forked from minimaxir/facebook-page-post-scraper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_fb_posts_fb_group.py
202 lines (150 loc) · 6.93 KB
/
get_fb_posts_fb_group.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
import datetime
import csv
import time
import re
try:
from urllib.request import urlopen, Request
except ImportError:
from urllib2 import urlopen, Request
app_id = "<FILL IN>"
app_secret = "<FILL IN>" # DO NOT SHARE WITH ANYONE!
group_id = "759985267390294"
# input date formatted as YYYY-MM-DD
since_date = ""
until_date = ""
access_token = app_id + "|" + app_secret
def request_until_succeed(url):
req = Request(url)
success = False
while success is False:
try:
response = urlopen(req)
if response.getcode() == 200:
success = True
except Exception as e:
print(e)
time.sleep(5)
print("Error for URL {}: {}".format(url, datetime.datetime.now()))
print("Retrying.")
return response.read()
# Needed to write tricky unicode correctly to csv
def unicode_decode(text):
try:
return text.encode('utf-8').decode()
except UnicodeDecodeError:
return text.encode('utf-8')
def getFacebookPageFeedUrl(base_url):
# Construct the URL string; see http://stackoverflow.com/a/37239851 for
# Reactions parameters
fields = "&fields=message,link,created_time,type,name,id," + \
"comments.limit(0).summary(true),shares,reactions" + \
".limit(0).summary(true),from"
url = base_url + fields
return url
def getReactionsForStatuses(base_url):
reaction_types = ['like', 'love', 'wow', 'haha', 'sad', 'angry']
reactions_dict = {} # dict of {status_id: tuple<6>}
for reaction_type in reaction_types:
fields = "&fields=reactions.type({}).limit(0).summary(total_count)".format(
reaction_type.upper())
url = base_url + fields
data = json.loads(request_until_succeed(url))['data']
data_processed = set() # set() removes rare duplicates in statuses
for status in data:
id = status['id']
count = status['reactions']['summary']['total_count']
data_processed.add((id, count))
for id, count in data_processed:
if id in reactions_dict:
reactions_dict[id] = reactions_dict[id] + (count,)
else:
reactions_dict[id] = (count,)
return reactions_dict
def processFacebookPageFeedStatus(status):
# The status is now a Python dictionary, so for top-level items,
# we can simply call the key.
# Additionally, some items may not always exist,
# so must check for existence first
status_id = status['id']
status_type = status['type']
status_message = '' if 'message' not in status else \
unicode_decode(status['message'])
link_name = '' if 'name' not in status else \
unicode_decode(status['name'])
status_link = '' if 'link' not in status else \
unicode_decode(status['link'])
# Time needs special care since a) it's in UTC and
# b) it's not easy to use in statistical programs.
status_published = datetime.datetime.strptime(
status['created_time'], '%Y-%m-%dT%H:%M:%S+0000')
status_published = status_published + \
datetime.timedelta(hours=-5) # EST
status_published = status_published.strftime(
'%Y-%m-%d %H:%M:%S') # best time format for spreadsheet programs
status_author = unicode_decode(status['from']['name'])
# Nested items require chaining dictionary keys.
num_reactions = 0 if 'reactions' not in status else \
status['reactions']['summary']['total_count']
num_comments = 0 if 'comments' not in status else \
status['comments']['summary']['total_count']
num_shares = 0 if 'shares' not in status else status['shares']['count']
return (status_id, status_message, status_author, link_name, status_type,
status_link, status_published, num_reactions, num_comments, num_shares)
def scrapeFacebookPageFeedStatus(group_id, access_token, since_date, until_date):
with open('{}_facebook_statuses.csv'.format(group_id), 'w') as file:
w = csv.writer(file)
w.writerow(["status_id", "status_message", "status_author", "link_name",
"status_type", "status_link", "status_published",
"num_reactions", "num_comments", "num_shares", "num_likes",
"num_loves", "num_wows", "num_hahas", "num_sads", "num_angrys",
"num_special"])
has_next_page = True
num_processed = 0 # keep a count on how many we've processed
scrape_starttime = datetime.datetime.now()
# /feed endpoint pagenates througn an `until` and `paging` parameters
until = ''
paging = ''
base = "https://graph.facebook.com/v2.9"
node = "/{}/feed".format(group_id)
parameters = "/?limit={}&access_token={}".format(100, access_token)
since = "&since={}".format(since_date) if since_date \
is not '' else ''
until = "&until={}".format(until_date) if until_date \
is not '' else ''
print("Scraping {} Facebook Group: {}\n".format(
group_id, scrape_starttime))
while has_next_page:
until = '' if until is '' else "&until={}".format(until)
paging = '' if until is '' else "&__paging_token={}".format(paging)
base_url = base + node + parameters + since + until + paging
url = getFacebookPageFeedUrl(base_url)
statuses = json.loads(request_until_succeed(url))
reactions = getReactionsForStatuses(base_url)
for status in statuses['data']:
# Ensure it is a status with the expected metadata
if 'reactions' in status:
status_data = processFacebookPageFeedStatus(status)
reactions_data = reactions[status_data[0]]
# calculate thankful/pride through algebra
num_special = status_data[7] - sum(reactions_data)
w.writerow(status_data + reactions_data + (num_special,))
# output progress occasionally to make sure code is not
# stalling
num_processed += 1
if num_processed % 100 == 0:
print("{} Statuses Processed: {}".format
(num_processed, datetime.datetime.now()))
# if there is no next page, we're done.
if 'paging' in statuses:
next_url = statuses['paging']['next']
until = re.search('until=([0-9]*?)(&|$)', next_url).group(1)
paging = re.search(
'__paging_token=(.*?)(&|$)', next_url).group(1)
else:
has_next_page = False
print("\nDone!\n{} Statuses Processed in {}".format(
num_processed, datetime.datetime.now() - scrape_starttime))
if __name__ == '__main__':
scrapeFacebookPageFeedStatus(group_id, access_token, since_date, until_date)
# The CSV can be opened in all major statistical programs. Have fun! :)