num_of_mins_year)/(time_to_expiration_rear*num_of_mins_year-time_to_expiration_front*num_of_mins_year)
vix=((sum1+sum2)*num_of_mins_year/num_of_mins_timeframe)**0.5*100
return vix
# In[10]:
#aggregate all functions into one
def vix_calculator(df,cmt_rate,calendar,
options_id,tradedate,
timeframe_front,timeframe_rear,
expiration_hour,expiration_day,
num_of_mins_timeframe,num_of_mins_year):
#us federal holidays
federal_holidays=calendar['DATE'].tolist()
#daily treasury yield curve rate
interest_rate_front=cmt_rate['value'][cmt_rate['maturity']==f'{timeframe_front} Mo'][cmt_rate['Date']==tradedate].item()/100
interest_rate_rear=cmt_rate['value'][cmt_rate['maturity']==f'{timeframe_rear} Mo'][cmt_rate['Date']==tradedate].item()/100
#find current options
currentoptions=df[df['options-id']==options_id][df['tradeDate']==tradedate].copy()
#determine next term and near term contracts
nextterm=dt.datetime.strptime(tradedate,'%Y-%m-%d')+dt.timedelta(days=30*timeframe_rear)
nearterm=dt.datetime.strptime(tradedate,'%Y-%m-%d')+dt.timedelta(days=30*timeframe_front)
#determine rear month and front month
rearmonth=pd.to_datetime(f'{nextterm.year}-{nextterm.month}-1')
frontmonth=pd.to_datetime(f'{nearterm.year}-{nearterm.month}-1')
#create dataframe copies
options_rear=currentoptions[currentoptions['futures-expirationDate']==rearmonth].copy()
options_front=currentoptions[currentoptions['futures-expirationDate']==frontmonth].copy()
#take futures updated datetime as the current one
current_day_front=options_front['futures-updated'].iloc[0]
current_day_rear=options_rear['futures-updated'].iloc[0]
#get time to expiration
time_to_expiration_front=get_time_to_expiration(current_day_front,
timeframe_front,
expiration_day,
expiration_hour,
federal_holidays)
time_to_expiration_rear=get_time_to_expiration(current_day_rear,
timeframe_rear,
expiration_day,
expiration_hour,
federal_holidays)
#get forward level and strike price no larger than forward
forward_front,strike_front=get_forward_strike(options_front,
interest_rate_front,
time_to_expiration_front)
forward_rear,strike_rear=get_forward_strike(options_rear,
interest_rate_rear,
time_to_expiration_rear)
#prepare options for calculation
options_call_front_inclusion=get_options_call_inclusion(
options_front,strike_front)
options_call_rear_inclusion=get_options_call_inclusion(
options_rear,strike_rear)
options_put_front_inclusion=get_options_put_inclusion(
options_front,strike_front)
options_put_rear_inclusion=get_options_put_inclusion(
options_rear,strike_rear)
#use put call avg
#if strike price exists in the out of money dataset
for i in [options_call_front_inclusion,
options_put_front_inclusion]:
if strike_front in i['options-strikePrice'].tolist():
i['opt'][i['options-strikePrice']==strike_front]=options_front['options-priorSettle'][options_front['options-strikePrice']==strike_front].mean()
for i in [options_call_rear_inclusion,
options_put_rear_inclusion]:
if strike_rear in i['options-strikePrice'].tolist():
i['opt'][i['options-strikePrice']==strike_rear]=options_rear['options-priorSettle'][options_rear['options-strikePrice']==strike_rear].mean()
#compute sigmas
sigma_front=compute_sigma(forward_front,strike_front,
options_call_front_inclusion,
options_put_front_inclusion,
interest_rate_front,time_to_expiration_front)
sigma_rear=compute_sigma(forward_rear,strike_rear,
options_call_rear_inclusion,
options_put_rear_inclusion,
interest_rate_rear,time_to_expiration_rear)
#enfin,vix!!!
vix=compute_vix(time_to_expiration_front,
time_to_expiration_rear,
sigma_front,sigma_rear,
num_of_mins_timeframe,
num_of_mins_year)
return vix
# In[11]:
#compute 3 month ahead vix for henry hub european options
def main():
#read data
df=pd.read_csv('henry hub european options.csv')
calendar=pd.read_csv('cme holidays.csv')
cmt_rate=pd.read_csv('treasury yield curve rates.csv')
#datetime format
df['futures-expirationDate']=pd.to_datetime(df['futures-expirationDate'])
df['tradeDate']=pd.to_datetime(df['tradeDate'])
df['futures-updated']=pd.to_datetime(df['futures-updated'])
df['options-updated']=pd.to_datetime(df['options-updated'])
cmt_rate['Date']=pd.to_datetime(cmt_rate['Date'])
#fill weekend and holiday missing cmt rate
cmt_rate=cmt_rate_fill_date(cmt_rate)
#preset parameters
#check contractSpecs of the underlying asset
#in our case
# https://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contractSpecs_options.html#optionProductId=1352
options_id=1352;tradedate='2020-11-12'
timeframe_front=2;timeframe_rear=3
expiration_hour=16;expiration_day=4
num_of_mins_timeframe=timeframe_rear*30*24*60
num_of_mins_year=365*24*60
#vix!!!
vix=vix_calculator(df,cmt_rate,calendar,
options_id,tradedate,
timeframe_front,timeframe_rear,
expiration_hour,expiration_day,
num_of_mins_timeframe,num_of_mins_year)
print(vix)
# In[12]:
if __name__ == '__main__':
main()