

Document Number: 323654-001

Optimizing
Non-Sequential
Data Processing
Applications

 March 2010

White Paper

Brian Forde
Senior Platform
Applications Engineer

John Browne
Platform Solutions
Architect

Intel Corporation

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

2 Document Number: 323654-001

Abstract

Data processing applications that manage large numbers of data flows,

either by indexing or pointer chasing, may be subject to frequent

instruction pipeline stalls due to data cache misses. This paper outlines

techniques for use on Intel® Architecture processors to lessen the effect

of instruction pipeline stalls in certain application designs.

It is assumed that the reader is familiar with the ‘C’ programming

language, IA-32 assembly language, and the GNU* ‘C’ compiler (GCC).

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 3

Contents
Introduction to Cache .. 4

Environment .. 5

Calculated Read Address.. 5

The Effect of DTLB Miss on Prefetching .. 7

Pointer Chasing ... 8

Parallel Chains ... 10

Prefetching and Parallelizing ... 12

Multiple Logical / Physical Cores ... 13

Conclusion ... 14

Figures

Figure 1. Cache Clock Cycle Penalty... 7

Figure 2. Cache Clock Cycle Penalty (large access stride) .. 8

Figure 3. Pointer Chasing Loop .. 9

Figure 4. Pointer Chasing ... 10

Figure 5. Pointer Chasing Loop – Multiple Chains ... 11

Figure 6. Pointer Chasing – Multiple Chains... 12

Figure 7. Pointer Chasing – Multiple Chains, Prefetched .. 13

Figure 8. Multiple Cores – Chains x 4 ... 13

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

4 Document Number: 323654-001

Introduction to Cache

High-performance CPUs depend on the availability of instructions and data to the
processor cores (the execution units) for their high throughput. When there are
delays in this availability, stalls may occur in the instruction pipeline of the execution
unit. To reduce the occurrence of stalls, instruction and data caches that store
frequently used data are placed in proximity to the processor cores, thus reducing the
need for the execution units to fetch data from external system memory.

In applications that process large amounts of independent data (video streaming,
communications protocols, database servers, etc.), there are basically two types of
data: non-temporal data (for example, control structures associated with a single
video link), which changes less frequently, and temporal data (for example, video
frame data), which changes more frequently. It is desirable that the non-temporal
data remain in-cache, while the temporal data are read from the data source, usually
via external system memory. It is possible, when the volume of data passing through
a processor is very large, that the non-temporal data may be evicted from cache.

When the execution unit accesses a memory location whose data is not present in
cache, the cache subsystem must fetch that data from external memory. Loading the
data from external memory into the cache incurs a penalty (memory read latency)
normally measured in nanoseconds. Typically the data is read from memory (by the
cache controller / memory controller) in blocks of the same size as the data cache
line.

If there is a minimal amount of data processing/manipulation to be done per cache
line (memory) read, then the execution bottleneck is the memory interface. In other
words, the rate of progression of the execution unit through the task is determined by
the rate at which data can be fetched from external memory.

Intel® Architecture processors provide a number of hardware-triggered data prefetch
mechanisms that monitor application data access patterns. On detection of certain
access patterns, the prefetch logic triggers a data prefetch operation automatically.
These mechanisms are very effective in certain types of applications. The hardware
prefetchers can reduce the effective latency of cache misses.

In addition to the hardware prefetch logic, the latest Intel Architecture processors
incorporate multiple non-blocking ‘Fill Buffers’ to track outstanding cache misses
beyond the data cache. Multiple ‘Load’ and ‘Store’ Buffers are also implemented in
the Memory Execution Unit. These, and other features, allow multiple memory read
operations to be in flight simultaneously.

In the majority of applications, data is accessed in a predictable fashion (for example,
video processing, where each block of a frame follows sequentially in memory or at
least at a predictable ‘stride’ from the previous). In such ‘sequential access’
applications it is relatively easy for the prefetch logic, implemented in hardware, to
predict which data will be accessed next by the software application code.

