forked from kabirahuja2431/DeepQLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
80 lines (62 loc) · 2.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from model import *
from dql import *
from prep_vis import *
BATCH_SIZE = 32
def main(option):
env = gym.envs.make("Breakout-v0")
tf.reset_default_graph()
action_cnn = DQN(BATCH_SIZE,'action_cnn',env.action_space.n)
target_cnn = DQN(BATCH_SIZE,'target_cnn',env.action_space.n)
decay_rate = 500000
epsilons = np.linspace(1,0.1,decay_rate)
if option == 'train':
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
DQL(env,sess,action_cnn,target_cnn,10000,epsilons,discount_factor=0.99,replay_mem_size=500000,
batch_size=BATCH_SIZE,C=10000,record=50,decay_rate=decay_rate,algo='DDQ',make_video = False)
if option == 'play':
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
checkpoint = tf.train.latest_checkpoint('Breakoutcheckpoints/')
if checkpoint:
print("Loading model checkpoint {}...\n".format(checkpoint))
saver.restore(sess, checkpoint)
else:
print("No checkpoint found, playing randomly")
state = env.reset()
for t in range(500):
env.render()
action = env.action_space.sample()
state,reward,done,_ = env.step(action)
if done:
break
return 0
print("Playing")
#preprocess = Preprocess()
state = env.reset()
state = preprocess(state,sess)
state = np.stack([state] * 4, axis=2)
while True:
env.render()
action_probs = Policy(action_cnn,state,sess,0.1,env.action_space.n)
possible_actions = np.arange(env.action_space.n)
action = np.random.choice(possible_actions, p = action_probs)
new_state,reward,done, _ = env.step(action)
new_state = preprocess(new_state,sess)
new_state = np.append(state[:,:,1:],new_state[:,:,np.newaxis],axis = 2)
if done:
break
state = new_state
if option == 'vis':
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
frame,feat_cols = create_dataframe(env,sess,action_cnn,'Breakoutcheckpoints/')
print("Performing PCA_visualization")
PCA_visualization(frame,feat_cols)
print("Performing tSNE_visualization")
tSNE_visualization(frame,feat_cols)
if __name__ == '__main__':
option = input("Play, Train or Visualize")
main(option)