forked from TencentARC/SEED-Voken
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
246 lines (197 loc) · 8.13 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
We provide Tokenizer Evaluation code here.
Refer to
https://github.com/richzhang/PerceptualSimilarity
https://github.com/mseitzer/pytorch-fid
"""
import os
import sys
sys.path.append(os.getcwd())
import torch
from omegaconf import OmegaConf
import importlib
import yaml
import numpy as np
from PIL import Image
from tqdm import tqdm
from scipy import linalg
from taming.models.lfqgan import VQModel
from metrics.inception import InceptionV3
import lpips
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_config(config_path, display=False):
config = OmegaConf.load(config_path)
if display:
print(yaml.dump(OmegaConf.to_container(config)))
return config
def load_vqgan_new(config, ckpt_path=None, is_gumbel=False):
model = VQModel(**config.model.init_args)
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu")["state_dict"]
missing, unexpected = model.load_state_dict(sd, strict=False)
return model.eval()
def get_obj_from_str(string, reload=False):
print(string)
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "class_path" in config:
raise KeyError("Expected key `class_path` to instantiate.")
return get_obj_from_str(config["class_path"])(**config.get("init_args", dict()))
def custom_to_pil(x):
x = x.detach().cpu()
x = torch.clamp(x, -1., 1.)
x = (x + 1.)/2.
x = x.permute(1,2,0).numpy()
x = (255*x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert (
mu1.shape == mu2.shape
), "Training and test mean vectors have different lengths"
assert (
sigma1.shape == sigma2.shape
), "Training and test covariances have different dimensions"
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = (
"fid calculation produces singular product; "
"adding %s to diagonal of cov estimates"
) % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def main():
config_data = OmegaConf.load('configs/imagenet_lfqgan_128_B.yaml')
config_data.data.init_args.validation.params.config.size = 128
config_data.data.init_args.batch_size = 8
config_model = load_config("configs/imagenet_lfqgan_128_B.yaml", display=False)
model = load_vqgan_new(config_model, ckpt_path="").to(DEVICE) #please specify your own path here
codebook_size = config_model.model.init_args.n_embed
#usage
usage = {}
for i in range(codebook_size):
usage[i] = 0
# FID score related
dims = 2048
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
inception_model = InceptionV3([block_idx]).to(DEVICE)
inception_model.eval()
dataset = instantiate_from_config(config_data.data)
dataset.prepare_data()
dataset.setup()
pred_xs = []
pred_recs = []
# LPIPS score related
loss_fn_alex = lpips.LPIPS(net='alex').to(DEVICE) # best forward scores
loss_fn_vgg = lpips.LPIPS(net='vgg').to(DEVICE) # closer to "traditional" perceptual loss, when used for optimization
lpips_alex = 0.0
lpips_vgg = 0.0
# SSIM score related
ssim_value = 0.0
# PSNR score related
psnr_value = 0.0
num_images = 0
num_iter = 0
with torch.no_grad():
for batch in tqdm(dataset._val_dataloader()):
images = batch["image"].permute(0, 3, 1, 2).to(DEVICE)
num_images += images.shape[0]
if model.use_ema:
with model.ema_scope():
quant, diff, indices, _ = model.encode(images)
reconstructed_images = model.decode(quant)
else:
quant, diff, indices, _ = model.encode(images)
reconstructed_images = model.decode(quant)
reconstructed_images = reconstructed_images.clamp(-1, 1)
### usage
for index in indices:
usage[index.item()] += 1
# calculate lpips
lpips_alex += loss_fn_alex(images, reconstructed_images).sum()
lpips_vgg += loss_fn_vgg(images, reconstructed_images).sum()
images = (images + 1) / 2
reconstructed_images = (reconstructed_images + 1) / 2
# calculate fid
pred_x = inception_model(images)[0]
pred_x = pred_x.squeeze(3).squeeze(2).cpu().numpy()
pred_rec = inception_model(reconstructed_images)[0]
pred_rec = pred_rec.squeeze(3).squeeze(2).cpu().numpy()
pred_xs.append(pred_x)
pred_recs.append(pred_rec)
#calculate PSNR and SSIM
rgb_restored = (reconstructed_images * 255.0).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
rgb_gt = (images * 255.0).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
rgb_restored = rgb_restored.astype(np.float32) / 255.
rgb_gt = rgb_gt.astype(np.float32) / 255.
ssim_temp = 0
psnr_temp = 0
B, _, _, _ = rgb_restored.shape
for i in range(B):
rgb_restored_s, rgb_gt_s = rgb_restored[i], rgb_gt[i]
ssim_temp += ssim_loss(rgb_restored_s, rgb_gt_s, data_range=1.0, channel_axis=-1)
psnr_temp += psnr_loss(rgb_gt, rgb_restored)
ssim_value += ssim_temp / B
psnr_value += psnr_temp / B
num_iter += 1
pred_xs = np.concatenate(pred_xs, axis=0)
pred_recs = np.concatenate(pred_recs, axis=0)
mu_x = np.mean(pred_xs, axis=0)
sigma_x = np.cov(pred_xs, rowvar=False)
mu_rec = np.mean(pred_recs, axis=0)
sigma_rec = np.cov(pred_recs, rowvar=False)
fid_value = calculate_frechet_distance(mu_x, sigma_x, mu_rec, sigma_rec)
lpips_alex_value = lpips_alex / num_images
lpips_vgg_value = lpips_vgg / num_images
ssim_value = ssim_value / num_iter
psnr_value = psnr_value / num_iter
num_count = sum([1 for key, value in usage.items() if value > 0])
utilization = num_count / codebook_size
print("FID: ", fid_value)
print("LPIPS_ALEX: ", lpips_alex_value.item())
print("LPIPS_VGG: ", lpips_vgg_value.item())
print("SSIM: ", ssim_value)
print("PSNR: ", psnr_value)
print("utilization", utilization)
if __name__ == "__main__":
main()