Certain packet processing applications, in particular those that include Segmentation
and Reassembly (SAR) algorithms, suffer from a level of ‘unpredictability’ in the data
access stride. For such applications, the prefetch logic implemented in hardware may
be unable to predict accurately which data cache lines should be prefetched next. In

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 5

the worst case, the prefetch logic may mis-predict, and cause useful data to be
evicted from cache, only to be replaced by data not yet needed by the execution unit.

Software-controlled prefetching is available on Intel Architecture processors, allowing
the software great flexibility in maintaining the content of the cache hierarchy. The
prefetch instruction is a hint to the processor, and may not be honored.

In most cases, prefetching (either hardware- or software-triggered) the data from
memory into the cache hierarchy reduces or eliminates the latency associated with
access to external memory. In addition, if the prefetch operation is performed in a
timely manner, the effects of any additional latency due to remotely located data in a
Non-Uniform Memory Architecture (NUMA) system may also be alleviated.

The Data Translation Lookaside Buffer (DTLB) in the processor under consideration
supports either 4 Kbyte or 2M/4M pages. It also implements a Second-level TLB
(STLB) that supports 512 4-Kbyte pages.

Hardware-triggered prefetch logic is limited to strides of less than 4 Kbytes.
Hardware-triggered prefetch also suffers when a DTLB miss occurs. That is, if the
address of the data being accessed does not exist in the DTLB, then a hardware-
triggered prefetch may fail. Software prefetch does not suffer from this effect.
Software prefetch succeeds even when a DTLB miss occurs. In any case, when a
DTLB miss occurs, the DTLB must be populated before the required data can be
fetched from cache or external memory.

Environment

The scenarios described in this paper were run on a platform that included the
following features:

• GreenCity Customer Reference Board

• Intel® Xeon® Processor E5530 @ 2.40 GHz, uniprocessor configuration

• 6 GB (6 x 1GB) DDR3 1333 MHz

• CentOS* 5.4 running vanilla Linux* 2.6.28.9

• GCC version 4.1.2 20080704 (Red Hat* 4.1.2-46)

Calculated Read Address

In most data processing applications, the data to be processed / manipulated is
located at an address in memory which is known well in advance of the data being
required by the execution unit. One such class of applications is audio / video
processing (encoding / decoding / compression / decompression). In such
applications, the data is usually presented in the form of an array (or ring buffer) of
data, sometimes several megabytes in size. The data in the buffer may be accessed
sequentially (using a fixed stride) or more randomly, but always by reference to some
offset from the base address of the buffer.

In the code below, a block of data is copied from a buffer at a regularly increasing
offset in memory (the stride). The blocks are cache-line-aligned, to ensure that they
do not straddle cache lines. The size (42 bytes) of the data copied in this example is

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

6 Document Number: 323654-001

taken from a real-world application (a Radio Network Controller (RNC), which uses
Transport Blocks of 336 bits).

#define CACHE_LINE_LENGTH 64

static inline void prefetch(
 const void *ipAddr)
{
 __asm__ __volatile__ ("prefetchnta (%0)" \
 : /* nothing */ \
 : "r" (ipAddr));
}

void Spin(
 char *ipData)
{
 char *lpDst;
 .
 .
 while(...)
 {
 memcpy(lpDst,
 ipData + (lvOffset * CACHE_LINE_LENGTH),
 42);

 prefetch(ipData + (lvOffset + (STRIDE * 8)) * CACHE_LINE_LENGTH);

 lvOffset += STRIDE;
 }
}

If the buffer size is small, then the memory location being accessed remains in cache,
and so the cost, in terms of clock cycles, of the above code loop is small. As the size
of the buffer increases, the buffer can no longer fit into the first-level cache (DL1) and
so each loop incurs the penalty associated with accessing the mid-level cache (MLC),
and so on. As the size of the buffer increases further, finally exceeding the size of the
last-level cache (LLC), every access to the buffer incurs the penalty associated with
accessing external memory.

