Installation on Linux and macOS follow the same instructions, given below.
Prerequisite: python 64-bit >= 3.6
python3 -m pip install --upgrade nni
If you are interested in special or the latest code versions, you can install NNI through source code.
Prerequisites:
python 64-bit >=3.6
,git
git clone -b v2.0 https://github.com/Microsoft/nni.git
cd nni
python3 -m pip install --upgrade pip setuptools
python3 setup.py develop
The previous section shows how to install NNI in development mode. If you want to perform a persist install instead, we recommend to build your own wheel package and install from wheel.
git clone -b v2.0 https://github.com/Microsoft/nni.git
cd nni
export NNI_RELEASE=2.0
python3 -m pip install --upgrade pip setuptools wheel
python3 setup.py clean --all
python3 setup.py build_ts
python3 setup.py bdist_wheel -p manylinux1_x86_64
python3 -m pip install dist/nni-2.0-py3-none-manylinux1_x86_64.whl
You can also install NNI in a docker image. Please follow the instructions here to build an NNI docker image. The NNI docker image can also be retrieved from Docker Hub through the command docker pull msranni/nni:latest
.
Download the examples via cloning the source code.
git clone -b v2.0 https://github.com/Microsoft/nni.git
Run the MNIST example.
nnictl create --config nni/examples/trials/mnist-pytorch/config.yml
Wait for the message
INFO: Successfully started experiment!
in the command line. This message indicates that your experiment has been successfully started. You can explore the experiment using theWeb UI url
.
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080 http://127.0.0.1:8080
-----------------------------------------------------------------------
You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
commands description
1. nnictl experiment show show the information of experiments
2. nnictl trial ls list all of trial jobs
3. nnictl top monitor the status of running experiments
4. nnictl log stderr show stderr log content
5. nnictl log stdout show stdout log content
6. nnictl stop stop an experiment
7. nnictl trial kill kill a trial job by id
8. nnictl --help get help information about nnictl
-----------------------------------------------------------------------
- Open the
Web UI url
in your browser, you can view detailed information about the experiment and all the submitted trial jobs as shown below. Here are more Web UI pages.
Due to potential programming changes, the minimum system requirements of NNI may change over time.
Recommended | Minimum | |
---|---|---|
Operating System | Ubuntu 16.04 or above | |
CPU | Intel® Core™ i5 or AMD Phenom™ II X3 or better | Intel® Core™ i3 or AMD Phenom™ X3 8650 |
GPU | NVIDIA® GeForce® GTX 660 or better | NVIDIA® GeForce® GTX 460 |
Memory | 6 GB RAM | 4 GB RAM |
Storage | 30 GB available hare drive space | |
Internet | Boardband internet connection | |
Resolution | 1024 x 768 minimum display resolution |
Recommended | Minimum | |
---|---|---|
Operating System | macOS 10.14.1 or above | |
CPU | Intel® Core™ i7-4770 or better | Intel® Core™ i5-760 or better |
GPU | AMD Radeon™ R9 M395X or better | NVIDIA® GeForce® GT 750M or AMD Radeon™ R9 M290 or better |
Memory | 8 GB RAM | 4 GB RAM |
Storage | 70GB available space SSD | 70GB available space 7200 RPM HDD |
Internet | Boardband internet connection | |
Resolution | 1024 x 768 minimum display resolution |
- Overview
- Use command line tool nnictl
- Use NNIBoard
- Define search space
- Config an experiment
- How to run an experiment on local (with multiple GPUs)?
- How to run an experiment on multiple machines?
- How to run an experiment on OpenPAI?
- How to run an experiment on Kubernetes through Kubeflow?
- How to run an experiment on Kubernetes through FrameworkController?
- How to run an experiment on Kubernetes through AdaptDL?