From 1bd42222da481133db9b8c288039d8c97a289597 Mon Sep 17 00:00:00 2001 From: Jad Ghalayini Date: Mon, 4 Nov 2024 04:19:55 +0000 Subject: [PATCH] Extension runes --- paper.tex | 48 ++++++++++++++++++------------------------------ 1 file changed, 18 insertions(+), 30 deletions(-) diff --git a/paper.tex b/paper.tex index 877a708..1ae77b9 100644 --- a/paper.tex +++ b/paper.tex @@ -3838,6 +3838,22 @@ \subsection{Semantics} \item Otherwise, compute $\loopmor{\Gamma}{(\wbranch{\ell_i}{x_i}{t_i},)_i}{\ms{L}}$ in a loop, passing in a fresh copy of the context each time. This is implemented with $\ms{rfix}$. \end{itemize} +This simplifies significantly in the case of a \ms{where}-block defining just a single label, +yielding +\begin{equation} + \dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}} + = \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}} + ; \delta^{-1} + ; [\pi_r, \rfix{\dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}, \ell(A)}}}] +\end{equation} +In particular, it is a consequence of label weakening (Lemma~\ref{lem:wk}) that, in the case where +$s$ does not call $\ell$, this simplifies further to +\begin{equation} + \dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}} + = \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}} + ; \delta^{-1} + ; [\pi_r, \dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}}}] +\end{equation} \begin{figure} \begin{equation*} @@ -3922,6 +3938,7 @@ \subsection{Metatheory} $ \label{itm:lbsubstwk} \end{enumerate} + \label{lem:wk} \end{lemma} \begin{proof} See Appendix~\ref{proof:weakening} @@ -5869,13 +5886,6 @@ \section{The Environment Comonad} \end{itemize} \end{proof} -\TODO{this is useful because of \ms{where}-lore} - -\TODO{$\dnt{\haslb{\Gamma, \bhyp{y}{A}}{[\ell/\kappa]s}{\ms{L}}} - = \rfix{S ; [\ms{id}, \iota_r]}$} - -\TODO{insert proof of ``$\delta$ lemma?''} - \section{Proofs} @@ -6884,28 +6894,6 @@ \subsection{Substitution} then follow by a trivial induction. \end{proof} -\TODO{immediate consequences of (label) weakening} - -\TODO{text} - -\begin{equation} - \dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}} - = \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}} - ; \delta^{-1} - ; [\pi_r, \rfix{\dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}, \ell(A)}}}] -\end{equation} - -\TODO{in particular, if $\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}}$} - -\begin{equation} - \dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}} - = \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}} - ; \delta^{-1} - ; [\pi_r, \dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}}}] -\end{equation} - -\TODO{segue} - \begin{lemma}[Substitution Projection] For $\issubst{\gamma}{\Gamma}{\Delta}$, $\ms{eff}(\Delta) = \bot$ and $\Delta(x) = A$, we have \begin{equation} @@ -8173,7 +8161,7 @@ \subsection{Equational Theory} = \lmor{R} ; \delta^{-1} ; [\ms{id}, \rfix{S ; [\ms{id}, \iota_r]}] \\ & = \lmor{R} ; \delta^{-1} ; - [\ms{id}, \rfix{\dnt{\haslb{\Gamma, \bhyp{y}{A}}{[\ell/\kappa]s}{\ms{L}}}}] + [\ms{id}, \rfix{\dnt{\haslb{\Gamma, \bhyp{y}{A}}{[\ell/\kappa]s}{\ms{L}, \ell(A)}}}] = \dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{y}{[\ell/\kappa]s}}}{\ms{L}}} \end{aligned} \end{equation}