-
Notifications
You must be signed in to change notification settings - Fork 2
/
script2_epiallele_inference.R
executable file
·138 lines (99 loc) · 3.69 KB
/
script2_epiallele_inference.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Bayesian epiallele detection
Copyright (C) 2019 James E. Barrett ([email protected])
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#----------------------------------------#
# Parse command line args
#----------------------------------------#
library(getopt)
library(parallel)
spec = matrix( c(
"source_dir", "s" , 1 , "character" ,
"tumour_input_dir", "t" , 1 , "character",
"normal_input_dir", "n" , 1 , "character",
"output_dir", "o" , 1 , "character" ,
"sample_id", "i" , 1 , "character" ,
"help", "h" , 0 , "logical"
), ncol=4 , byrow=TRUE )
opt = getopt(spec , opt = commandArgs(TRUE))
if( !is.null(opt$help) ) {
cat(getopt(spec , usage=TRUE))
q(status=1)
}
if( is.null(opt$source_dir) || is.null(opt$normal_input_dir) || is.null(opt$tumour_input_dir) || is.null(opt$output_dir) ) {
cat(getopt(spec , usage=TRUE))
q()
}
if ( is.null(opt$sample_id)){
opt$sample_id <- '_'
}
# ----------------------------------------#
# Prepare for parallelisation
# ----------------------------------------#
NCORES <- 22
cl <- makeCluster(NCORES)
#----------------------------------------#
# Source R_files
#----------------------------------------#
setwd(opt$source_dir)
for (src in dir('R_files')){
source(paste('R_files/',src,sep=''))
}
clusterExport(cl=cl, varlist=ls())
#----------------------------------------#
# Combine tumour regions and normal sample
#----------------------------------------#
# merged list structure should be indexed as Z[[chr]][[r]][[i]]
cat("\nBegin merge samples...\n")
CHR <- 22
total_samples <- length(strsplit(opt$tumour_input_dir,split=',')[[1]]) + 1
Z_merge <- vector('list', CHR)
# load & merge tumour samples
for (r in 1:(total_samples-1)){
load(strsplit(opt$tumour_input_dir,split=',')[[1]][r])
for (chr in 1:CHR){
Z_merge[[chr]][[r]] <- Z[[chr]]
}
}
# load & merge normal sample
load(opt$normal_input_dir)
for (chr in 1:CHR){
Z_merge[[chr]][[total_samples]] <- Z[[chr]]
}
Z <- Z_merge
save(Z,file=paste(opt$output_dir,paste(opt$sample_id,'_merged','_Z.Rdata',sep=""),sep="/"))
cat("Merge samples complete.\n\n")
#----------------------------------------#
# Quality control plots
#----------------------------------------#
cat("Begin QC plots...\n")
epiallele_qc(Z, opt)
cat("QC plots complete.\n\n")
#----------------------------------------#
# Compute loci depths and indices
#----------------------------------------#
cat("Begin indexing epiallele loci...\n")
Edepth <- parLapply(cl, Z, fun = epiallele_depth)
setwd(opt$output_dir)
save('Edepth',file=paste(opt$output_dir,paste(opt$sample_id,'_Edepth.Rdata',sep=""),sep="/"))
cat("Indexing epiallele loci complete.\n\n")
#----------------------------------------#
# Infer epialleles
#----------------------------------------#
cat("Begin epiallele inference...\n")
input <- vector('list',length(Z))
for (chr in 1:length(Z)){
input[[chr]] <- list(Z=Z[[chr]],e.depth=Edepth[[chr]])
}
Edata <- parLapply(cl, input, fun = epiallele)
#Edata <- lapply(input, FUN = epiallele)
save('Edata',file=paste(opt$output_dir,paste(opt$sample_id,'_Edata.Rdata',sep=""),sep="/"))
cat("Epiallele inference complete.\n\n")