diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/README.md index 0af1ba5c9cf..bbcc0ee7a72 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/README.md +++ b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/README.md @@ -1,5 +1,5 @@ # MiniCPM-V-2_6 -In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) as reference MiniCPM-V-2_6 model. +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) (or [OpenBMB/MiniCPM-V-2_6](https://www.modelscope.cn/models/OpenBMB/MiniCPM-V-2_6) for ModelScope) as reference MiniCPM-V-2_6 model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. @@ -16,6 +16,9 @@ conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.40.0 "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` #### 1.2 Installation on Windows @@ -28,6 +31,9 @@ conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.40.0 "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ### 2. Configures OneAPI environment variables for Linux @@ -96,31 +102,48 @@ set SYCL_CACHE_PERSISTENT=1 ### 4. Running examples - chat without streaming mode: - ``` + ```bash + # for Hugging Face model hub python ./chat.py --prompt 'What is in the image?' + + # for ModelScope model hub + python ./chat.py --prompt 'What is in the image?' --modelscope ``` - chat in streaming mode: - ``` + ```bash + # for Hugging Face model hub python ./chat.py --prompt 'What is in the image?' --stream + + # for ModelScope model hub + python ./chat.py --prompt 'What is in the image?' --stream --modelscope ``` - save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist) - ``` + ```bash + # for Hugging Face model hub python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' + + # for ModelScope model hub + python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope ``` - chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists): - ``` + ```bash + # for Hugging Face model hub python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' + + # for ModelScope model hub + python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope ``` > [!TIP] > For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`. Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'` for **Hugging Face** or `'OpenBMB/MiniCPM-V-2_6'` for **ModelScope**. - `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--stream`: flag to chat in streaming mode +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/chat.py b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/chat.py index cad68239fd5..bcfc4fda40f 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/chat.py +++ b/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/chat.py @@ -22,14 +22,13 @@ import torch from PIL import Image from ipex_llm.transformers import AutoModel -from transformers import AutoTokenizer, AutoProcessor if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model') - parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6", - help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded' - ', or the path to the huggingface checkpoint folder') + parser.add_argument('--repo-id-or-model-path', type=str, + help='The Hugging Face or ModelScope repo id for the MiniCPM-V-2_6 model to be downloaded' + ', or the path to the checkpoint folder') parser.add_argument("--lowbit-path", type=str, default="", help="The path to the saved model folder with IPEX-LLM low-bit optimization. " @@ -44,9 +43,20 @@ help='Prompt to infer') parser.add_argument('--stream', action='store_true', help='Whether to chat in streaming mode') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") args = parser.parse_args() - model_path = args.repo_id_or_model_path + + if args.modelscope: + from modelscope import AutoTokenizer, AutoProcessor + model_hub = 'modelscope' + else: + from transformers import AutoTokenizer, AutoProcessor + model_hub = 'huggingface' + + model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \ + ("OpenBMB/MiniCPM-V-2_6" if args.modelscope else "openbmb/MiniCPM-V-2_6") image_path = args.image_url_or_path lowbit_path = args.lowbit_path @@ -61,7 +71,8 @@ optimize_model=True, trust_remote_code=True, use_cache=True, - modules_to_not_convert=["vpm", "resampler"]) + modules_to_not_convert=["vpm", "resampler"], + model_hub=model_hub) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) @@ -70,7 +81,8 @@ optimize_model=True, trust_remote_code=True, use_cache=True, - modules_to_not_convert=["vpm", "resampler"]) + modules_to_not_convert=["vpm", "resampler"], + model_hub=model_hub) tokenizer = AutoTokenizer.from_pretrained(lowbit_path, trust_remote_code=True) diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/README.md index 7464c7e7751..3720b05983b 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/README.md +++ b/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/README.md @@ -1,5 +1,5 @@ # GLM-4V -In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) as a reference GLM-4V model. +In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) (or [ZhipuAI/glm-4v-9b](https://www.modelscope.cn/models/ZhipuAI/glm-4v-9b) for ModelScope) as a reference GLM-4V model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. @@ -16,6 +16,9 @@ conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install tiktoken transformers==4.42.4 "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` #### 1.2 Installation on Windows @@ -28,6 +31,9 @@ conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install tiktoken transformers==4.42.4 "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.11.0 ``` ### 2. Configures OneAPI environment variables for Linux @@ -95,15 +101,20 @@ set SYCL_CACHE_PERSISTENT=1 > For the first time that each model runs on Intel iGPU/Intel Arcâ„¢ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples -``` -python ./generate.py --prompt 'What is in the image?' +```bash +# for Hugging Face model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH + +# for ModelScope model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope ``` Arguments info: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4v-9b'`. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/glm-4v-9b'` for **Hugging Face** or `'ZhipuAI/glm-4v-9b'` for **ModelScope**. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output #### [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/generate.py index 6a1dd035e9e..1ac3cdbf690 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/generate.py +++ b/python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/generate.py @@ -22,13 +22,12 @@ from PIL import Image from ipex_llm.transformers import AutoModelForCausalLM -from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model') - parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b", - help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded' - ', or the path to the huggingface checkpoint folder') + parser.add_argument('--repo-id-or-model-path', type=str, + help='The Hugging Face or ModelScope repo id for the glm-4v model to be downloaded' + ', or the path to the checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') @@ -36,9 +35,20 @@ help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") args = parser.parse_args() - model_path = args.repo_id_or_model_path + + if args.modelscope: + from modelscope import AutoTokenizer + model_hub = 'modelscope' + else: + from transformers import AutoTokenizer + model_hub = 'huggingface' + + model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \ + ("ZhipuAI/glm-4v-9b" if args.modelscope else "THUDM/glm-4v-9b") image_path = args.image_url_or_path # Load model in 4 bit, @@ -49,7 +59,9 @@ load_in_4bit=True, optimize_model=True, trust_remote_code=True, - use_cache=True).half().to('xpu') + use_cache=True, + model_hub=model_hub) + model = model.half().to('xpu') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)