Figure 1 illustrates the cost, in terms of clock cycles, of access to the various levels of
the cache hierarchy and external memory (when using base addressed memory
access and a stride length of one cache line (64 bytes)). The blue, pink, and green
traces indicate the cost of a) the algorithm without prefetching, b) the algorithm with
hardware prefetching enabled, and c) the algorithm with software prefetching
enabled. In the case of software prefetching, the cache line eight strides ahead is
prefetched into the cache hierarchy, as indicated in the previous code fragment.

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 7

Figure 1. Cache Clock Cycle Penalty

Single Line Stride

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

Memory Span (log2 Cache Lines)

Pe
na

lty
 (C

yc
le

s)

Raw
HW
SW

The four regions of the graph, indicated by vertical lines, represent the four levels of
the cache hierarchy, namely data cache levels 1 (DL1), 2 (MLC), 3 (LLC), and external
memory. Each region shows the cost, in terms of clock cycles, of access to a specific
cache level (DL1, MLC, LLC, or external memory). The boundaries of the DL1, MLC,
and LLC are clearly visible in the traces.

From the above, it can be seen that when access is limited to DL1 (the leftmost
region), there is no benefit to prefetching, and, in fact, a penalty is incurred when
software prefetching is used, as the prefetch instruction has a cost associated with
issuance, with no resulting benefit (the data is already in-cache). When accessing
external memory, software prefetch has a marked benefit, reducing the loop cost by
almost 50%.

In the processor, under examination, the MLC and LLC are a shared resource, acting
as both data and instruction caches. This explains the slight increase in penalty
towards the right of both the MLC and LLC regions.

The newest Intel Architecture processors incorporate multiple read buffers, located
between the execution units and the cache/memory controllers, which allow multiple
read operations to be in flight at any given moment. Thus, the penalty indicated in
the above graph is not the absolute penalty for any one read operation, but rather the
cost of one of many consecutive iterations of the above code loop.

The Effect of DTLB Miss on Prefetching

While the access stride is such that the hardware prefetch logic is unable to predict
accurately which cache lines should be prefetched, software prefetch may still be
useful. Figure 2 illustrates the effect of a large access stride on the algorithm
described in the previous section. In this case the access stride used in the algorithm
is 65 cache lines, ensuring that each access refers to a different page, and thus DTLB
entry.

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

8 Document Number: 323654-001

Figure 2. Cache Clock Cycle Penalty (large access stride)

65 Line Stride

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

Memory Span (log2 Cache Lines)

Pe
na

lty
 (C

yc
le

s)

Raw
HW
SW

From Figure 2, it is evident that the hardware prefetch logic has little effect on the
cost of loop iteration in this scenario. Software prefetch has a marked benefit,
reducing the loop cost by almost 50% when accessing external memory. Again, when
access is limited to DL1 (the leftmost region), there is no benefit to prefetching, and
in fact, a penalty is incurred when software prefetching is used, as the prefetch
instruction has a cost associated with issuing, with no benefit resulting (the data is
already in cache).

In addition, in this scenario, the penalty associated with LLC miss is higher than in the
previous example. This is as a result of incurring a DTLB miss penalty on every
access to external memory (stride is 65 cache lines, thus ensuring a DTLB miss on
every access).

In the above figure, the STLB boundary is evident, at 16/17 (circled). Between 2M
and 8M, although the data is in cache, a TLB miss occurs for each data access, and so
the loop incurs the associated penalty. In that case there is a minimum penalty
associated with the population of the DTLB entry, even though the data at the
required address is already in the LLC.

Pointer Chasing

In many applications, the address (location) of the next datum to be accessed by the
execution unit is dependent on a datum which has been previously read (for example,
a pointer or index in one structure refers to the next structure to be accessed by the
execution unit). In its simplest form this is referred to as pointer chasing.

