-
Notifications
You must be signed in to change notification settings - Fork 2
/
stim_dataset.py
676 lines (582 loc) · 33.7 KB
/
stim_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import os
import h5py
import numpy as np
import pickle as pkl
import tensorflow as tf
import pdb
import lgn_model
def load_firing_rates(path='image_outputs'):
with open(path, 'rb') as f:
d = pkl.load(f)
try: # Franz's stuff
# inds = [0, 3, 5]
# rates = np.stack(list(d.values()))[inds]
rates = np.stack(list(d.values()))
except:
rates = d
return rates
def load_firing_rates_tf(path):
with tf.device('/cpu'):
np_rates = load_firing_rates(path).astype(np.float32)
rates = tf.Variable(np_rates, trainable=False)
return rates
def generate_pair(n_total, p_reappear=.1):
first_index = tf.cast(tf.random.uniform(()) * n_total, tf.int32)
logits = -tf.one_hot(first_index, n_total) * 1e9
second_index = tf.where(
tf.random.uniform(()) > p_reappear,
tf.cast(tf.random.categorical([logits], 1)[0, 0], tf.int32),
first_index)
return first_index, second_index
def remove_first_dim(_x):
t_shp = _x.shape
tf_shp = tf.shape(_x)
shp = []
for i in range(len(t_shp)):
shp.append(t_shp[i] if t_shp[i] is not None else tf_shp[i])
new_shp = [shp[0] * shp[1], *shp[2:]]
return tf.reshape(_x, new_shp)
def switch_time_and_batch(_x):
perm = np.arange(len(_x.shape))
perm[:2] = perm[:2][::-1]
return tf.transpose(_x, perm)
def generate_data_set_continuing(path='image_outputs', batch_size=1, seq_len=1000, examples_in_epoch=50,
p_reappear=.1, im_slice=250, delay=500, n_images=8, dtype=tf.float32,
current_input=True, pre_chunks=4, resp_chunks=1):
if path.split('.')[-1] == 'pkl':
rates = load_firing_rates_tf(path)
elif path.split('.')[-1] == 'h5':
f = h5py.File(path, "r")
rates = f["rates"][()]
f.close()
n_chunks = int((im_slice + delay) / 50)
n_chunks_img = int(im_slice / 50)
t_chunk = int((im_slice + delay) / n_chunks)
assert n_chunks * 50 == im_slice + delay
fixed_noise = tf.random.uniform(shape=(seq_len, batch_size, rates.shape[-1]))
def concat(sub_seq, sub_label):
_im = tf.gather(rates, sub_seq)[:, 50:im_slice + delay] # what is the structure of rates? [image index, LGN neuron, 50-ms gray + 100-ms image + 850-ms gray]
_pause = tf.tile(rates[0, rates.shape[1] - 50:][None], (batch_size, 1, 1))
_seq = tf.concat((_pause, _im), 1)
_seq = tf.transpose(_seq, (1, 0, 2))
_seq = tf.reshape(_seq, (n_chunks, t_chunk, batch_size, -1)) # what are n_chunks, t_chunk for? t_chunk=50 ms, n_chunks is the pesudo-batch; it would be cut to slices by the second unbatch(); then use the batch(700/5) to cancate and then multiply first two together.
