diff --git a/python/llm/example/GPU/HuggingFace/LLM/chatglm3/README.md b/python/llm/example/GPU/HuggingFace/LLM/chatglm3/README.md index 7a018f44e65..c7261a15f5d 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/chatglm3/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/chatglm3/README.md @@ -108,7 +108,7 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the ChatGLM3 model to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/chatglm3-6b'` for **Hugging Face** or `ZhipuAI/chatglm3-6b` for **ModelScope**. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the ChatGLM3 model to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/chatglm3-6b'` for **Hugging Face** or `'ZhipuAI/chatglm3-6b'` for **ModelScope**. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. @@ -162,7 +162,7 @@ python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the ChatGLM3 model to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/chatglm3-6b'` for **Hugging Face** or `ZhipuAI/chatglm3-6b` for **ModelScope**. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the ChatGLM3 model to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/chatglm3-6b'` for **Hugging Face** or `'ZhipuAI/chatglm3-6b'` for **ModelScope**. - `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`. - `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used. - `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. diff --git a/python/llm/example/GPU/HuggingFace/LLM/codegeex2/README.md b/python/llm/example/GPU/HuggingFace/LLM/codegeex2/README.md index 7e44b89b2b9..6514e1bfc80 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/codegeex2/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/codegeex2/README.md @@ -1,6 +1,6 @@ # CodeGeeX2 -In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeeX2 models which is implemented based on the ChatGLM2 architecture trained on more code data on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model. +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeeX2 models which is implemented based on the ChatGLM2 architecture trained on more code data on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) (or [ZhipuAI/codegeex2-6b](https://www.modelscope.cn/models/ZhipuAI/codegeex2-6b) for ModelScope) as a reference CodeGeeX2 model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. @@ -16,6 +16,9 @@ conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` #### 1.2 Installation on Windows @@ -26,10 +29,13 @@ conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ### 2. Download Model and Replace File -If you select the codegeex2-6b model ([THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b)), please note that their code (`tokenization_chatglm.py`) initialized tokenizer after the call of `__init__` of its parent class, which may result in error during loading tokenizer. To address issue, we have provided an updated file ([tokenization_chatglm.py](./codegeex2-6b/tokenization_chatglm.py)) +If you select the codegeex2-6b model ([THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) (for **Hugging Face**) or [ZhipuAI/codegeex2-6b](https://www.modelscope.cn/models/ZhipuAI/codegeex2-6b) (for **ModelScope**)), please note that their code (`tokenization_chatglm.py`) initialized tokenizer after the call of `__init__` of its parent class, which may result in error during loading tokenizer. To address issue, we have provided an updated file ([tokenization_chatglm.py](./codegeex2-6b/tokenization_chatglm.py)) ```python def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): @@ -37,7 +43,7 @@ def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) ``` -You could download the model from [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex2-6b), and replace the file `tokenization_chatglm.py` with [tokenization_chatglm.py](./codegeex2-6b/tokenization_chatglm.py). +You could download the model from [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) (for **Hugging Face**) or [ZhipuAI/codegeex2-6b](https://www.modelscope.cn/models/ZhipuAI/codegeex2-6b) (for **ModelScope**), and replace the file `tokenization_chatglm.py` with [tokenization_chatglm.py](./codegeex2-6b/tokenization_chatglm.py). ### 3. Configures OneAPI environment variables for Linux @@ -104,17 +110,22 @@ set SYCL_CACHE_PERSISTENT=1 > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 5. Running examples -``` +```bash +# for Hugging Face model hub python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT + +# for ModelScope model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeeX2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex-6b'`. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the CodeGeeX2 model to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/codegeex2-6b'` for **Hugging Face** or `'ZhipuAI/codegeex-6b'` for **ModelScope**. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output -#### [THUDM/codegeex-6b](https://huggingface.co/THUDM/codegeex-6b) +#### [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) ```log Inference time: xxxx s -------------------- Prompt -------------------- diff --git a/python/llm/example/GPU/HuggingFace/LLM/codegeex2/generate.py b/python/llm/example/GPU/HuggingFace/LLM/codegeex2/generate.py index ddc9dd53c95..cf40c9be9b3 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/codegeex2/generate.py +++ b/python/llm/example/GPU/HuggingFace/LLM/codegeex2/generate.py @@ -28,18 +28,29 @@ if __name__ == '__main__': - parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM2 model') - parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b", - help='The huggingface repo id for the CodeGeeX2 model to be downloaded' - ', or the path to the huggingface checkpoint folder') + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeGeeX2 model') + parser.add_argument('--repo-id-or-model-path', type=str, + help='The Hugging Face or ModelScope repo id for the CodeGeeX2 model to be downloaded' + ', or the path to the checkpoint folder') parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=128, help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") args = parser.parse_args() - model_path = args.repo_id_or_model_path + if args.modelscope: + from modelscope import AutoTokenizer + model_hub = 'modelscope' + else: + from transformers import AutoTokenizer + model_hub = 'huggingface' + + model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \ + ("ZhipuAI/codegeex2-6b" if args.modelscope else "THUDM/codegeex2-6b") + # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. @@ -48,7 +59,8 @@ load_in_4bit=True, optimize_model=True, trust_remote_code=True, - use_cache=True) + use_cache=True, + model_hub=model_hub) model = model.half().to('xpu') # Load tokenizer diff --git a/python/llm/example/GPU/HuggingFace/LLM/glm4/README.md b/python/llm/example/GPU/HuggingFace/LLM/glm4/README.md index aa985dd74f8..2bb58d7a150 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/glm4/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/glm4/README.md @@ -1,5 +1,5 @@ # GLM-4 -In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-4 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) as a reference InternLM model. +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-4 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) (or [ZhipuAI/glm4-9b-chat](https://www.modelscope.cn/models/ZhipuAI/glm4-9b-chat) for ModelScope) as a reference InternLM model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. @@ -15,6 +15,9 @@ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-exte # install packages required for GLM-4, it is recommended to use transformers>=4.44 for THUDM/glm-4-9b-chat updated after August 12, 2024 pip install "tiktoken>=0.7.0" transformers==4.44 "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ### 1.2 Installation on Windows @@ -28,6 +31,9 @@ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-exte # install packages required for GLM-4, it is recommended to use transformers>=4.44 for THUDM/glm-4-9b-chat updated after August 12, 2024 pip install "tiktoken>=0.7.0" transformers==4.44 "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ## 2. Configures OneAPI environment variables for Linux @@ -98,14 +104,19 @@ set SYCL_CACHE_PERSISTENT=1 ### Example 1: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. -``` +```bash +# for Hugging Face model hub python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT + +# for ModelScope model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model (e.g. `THUDM/glm-4-9b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the GLM-4 model (e.g. `THUDM/glm-4-9b-chat`) to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'` for **Hugging Face** or `'ZhipuAI/glm-4-9b-chat'` for **ModelScope**. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output #### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) @@ -134,21 +145,3 @@ What is AI? Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art ``` - -### Example 2: Stream Chat using `stream_chat()` API -In the example [streamchat.py](./streamchat.py), we show a basic use case for a GLM-4 model to stream chat, with IPEX-LLM INT4 optimizations. - -**Stream Chat using `stream_chat()` API**: -``` -python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION -``` - -**Chat using `chat()` API**: -``` -python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream -``` - -Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`. -- `--question QUESTION`: argument defining the question to ask. It is default to be `"AI是什么?"`. -- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used. diff --git a/python/llm/example/GPU/HuggingFace/LLM/glm4/generate.py b/python/llm/example/GPU/HuggingFace/LLM/glm4/generate.py index ebef3dae4c2..c381814f216 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/glm4/generate.py +++ b/python/llm/example/GPU/HuggingFace/LLM/glm4/generate.py @@ -20,7 +20,6 @@ import numpy as np from ipex_llm.transformers import AutoModel -from transformers import AutoTokenizer # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py @@ -28,16 +27,27 @@ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-4 model') - parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat", - help='The huggingface repo id for the GLM-4 model to be downloaded' - ', or the path to the huggingface checkpoint folder') + parser.add_argument('--repo-id-or-model-path', type=str, + help='The Hugging Face or ModelScope repo id for GLM-4 model model to be downloaded' + ', or the path to the checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") args = parser.parse_args() - model_path = args.repo_id_or_model_path + + if args.modelscope: + from modelscope import AutoTokenizer + model_hub = 'modelscope' + else: + from transformers import AutoTokenizer + model_hub = 'huggingface' + + model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \ + ("ZhipuAI/glm-4-9b-chat" if args.modelscope else "THUDM/glm-4-9b-chat") # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format @@ -47,8 +57,9 @@ load_in_4bit=True, optimize_model=True, trust_remote_code=True, - use_cache=True) - model = model.to("xpu") + use_cache=True, + model_hub=model_hub) + model = model.half().to("xpu") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, diff --git a/python/llm/example/GPU/HuggingFace/LLM/glm4/streamchat.py b/python/llm/example/GPU/HuggingFace/LLM/glm4/streamchat.py deleted file mode 100644 index 31be35d9639..00000000000 --- a/python/llm/example/GPU/HuggingFace/LLM/glm4/streamchat.py +++ /dev/null @@ -1,69 +0,0 @@ -# -# Copyright 2016 The BigDL Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# - -import torch -import time -import argparse -import numpy as np - -from ipex_llm.transformers import AutoModel -from transformers import AutoTokenizer - - -if __name__ == '__main__': - parser = argparse.ArgumentParser(description='Stream Chat for GLM-4 model') - parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat", - help='The huggingface repo id for the GLM-4 model to be downloaded' - ', or the path to the huggingface checkpoint folder') - parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办", - help='Qustion you want to ask') - parser.add_argument('--disable-stream', action="store_true", - help='Disable stream chat') - - args = parser.parse_args() - model_path = args.repo_id_or_model_path - disable_stream = args.disable_stream - - # Load model in 4 bit, - # which convert the relevant layers in the model into INT4 format - # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. - # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. - model = AutoModel.from_pretrained(model_path, - trust_remote_code=True, - load_in_4bit=True, - optimize_model=True, - use_cache=True, - cpu_embedding=True) - - model = model.to('xpu') - - # Load