diff --git a/instageo/model/README.md b/instageo/model/README.md index 098492d..3432fd5 100644 --- a/instageo/model/README.md +++ b/instageo/model/README.md @@ -51,9 +51,9 @@ Run training with the necessary flags: python -m instageo.model.run \ root_dir=path/to/root valid_filepath=path/to/valdata \ train_filepath=path/to/traindata \ - learning_rate=0.001 \ - num_epochs=100 \ - batch_size=4 + train.learning_rate=0.001 \ + train.num_epochs=100 \ + train.batch_size=4 ``` 4. **Prediction using Sliding Window Inference:** For training we create chips from HLS tiles, this is necessary because our model can only process an input of size 224 x 224. For the purpose of inference we have a sliding window inference feature that inputs HLS tile and perform a sliding window inference on patches of size 224 x 224. This is useful because it skips the process of creating chips using the `instageo.data.chip_creator`, we only need to download HLS tiles and directly runs inference on them. We can run inference using the following command: @@ -90,7 +90,7 @@ python -m instageo.model.run --config-name=sen1floods11 \ root_dir=sen1floods11 \ train_filepath=sen1floods11/flood_train_data.csv \ valid_filepath=sen1floods11/flood_valid_data.csv \ - num_epochs=100 + train.num_epochs=100 ``` After training you are expected to have a checkpoint with mIoU of ~ 89%