One obvious example of pointer chasing is the use of the sk_buff structure, a type of
linked list, in the Linux kernel. Any application which requires the use of extensible
data storage typically uses linked lists. A less obvious example of pointer chasing is
IP address hashing. When a packet arrives at a network interface, its IP address is
typically passed through a hash algorithm and the resulting number is then used as an
index into a large hash table. Thus, the content of the received packet (the IP
address) determines which portion of the hash table needs to be fetched into cache.

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 9

ipNode

A typical example of pointer chasing is a linked list of data structures. The following
code fragment typifies a pointer chasing loop, and is illustrated in the diagram on the
right below.

Figure 3. Pointer Chasing Loop

typedef struct _Node
{
 struct _Node *pNext;
 unsigned char mPayload[];

} Node_t;

void Spin(
 Node_t *ipNode)
{
 unsigned char *lpDst;
 .
 .
 while(...)
 {
 Node_t *lpTemp = ipNode;

 ipNode = ipNode->pNext;
 prefetch(ipNode);

 memcpy(lpDst,
 lpTemp->mPayload,
 42);
 }
}

In pointer chasing algorithms, it is not possible for the execution unit to issue a read
request to the memory location of the next node in the chain, until the current read
request has been completed. This dependency can lead to instruction pipeline stalls.
The more randomly the objects in the chain are distributed in memory (that is, the
structures are not in any discernable order or spacing in memory), the less effective
prefetch techniques (either hardware or software) can be. In a completely disordered
chain, prefetching can have little beneficial effect on the access penalty to the
structures.

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

10 Document Number: 323654-001

Figure 4. Pointer Chasing

Pointer Chasing

0

50

100

150

200

250

0 5 10 15 20

Memory Span (log2 Cache Lines)

Pe
na

lty
 (C

yc
le

s)

Raw
HW
SW
HW/SW

Figure 4 illustrates the effect (or non-effect) of prefetching on a completely disordered
pointer chasing algorithm (linked list). As in the previous graphs, the four regions of
the cache hierarchy are indicated by vertical lines. Each region shows the penalty, in
terms of clock cycles, of access to a specific level of the cache hierarchy (DL1, MLC,
LLC, and external memory).

Parallel Chains

As described in the preceding section, pointer chasing algorithms can (and generally
do) cause stalls in the instruction pipeline. It is possible to make use of the multiple
read buffers, described previously, which are available in recent Intel® Architecture
processors, to reduce the penalty associated with fetches to external memory, even
when using pointer chasing algorithms. By parallelizing the chains, it is possible to
traverse multiple chains simultaneously, with minimal additional overhead, in terms of
clock cycles, per loop iteration.

The following code fragment is a modified version of that shown in Figure 3. The code
in red has been added in this example. In brief, this algorithm chases multiple pointer
chains, in parallel, as indicated by the righthand diagram in Figure 5.

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 11

Figure 5. Pointer Chasing Loop – Multiple Chains

typedef struct _Node
{
 struct _Node *pNext;
 unsigned char mPayload[];

} Node_t;

void Spin(
 Node_t *ipNode[])
{
 unsigned char *lpDst;
 .
 .
 while(...)
 {
 unsigned lvIndex;

 for(lvIndex = 0;
 lvIndex < WIDTH;
 lvIndex++)
 {
 Node_t *lpTemp = ipNode[lvIndex];

 ipNode[lvIndex] = ipNode[lvIndex]->pNext;
 prefetch(ipNode[lvIndex]);

 memcpy(lpDst,
 lpTemp->mPayload,
 42);
 }
 }
}

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

12 Document Number: 323654-001

Figure 6 illustrates the cost, in terms of clock cycles, of traversal of multiple (1, 2, 4,
and 8) pointer chains. In this example, no prefetch mechanisms are used.

Figure 6. Pointer Chasing – Multiple Chains

Pointer Chasing - Multiple Chains

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20

Memory Span (log2 Cache Lines)

Pe
na

lty
 (C

yc
le

s)

x1
x2
x4
x8

In this example, when the chains are restricted to cache (that is, the combined size of
the chains is less than the size of the cache), doubling the number of chains traversed
in parallel results in a doubling of the number of cycles it takes to traverse each loop.
This is to be expected, as instruction pipeline stalls due to cache miss do not occur
when access is restricted to DL1 cache.

