forked from SWivid/F5-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_cli.py
360 lines (315 loc) · 10.9 KB
/
infer_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import argparse
import codecs
import os
import re
from datetime import datetime
from importlib.resources import files
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
mel_spec_type,
target_rms,
cross_fade_duration,
nfe_step,
cfg_strength,
sway_sampling_coef,
speed,
fix_duration,
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
)
from f5_tts.model import DiT, UNetT
parser = argparse.ArgumentParser(
prog="python3 infer-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
type=str,
default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
help="The configuration file, default see infer/examples/basic/basic.toml",
)
# Note. Not to provide default value here in order to read default from config file
parser.add_argument(
"-m",
"--model",
type=str,
help="The model name: F5-TTS | E2-TTS",
)
parser.add_argument(
"-mc",
"--model_cfg",
type=str,
help="The path to F5-TTS model config file .yaml",
)
parser.add_argument(
"-p",
"--ckpt_file",
type=str,
help="The path to model checkpoint .pt, leave blank to use default",
)
parser.add_argument(
"-v",
"--vocab_file",
type=str,
help="The path to vocab file .txt, leave blank to use default",
)
parser.add_argument(
"-r",
"--ref_audio",
type=str,
help="The reference audio file.",
)
parser.add_argument(
"-s",
"--ref_text",
type=str,
help="The transcript/subtitle for the reference audio",
)
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="The text to make model synthesize a speech",
)
parser.add_argument(
"-f",
"--gen_file",
type=str,
help="The file with text to generate, will ignore --gen_text",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="The path to output folder",
)
parser.add_argument(
"-w",
"--output_file",
type=str,
help="The name of output file",
)
parser.add_argument(
"--save_chunk",
action="store_true",
help="To save each audio chunks during inference",
)
parser.add_argument(
"--remove_silence",
action="store_true",
help="To remove long silence found in ouput",
)
parser.add_argument(
"--load_vocoder_from_local",
action="store_true",
help="To load vocoder from local dir, default to ../checkpoints/vocos-mel-24khz",
)
parser.add_argument(
"--vocoder_name",
type=str,
choices=["vocos", "bigvgan"],
help=f"Used vocoder name: vocos | bigvgan, default {mel_spec_type}",
)
parser.add_argument(
"--target_rms",
type=float,
help=f"Target output speech loudness normalization value, default {target_rms}",
)
parser.add_argument(
"--cross_fade_duration",
type=float,
help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
)
parser.add_argument(
"--nfe_step",
type=int,
help=f"The number of function evaluation (denoising steps), default {nfe_step}",
)
parser.add_argument(
"--cfg_strength",
type=float,
help=f"Classifier-free guidance strength, default {cfg_strength}",
)
parser.add_argument(
"--sway_sampling_coef",
type=float,
help=f"Sway Sampling coefficient, default {sway_sampling_coef}",
)
parser.add_argument(
"--speed",
type=float,
help=f"The speed of the generated audio, default {speed}",
)
parser.add_argument(
"--fix_duration",
type=float,
help=f"Fix the total duration (ref and gen audios) in seconds, default {fix_duration}",
)
args = parser.parse_args()
# config file
config = tomli.load(open(args.config, "rb"))
# command-line interface parameters
model = args.model or config.get("model", "F5-TTS")
model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
vocab_file = args.vocab_file or config.get("vocab_file", "")
ref_audio = args.ref_audio or config.get("ref_audio", "infer/examples/basic/basic_ref_en.wav")
ref_text = (
args.ref_text
if args.ref_text is not None
else config.get("ref_text", "Some call me nature, others call me mother nature.")
)
gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
gen_file = args.gen_file or config.get("gen_file", "")
output_dir = args.output_dir or config.get("output_dir", "tests")
output_file = args.output_file or config.get(
"output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
)
save_chunk = args.save_chunk or config.get("save_chunk", False)
remove_silence = args.remove_silence or config.get("remove_silence", False)
load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocoder_from_local", False)
vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
target_rms = args.target_rms or config.get("target_rms", target_rms)
cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
speed = args.speed or config.get("speed", speed)
fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
# patches for pip pkg user
if "infer/examples/" in ref_audio:
ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
if "infer/examples/" in gen_file:
gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
if "voices" in config:
for voice in config["voices"]:
voice_ref_audio = config["voices"][voice]["ref_audio"]
if "infer/examples/" in voice_ref_audio:
config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
# ignore gen_text if gen_file provided
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
# output path
wave_path = Path(output_dir) / output_file
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
if save_chunk:
output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
if not os.path.exists(output_chunk_dir):
os.makedirs(output_chunk_dir)
# load vocoder
if vocoder_name == "vocos":
vocoder_local_path = "../checkpoints/vocos-mel-24khz"
elif vocoder_name == "bigvgan":
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_local, local_path=vocoder_local_path)
# load TTS model
if model == "F5-TTS":
model_cls = DiT
model_cfg = OmegaConf.load(model_cfg).model.arch
if not ckpt_file: # path not specified, download from repo
if vocoder_name == "vocos":
repo_name = "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
elif vocoder_name == "bigvgan":
repo_name = "F5-TTS"
exp_name = "F5TTS_Base_bigvgan"
ckpt_step = 1250000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
elif model == "E2-TTS":
assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if not ckpt_file: # path not specified, download from repo
repo_name = "E2-TTS"
exp_name = "E2TTS_Base"
ckpt_step = 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
# inference process
def main():
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
if "voices" not in config:
voices = {"main": main_voice}
else:
voices = config["voices"]
voices["main"] = main_voice
for voice in voices:
print("Voice:", voice)
print("ref_audio ", voices[voice]["ref_audio"])
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
voices[voice]["ref_audio"], voices[voice]["ref_text"]
)
print("ref_audio_", voices[voice]["ref_audio"], "\n\n")
generated_audio_segments = []
reg1 = r"(?=\[\w+\])"
chunks = re.split(reg1, gen_text)
reg2 = r"\[(\w+)\]"
for text in chunks:
if not text.strip():
continue
match = re.match(reg2, text)
if match:
voice = match[1]
else:
print("No voice tag found, using main.")
voice = "main"
if voice not in voices:
print(f"Voice {voice} not found, using main.")
voice = "main"
text = re.sub(reg2, "", text)
ref_audio_ = voices[voice]["ref_audio"]
ref_text_ = voices[voice]["ref_text"]
gen_text_ = text.strip()
print(f"Voice: {voice}")
audio_segment, final_sample_rate, spectragram = infer_process(
ref_audio_,
ref_text_,
gen_text_,
ema_model,
vocoder,
mel_spec_type=vocoder_name,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
)
generated_audio_segments.append(audio_segment)
if save_chunk:
if len(gen_text_) > 200:
gen_text_ = gen_text_[:200] + " ... "
sf.write(
os.path.join(output_chunk_dir, f"{len(generated_audio_segments)-1}_{gen_text_}.wav"),
audio_segment,
final_sample_rate,
)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, final_sample_rate)
# Remove silence
if remove_silence:
remove_silence_for_generated_wav(f.name)
print(f.name)
if __name__ == "__main__":
main()