_tz = tf.zeros_like(sub_label)
_label = tf.stack([_tz] * pre_chunks + [sub_label] * resp_chunks + [_tz] * (n_chunks - pre_chunks - resp_chunks))
_img_label = tf.stack([_tz] + [sub_seq] * n_chunks_img + [_tz] * (n_chunks - n_chunks_img - 1))
_tz = tf.zeros_like(sub_label, dtype=dtype) + .05
_to = tf.ones_like(sub_label, dtype=dtype)
_weights = tf.stack([_tz] * pre_chunks + [_to] * resp_chunks + [_tz] * (n_chunks - pre_chunks - resp_chunks)) #?? why not for whole response window but only for the onset 50 ms? the _seq is 50-ms dealy + 100-ms image + 150-ms delay; each trunk is 50 ms
return _seq, _label, _img_label, _weights
def gen_seq(_):
# generate index for getting rate and label (diff or same)
a = tf.TensorArray(tf.int32, size=2 * examples_in_epoch + 1)
b = tf.TensorArray(tf.int32, size=2 * examples_in_epoch + 1)
current_index = tf.cast(tf.random.uniform((batch_size,)) * n_images, tf.int32)
a = a.write(0, current_index)
b = b.write(0, tf.zeros((batch_size,), tf.int32))
for i in tf.range(2 * examples_in_epoch):
logits = -tf.one_hot(current_index, n_images) * 1e9
change = tf.random.uniform((batch_size,)) > p_reappear
new_index = tf.cast(tf.random.categorical(logits, 1)[:, 0], tf.int32)
current_index = tf.where(
change,
new_index,
current_index)
a = a.write(i + 1, current_index)
b = b.write(i + 1, tf.cast(change, tf.int32))
sequences = tf.reshape(a.stack()[:-1], (examples_in_epoch * 2, batch_size))
change = tf.reshape(b.stack()[:-1], (examples_in_epoch * 2, batch_size))
return sequences, change
def sample_poisson(_a):
# assuming dt = 1 ms
_p = 1 - tf.exp(-_a / 1000.)
# _z = tf.cast(fixed_noise < _p, dtype)
if current_input:
_z = _p * 1.3
else:
_z = tf.cast(tf.random.uniform(tf.shape(_p)) < _p, dtype)
return _z
def l1(_seq, _l, _i, _w):
return sample_poisson(remove_first_dim(_seq)), _l, _i, _w
def l2(*_x):
return tf.nest.map_structure(switch_time_and_batch, _x)
# this batch is just to generate two image pair not the real batch
data_set = tf.data.Dataset.from_tensor_slices([0]).map(gen_seq).unbatch().map(concat).unbatch().batch(
int(seq_len / 50)).map(l1).map(l2)
return data_set
def generate_VCD_NI_from_path(path, intensity=2, im_slice=100, pre_delay=50, post_delay=150, p_reappear=0.5,
pre_chunks=10, resp_chunks=1, post_chunks=1, current_input=True,
batch_size=2, pairs_in_epoch=781,from_lgn=True):
# hard code lgn scale for the case from_lgn=False
mimc_lgn_std, mimc_lgn_mean = 0.01254, 0.01140
lgn = lgn_model.LGN()
seq_len = (pre_delay + im_slice + post_delay)*2
chunk_size = 50 # ms
n_chunks = int(seq_len / chunk_size)
assert n_chunks == 2*(resp_chunks + pre_chunks + post_chunks)
f = h5py.File(path, "r")
x_train = f["data"][()]
f.close()
num_imgs = x_train.shape[0]
if len(x_train.shape) > 3:
x_train = tf.image.rgb_to_grayscale(x_train) / 255
else:
x_train = x_train[...,None]/255
changes = np.random.uniform(size=[batch_size*pairs_in_epoch,2]) > p_reappear
for i in range(batch_size):
changes[i*pairs_in_epoch,0] = 0 # the first one cannot change
img_id_seq = []
for i, change in enumerate(changes):
if change[0]:
new_id = np.random.choice(num_imgs, 1)
while new_id == img_id_seq[-1]:
new_id = np.random.choice(num_imgs, 1)
img_id_seq.append(new_id)
else:
if i < 1:
img_id_seq.append(np.random.choice(num_imgs, 1))
else:
img_id_seq.append(img_id_seq[-1])
if change[1]:
new_id = np.random.choice(num_imgs, 1)
while new_id == img_id_seq[-1]:
new_id = np.random.choice(num_imgs, 1)
img_id_seq.append(new_id)
else:
if i < 1:
img_id_seq.append(np.random.choice(num_imgs, 1))
else:
img_id_seq.append(img_id_seq[-1])
img_id_seq = np.array(img_id_seq).reshape(batch_size, -1, 2)
changes = changes.reshape(batch_size, -1, 2)
# re-arrange for batches
temp_ids = []
temp_cha = []
for i in range(batch_size):
temp_ids.append(img_id_seq[i,...])