As the length of the chains increase (moving to the right in the figure), the number of
cycles per loop iteration increases. When the combined length of the chains exceeds
the size of the last level cache (LLC), the doubling effect does not follow. The cost of
chasing one, two, and four chains in parallel is almost the same (with minimal
overhead). The cost of chasing eight chains in parallel is almost double that of
chasing four chains.

Prefetching and Parallelizing

As described in Pointer Chasing, the pointer chains in these examples are highly
randomized, so the use of hardware prefetching has no reducing effect on the penalty
incurred as a result of a cache miss. The use of software prefetch, however, has a
marked benefit in the case of chasing eight chains in parallel, and also has some
benefit in the case of four parallel chains.

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 13

Figure 7. Pointer Chasing – Multiple Chains, Prefetched

Pointer Chasing - Multiple Chains, Prefetched

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20

Memory Span (log2 Cache Lines)

Pe
na

lty
 (C

yc
le

s)

x1
x2
x4
x8

In this example, software prefetching is used with parallelized chain chasing. The
results can be seen in Figure 7.

Multiple Logical / Physical Cores

When the workload described in the previous section is replicated on multiple cores of
the processor, the cores do not interfere greatly with each other. The following figure
illustrates the cost, in terms of clock cycles, of running four chains in parallel, on each
of one, two, and four cores. Running the algorithms on multiple cores simultaneously
causes the appearance of the memory access penalty to move left in the graph (that
is, the apparent size of the LLC available to each core decreases). In addition, as the
last level cache is shared, there is some interference (sharing of other resources)
between the processes running on the four cores, which causes the duration of each
loop to increase, but not dramatically.

Figure 8. Multiple Cores – Chains x 4

Multiple Cores - Chains x 4

0

50

100

150

200

250

300

0 5 10 15 20

Memory Span (log2 Cache Lines)

P
en

al
ty

 (C
yc

le
s)

x1
x2
x4

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

14 Document Number: 323654-001

Conclusion

The investigative work described in this paper highlights a potential order of
magnitude throughput improvement in certain data processing workloads. Multiple
pointer chains can be traversed in parallel (in effect, simultaneously) at minimal
additional cost, in terms of clock cycles, when accessing external memory.

In order to make full use of the hardware acceleration technology, specifically multiple
fill and load buffers, available in the latest generation of Intel® Architecture
processors, it will be necessary to modify the software architectures of certain
applications to allow workloads to operate in parallel on each processor core. This will
allow more of the available memory interface bandwidth to be usable by the software
application running on the processor cores.

§

Optimizing Non-Sequential Data Processing Applications
March 2010 White Paper
Document Number: 323654-001 15

Author

Brian Forde is a Senior Platform Applications Engineer with the Intel Architecture
Group at Intel Corporation.

John Browne is a Platform Solutions Architect with the Intel Architecture Group at
Intel Corporation.

Terminology

DL1 First Level Data Cache
DTLB Data Translation Lookaside Buffer
GCC GNU Compiler Collection
LLC Last Level Cache
MLC Middle Level Cache
RNC Radio Network Controller
STLB Second-level Translation Lookaside Buffer

Optimizing Non-Sequential Data Processing Applications
White Paper March 2010

16 Document Number: 323654-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Any software source code reprinted in this document is furnished under a software license and may
only be used or copied in accordance with the terms of that license.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site
(http://www.intel.com/).

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel
logo, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the
Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, InTru, the
InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, skoool,
the skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and Xeon Inside are
trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2010, Intel Corporation. All rights reserved.§

http://www.intel.com/�

	Introduction to Cache
	Environment
	Calculated Read Address
	The Effect of DTLB Miss on Prefetching
	Pointer Chasing
	Parallel Chains
	Prefetching and Parallelizing
	Multiple Logical / Physical Cores
	Conclusion

