forked from suragnair/alpha-zero-general
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MCTS.py
126 lines (100 loc) · 4.45 KB
/
MCTS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import math
import numpy as np
class MCTS():
"""
This class handles the MCTS tree.
"""
def __init__(self, game, nnet, args):
self.game = game
self.nnet = nnet
self.args = args
self.Qsa = {} # stores Q values for s,a (as defined in the paper)
self.Nsa = {} # stores #times edge s,a was visited
self.Ns = {} # stores #times board s was visited
self.Ps = {} # stores initial policy (returned by neural net)
self.Es = {} # stores game.getGameEnded ended for board s
self.Vs = {} # stores game.getValidMoves for board s
def getActionProb(self, canonicalBoard, temp=1):
"""
This function performs numMCTSSims simulations of MCTS starting from
canonicalBoard.
Returns:
probs: a policy vector where the probability of the ith action is
proportional to Nsa[(s,a)]**(1./temp)
"""
for i in range(self.args.numMCTSSims):
self.search(canonicalBoard)
s = self.game.stringRepresentation(canonicalBoard)
counts = [self.Nsa[(s,a)] if (s,a) in self.Nsa else 0 for a in range(self.game.getActionSize())]
if temp==0:
bestA = np.argmax(counts)
probs = [0]*len(counts)
probs[bestA]=1
return probs
counts = [x**(1./temp) for x in counts]
probs = [x/float(sum(counts)) for x in counts]
return probs
def search(self, canonicalBoard):
"""
This function performs one iteration of MCTS. It is recursively called
till a leaf node is found. The action chosen at each node is one that
has the maximum upper confidence bound as in the paper.
Once a leaf node is found, the neural network is called to return an
initial policy P and a value v for the state. This value is propogated
up the search path. In case the leaf node is a terminal state, the
outcome is propogated up the search path. The values of Ns, Nsa, Qsa are
updated.
NOTE: the return values are the negative of the value of the current
state. This is done since v is in [-1,1] and if v is the value of a
state for the current player, then its value is -v for the other player.
Returns:
v: the negative of the value of the current canonicalBoard
"""
s = self.game.stringRepresentation(canonicalBoard)
if s not in self.Es:
self.Es[s] = self.game.getGameEnded(canonicalBoard, 1)
if self.Es[s]!=0:
# terminal node
return -self.Es[s]
if s not in self.Ps:
# leaf node
self.Ps[s], v = self.nnet.predict(canonicalBoard)
valids = self.game.getValidMoves(canonicalBoard, 1)
ps_no_masking = np.copy(self.Ps[s])
self.Ps[s] = self.Ps[s]*valids # masking invalid moves
t = np.sum(self.Ps[s])
if not np.isclose(t, 0):
self.Ps[s] /= t; #renomalize
else:
print('sum of self.Ps[s] after masking is too small: {}'.format(t))
print('current board state s : {}'.format(s))
print('self.Ps[s] after masking : {}'.format(self.Ps[s]))
print('self.Ps[s] without masking: {}'.format(ps_no_masking))
self.Vs[s] = valids
self.Ns[s] = 0
return -v
valids = self.Vs[s]
cur_best = -float('inf')
best_act = -1
# pick the action with the highest upper confidence bound
for a in range(self.game.getActionSize()):
if valids[a]:
if (s,a) in self.Qsa:
u = self.Qsa[(s,a)] + self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s])/(1+self.Nsa[(s,a)])
else:
u = self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s]) # Q = 0 ?
if u > cur_best:
cur_best = u
best_act = a
a = best_act
next_s, next_player = self.game.getNextState(canonicalBoard, 1, a)
next_s = self.game.getCanonicalForm(next_s, next_player)
v = self.search(next_s)
if (s,a) in self.Qsa:
self.Qsa[(s,a)] = (self.Nsa[(s,a)]*self.Qsa[(s,a)] + v)/(self.Nsa[(s,a)]+1)
self.Nsa[(s,a)] += 1
else:
self.Qsa[(s,a)] = v
self.Nsa[(s,a)] = 1
self.Ns[s] += 1
return -v