temp_cha.append(changes[i,...])
img_id_seq = np.concatenate(temp_ids, axis=1)
changes = np.concatenate(temp_cha, axis=1)
img_id_seq = img_id_seq.reshape(-1,2)
changes = changes.reshape(-1,2)
img_id_seq = tf.cast(tf.convert_to_tensor(img_id_seq), tf.float32)
changes = tf.cast(tf.convert_to_tensor(changes), tf.float32)
def gen_one_video(img_ind):
if from_lgn:
img = tf.image.resize_with_pad(x_train[tf.cast(img_ind,tf.int32)], 120, 240, method='lanczos5')
tiled_img = tf.tile(img[None,...], (im_slice, 1, 1, 1))
# make it in [-intensity, intensity]
tiled_img = (tiled_img - .5) * intensity / .5
else:
# to mimic the 17400 dim of LGN output
img = tf.image.resize_with_pad(x_train[tf.cast(img_ind,tf.int32)], 100, 174, method='lanczos5')
# maintain the images for a while
tiled_img = tf.tile(img[None,...], (im_slice, 1, 1, 1))
# add an empty period before a period of real image for continuing classification
z1 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (pre_delay, 1, 1, 1))
z2 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (post_delay, 1, 1, 1))
video = tf.concat((z1, tiled_img, z2), 0)
return video, img_ind
def _g():
for change, img_id in zip(changes, img_id_seq):
video1, img_id1 = gen_one_video(img_id[0])
video2, img_id2 = gen_one_video(img_id[1])
videos = tf.concat((video1, video2), 0)
if from_lgn:
spatial = lgn.spatial_response(videos)
firing_rates = lgn.firing_rates_from_spatial(*spatial)
else:
firing_rates = tf.reshape(videos, [-1,17400])
# sample rate
# assuming dt = 1 ms
_p = 1 - tf.exp(-firing_rates / 1000.)
# _z = tf.cast(fixed_noise < _p, dtype)
if current_input:
_z = _p * 1.3
if not from_lgn:
_z = _z * mimc_lgn_std
_z = (_z - tf.reduce_mean(_z)) / tf.math.reduce_std(_z) * mimc_lgn_std + mimc_lgn_mean
else:
_z = tf.cast(tf.random.uniform(tf.shape(_p)) < _p, tf.float32)
ground_truth = tf.cast(change, tf.float32)
label = tf.concat([tf.zeros(pre_chunks)] + [ground_truth[0]*tf.ones(resp_chunks)] + [tf.zeros(post_chunks)] +\
[tf.zeros(pre_chunks)] + [ground_truth[1]*tf.ones(resp_chunks)] + [tf.zeros(post_chunks)],axis=0)
weight = tf.concat([0.0*tf.ones(pre_chunks)] + [tf.ones(resp_chunks)] + [0.0*tf.ones(post_chunks)] +\
[0.0*tf.ones(pre_chunks)] + [tf.ones(resp_chunks)] + [0.0*tf.ones(post_chunks)], axis=0)
# for plotting, label the image when it holds on
image_label1 = tf.concat([tf.zeros(int(pre_delay/chunk_size))] + [img_id1*tf.ones(int(im_slice/chunk_size))] + [tf.zeros(int(post_delay/chunk_size))],axis=0)
image_label2 = tf.concat([tf.zeros(int(pre_delay/chunk_size))] + [img_id2*tf.ones(int(im_slice/chunk_size))] + [tf.zeros(int(post_delay/chunk_size))],axis=0)
image_labels = tf.concat([image_label1,image_label2],axis=0)
yield _z, label, image_labels, weight
output_dtypes = (tf.float32, tf.int32, tf.int32, tf.float32)