tokenizer - tokenizer = AutoTokenizer.from_pretrained(model_path, - trust_remote_code=True) - - with torch.inference_mode(): - if disable_stream: - # Chat - response, history = model.chat(tokenizer, args.question, history=[]) - print('-'*20, 'Chat Output', '-'*20) - print(response) - else: - # Stream chat - response_ = "" - print('-'*20, 'Stream Chat Output', '-'*20) - for response, history in model.stream_chat(tokenizer, args.question, history=[]): - print(response.replace(response_, ""), end="") - response_ = response diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md index ed4778551db..a51c4e6fc19 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/README.md @@ -1,5 +1,5 @@ # Qwen2.5 -In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) and [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as reference Qwen2.5 models. +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) and [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (or [Qwen/Qwen2.5-3B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2.5-7B-Instruct) and [Qwen/Qwen2.5-14B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2.5-14B-Instruct) for ModelScope) as reference Qwen2.5 models. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. @@ -14,6 +14,9 @@ conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` #### 1.2 Installation on Windows @@ -24,6 +27,9 @@ conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ### 2. Configures OneAPI environment variables for Linux @@ -91,14 +97,19 @@ set SYCL_CACHE_PERSISTENT=1 > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples -``` +```bash +# for Hugging Face model hub python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT + +# for ModelScope model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2.5 model (e.g. `Qwen/Qwen2.5-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2.5-7B-Instruct'`. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Qwen2.5 model (e.g. `Qwen/Qwen2.5-7B-Instruct`) to be downloaded, or the path to the checkpoint folder. It is default to be `'Qwen/Qwen2.5-7B-Instruct'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output ##### [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py index d1befbcb30c..13d31b7ed1c 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2.5/generate.py @@ -18,20 +18,29 @@ import time import argparse -from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2.5 model') parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2.5-7B-Instruct", - help='The huggingface repo id for the Qwen2.5 model to be downloaded' + help='The Hugging Face or ModelScope repo id for the Qwen2.5 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") args = parser.parse_args() + + if args.modelscope: + from modelscope import AutoTokenizer + model_hub = 'modelscope' + else: + from transformers import AutoTokenizer + model_hub = 'huggingface' + model_path = args.repo_id_or_model_path @@ -42,7 +51,8 @@ load_in_4bit=True, optimize_model=True, trust_remote_code=True, - use_cache=True) + use_cache=True, + model_hub=model_hub) model = model.half().to("xpu") # Load tokenizer diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md b/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md index 829139d943d..ebf094442bc 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2/README.md @@ -1,5 +1,5 @@ # Qwen2 -In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) and [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) as reference Qwen2 models. +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) and [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) (or [Qwen/Qwen2-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-7B-Instruct) and [Qwen/Qwen2-1.5B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-1.5B-Instruct) for ModelScope) as reference Qwen2 models. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. @@ -16,6 +16,9 @@ conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.37.0 # install transformers which supports Qwen2 + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` #### 1.2 Installation on Windows @@ -28,6 +31,9 @@ conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.37.0 # install transformers which supports Qwen2 + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ### 2. Configures OneAPI environment variables for Linux @@ -95,14 +101,19 @@ set SYCL_CACHE_PERSISTENT=1 > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples -``` +```bash +# for Hugging Face model hub python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT + +# for ModelScope model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2 model (e.g. `Qwen/Qwen2-7B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2-7B-Instruct'`. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Qwen2 model (e.g. `Qwen/Qwen2-7B-Instruct`) to be downloaded, or the path to the checkpoint folder. It is default to be `'Qwen/Qwen2-7B-Instruct'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output ##### [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) diff --git a/python/llm/example/GPU/HuggingFace/LLM/qwen2/generate.py b/python/llm/example/GPU/HuggingFace/LLM/qwen2/generate.py index 7d0d1ed072b..fed121290aa 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/qwen2/generate.py +++ b/python/llm/example/GPU/HuggingFace/LLM/qwen2/generate.py @@ -18,21 +18,30 @@ import time import argparse -from transformers import AutoTokenizer import numpy as np if __name__ == '__main__': - parser = argparse.ArgumentParser(description='Qwen2-7B-Instruct') + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Qwen2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-7B-Instruct", - help='The huggingface repo id for the Qwen2 model to be downloaded' - ', or the path to the huggingface checkpoint folder') + help='The Hugging Face or ModelScope repo id for the Qwen2 model to be downloaded' + ', or the path to the checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") args = parser.parse_args() + + if args.modelscope: + from modelscope import AutoTokenizer + model_hub = 'modelscope' + else: + from transformers import AutoTokenizer + model_hub = 'huggingface' + model_path = args.repo_id_or_model_path @@ -43,7 +52,8 @@ load_in_4bit=True, optimize_model=True, trust_remote_code=True, - use_cache=True) + use_cache=True, + model_hub=model_hub) model = model.half().to("xpu") # Load tokenizer