forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 6
/
trainer_test.py
202 lines (164 loc) · 6.4 KB
/
trainer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.trainer."""
import tensorflow as tf
from google.protobuf import text_format
from object_detection import trainer
from object_detection.core import losses
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.protos import train_pb2
NUMBER_OF_CLASSES = 2
def get_input_function():
"""A function to get test inputs. Returns an image with one box."""
image = tf.random_uniform([32, 32, 3], dtype=tf.float32)
class_label = tf.random_uniform(
[1], minval=0, maxval=NUMBER_OF_CLASSES, dtype=tf.int32)
box_label = tf.random_uniform(
[1, 4], minval=0.4, maxval=0.6, dtype=tf.float32)
return {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_classes: class_label,
fields.InputDataFields.groundtruth_boxes: box_label
}
class FakeDetectionModel(model.DetectionModel):
"""A simple (and poor) DetectionModel for use in test."""
def __init__(self):
super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)
self._classification_loss = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
self._localization_loss = losses.WeightedSmoothL1LocalizationLoss(
anchorwise_output=True)
def preprocess(self, inputs):
"""Input preprocessing, resizes images to 28x28.
Args:
inputs: a [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
"""
return tf.image.resize_images(inputs, [28, 28])
def predict(self, preprocessed_inputs):
"""Prediction tensors from inputs tensor.
Args:
preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
Returns:
prediction_dict: a dictionary holding prediction tensors to be
passed to the Loss or Postprocess functions.
"""
flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
class_prediction = tf.contrib.layers.fully_connected(
flattened_inputs, self._num_classes)
box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)
return {
'class_predictions_with_background': tf.reshape(
class_prediction, [-1, 1, self._num_classes]),
'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
}
def postprocess(self, prediction_dict, **params):
"""Convert predicted output tensors to final detections. Unused.
Args:
prediction_dict: a dictionary holding prediction tensors.
**params: Additional keyword arguments for specific implementations of
DetectionModel.
Returns:
detections: a dictionary with empty fields.
"""
return {
'detection_boxes': None,
'detection_scores': None,
'detection_classes': None,
'num_detections': None
}
def loss(self, prediction_dict):
"""Compute scalar loss tensors with respect to provided groundtruth.
Calling this function requires that groundtruth tensors have been
provided via the provide_groundtruth function.
Args:
prediction_dict: a dictionary holding predicted tensors
Returns:
a dictionary mapping strings (loss names) to scalar tensors representing
loss values.
"""
batch_reg_targets = tf.stack(
self.groundtruth_lists(fields.BoxListFields.boxes))
batch_cls_targets = tf.stack(
self.groundtruth_lists(fields.BoxListFields.classes))
weights = tf.constant(
1.0, dtype=tf.float32,
shape=[len(self.groundtruth_lists(fields.BoxListFields.boxes)), 1])
location_losses = self._localization_loss(
prediction_dict['box_encodings'], batch_reg_targets,
weights=weights)
cls_losses = self._classification_loss(
prediction_dict['class_predictions_with_background'], batch_cls_targets,
weights=weights)
loss_dict = {
'localization_loss': tf.reduce_sum(location_losses),
'classification_loss': tf.reduce_sum(cls_losses),
}
return loss_dict
def restore_map(self, from_detection_checkpoint=True):
"""Returns a map of variables to load from a foreign checkpoint.
Args:
from_detection_checkpoint: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Returns:
A dict mapping variable names to variables.
"""
return {var.op.name: var for var in tf.global_variables()}
class TrainerTest(tf.test.TestCase):
def test_configure_trainer_and_train_two_steps(self):
train_config_text_proto = """
optimizer {
adam_optimizer {
learning_rate {
constant_learning_rate {
learning_rate: 0.01
}
}
}
}
data_augmentation_options {
random_adjust_brightness {
max_delta: 0.2
}
}
data_augmentation_options {
random_adjust_contrast {
min_delta: 0.7
max_delta: 1.1
}
}
num_steps: 2
"""
train_config = train_pb2.TrainConfig()
text_format.Merge(train_config_text_proto, train_config)
train_dir = self.get_temp_dir()
trainer.train(create_tensor_dict_fn=get_input_function,
create_model_fn=FakeDetectionModel,
train_config=train_config,
master='',
task=0,
num_clones=1,
worker_replicas=1,
clone_on_cpu=True,
ps_tasks=0,
worker_job_name='worker',
is_chief=True,
train_dir=train_dir)
if __name__ == '__main__':
tf.test.main()