# when using generator for dataset, it should not contain the batch dim
output_shapes = (tf.TensorShape((seq_len, 17400)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)))
data_set = tf.data.Dataset.from_generator(_g, output_dtypes, output_shapes=output_shapes).map(lambda _a, _b, _c, _d:
(tf.cast(_a, tf.float32), tf.cast(_b, tf.int32), tf.cast(_c, tf.int32), tf.cast(_d, tf.float32)))
return data_set
def generate_pure_classification_data_set_from_generator(data_usage=0,intensity=1,im_slice=100, pre_delay=50, post_delay=150,
pre_chunks=2, resp_chunks=1, post_chunks=1, current_input=True,
dataset='mnist', path=None, imagenet_img_num=60000, rot90=False,
from_lgn=True):
# hard code lgn scale for the case from_lgn=False
mimc_lgn_std, mimc_lgn_mean = 0.02082, 0.02
# data_usage: 0, train; 1, test
if dataset.lower() == 'cifar100':
all_ds = tf.keras.datasets.cifar100.load_data(label_mode="fine")
elif dataset.lower() == 'cifar10':
all_ds = tf.keras.datasets.cifar10.load_data()
elif dataset.lower() == 'mnist':
all_ds = tf.keras.datasets.mnist.load_data()
elif dataset.lower() == 'fashion_mnist':
all_ds = tf.keras.datasets.fashion_mnist.load_data()
if data_usage == 0:
images, labels = all_ds[data_usage]
else:
images, labels = all_ds[data_usage]
# choose fixed validation set to minimize the variance
# images = images[0:1280] # normally, the batch size is 64
# labels = labels[0:1280]
# LGN module only can receive gray-scale images with the value in [-intensity,intensity] from black to white
if len(images.shape) > 3:
images = tf.image.rgb_to_grayscale(images) / 255
else:
images = images[...,None]/255
if rot90:
images = tf.image.rot90(images)
lgn = lgn_model.LGN()
seq_len = pre_delay + im_slice + post_delay
chunk_size = 50 # ms
n_chunks = int(seq_len / chunk_size)
assert n_chunks == resp_chunks + pre_chunks + post_chunks
def _g():
for ind in range(images.shape[0]):
if from_lgn:
# LGN model only receives 120 x 240, the core part only receives an eclipse TODO
img = tf.image.resize_with_pad(images[ind], 120, 240, method='lanczos5')
# maintain the images for a while
tiled_img = tf.tile(img[None,...], (im_slice, 1, 1, 1))
# make it in [-intensity, intensity]
tiled_img = (tiled_img - .5) * intensity / .5
else:
# to mimic the 17400 dim of LGN output
img = tf.image.resize_with_pad(images[ind], 100, 174, method='lanczos5')
# maintain the images for a while
tiled_img = tf.tile(img[None,...], (im_slice, 1, 1, 1))
# add an empty period before a period of real image for continuing classification
z1 = tf.tile(tf.zeros_like(img)[None,...], (pre_delay, 1, 1, 1))
z2 = tf.tile(tf.zeros_like(img)[None,...], (post_delay, 1, 1, 1))
videos = tf.concat((z1, tiled_img, z2), 0)
if from_lgn:
spatial = lgn.spatial_response(videos)
firing_rates = lgn.firing_rates_from_spatial(*spatial)
else:
firing_rates = tf.reshape(videos, [-1,17400])
# sample rate
# assuming dt = 1 ms
_p = 1 - tf.exp(-firing_rates / 1000.)
# _z = tf.cast(fixed_noise < _p, dtype)
if current_input:
_z = _p * 1.3
if not from_lgn:
_z = _z * mimc_lgn_std
_z = (_z - tf.reduce_mean(_z)) / tf.math.reduce_std(_z) * mimc_lgn_std + mimc_lgn_mean
else:
_z = tf.cast(tf.random.uniform(tf.shape(_p)) < _p, tf.float32)
label = tf.concat([tf.zeros(pre_chunks)] + [labels[ind]*tf.ones(resp_chunks)] + [tf.zeros(post_chunks)],axis=0)
weight = tf.concat([0*tf.ones(pre_chunks)] + [tf.ones(resp_chunks)] + [0*tf.ones(post_chunks)],axis=0)
# for plotting, label the image when it holds on
image_labels = tf.concat([tf.zeros(int(pre_delay/chunk_size))] + [labels[ind]*tf.ones(int(im_slice/chunk_size))] + [tf.zeros(int(post_delay/chunk_size))],axis=0)
yield _z, label, image_labels, weight
output_dtypes = (tf.float32, tf.int32, tf.int32, tf.float32)
# when using generator for dataset, it should not contain the batch dim
output_shapes = (tf.TensorShape((seq_len, 17400)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)))
data_set = tf.data.Dataset.from_generator(_g, output_dtypes, output_shapes=output_shapes).map(lambda _a, _b, _c, _d:
(tf.cast(_a, tf.float32), tf.cast(_b, tf.int32), tf.cast(_c, tf.int32), tf.cast(_d, tf.float32)))
return data_set
def make_drifting_grating_stimulus(row_size=120, col_size=240, moving_flag=True, image_duration=100, cpd = 0.05,
temporal_f = 2, theta = 45, phase = None, contrast = 1.0):
# parameters from Allen's code
'''
Create the grating movie with the desired parameters
:param t_min: start time in seconds
:param t_max: end time in seconds
:param cpd: cycles per degree
:param temporal_f: in Hz
:param theta: orientation angle
:return: Movie object of grating with desired parameters
'''
row_size = row_size*2 # somehow, Franz's code only accept larger size; thus, i did the mulitplication
col_size = col_size*2
frame_rate = 1000 # Hz
t_min = 0
t_max = image_duration/1000
if phase is None:
phase = np.random.rand(1)*180
assert contrast <= 1, "Contrast must be <= 1"
assert contrast > 0, "Contrast must be > 0"
physical_spacing = 1. / (float(cpd) * 10) #To make sure no aliasing occurs
row_range = np.linspace(0, row_size, int(row_size / physical_spacing), endpoint = True)
col_range = np.linspace(0, col_size, int(col_size / physical_spacing), endpoint = True)
numberFramesNeeded = int(round(frame_rate * t_max))
time_range = np.linspace(0, t_max, numberFramesNeeded, endpoint=True) ### this was a bug... instead of zero it was gray_screen and so time was stretched! Fixed on Jan 11, 2018
tt, yy, xx = np.meshgrid(time_range, row_range, col_range, indexing='ij')
thetaRad = np.pi*(180-theta)/180. #Add negative here to match brain observatory angles!
phaseRad = np.pi*(180-phase)/180.
xy = xx * np.cos(thetaRad) + yy * np.sin(thetaRad)
data = contrast*np.sin(2*np.pi*(cpd * xy + temporal_f *tt) + phaseRad)
if moving_flag:
return data.astype(np.float32)
else:
return np.tile(data[0].astype(np.float32)[None,...],(image_duration,1,1))
def generate_drifting_grating(orientation=45, intensity=10, im_slice=100, pre_delay=50, post_delay=50,
current_input=True, from_lgn=True):
mimc_lgn_std, mimc_lgn_mean = 0.02855, 0.02146
lgn = lgn_model.LGN()
seq_len = pre_delay + im_slice + post_delay
def _g():
while True:
if from_lgn:
tiled_img = make_drifting_grating_stimulus(moving_flag=False, image_duration=im_slice, cpd = 0.05, temporal_f = 2, theta = orientation, phase = None, contrast = 1.0)
# make it in [-intensity, intensity]
tiled_img = (tiled_img[...,None] - .5) * intensity / .5
else:
tiled_img = make_drifting_grating_stimulus(row_size=100,col_size=174,moving_flag=False, image_duration=im_slice, cpd = 0.05, temporal_f = 2, theta = orientation, phase = None, contrast = 1.0)
tiled_img = tiled_img[...,None]
# add an empty period before a period of real image for continuing classification
z1 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (pre_delay, 1, 1, 1))
z2 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (post_delay, 1, 1, 1))
videos = tf.concat((z1, tiled_img, z2), 0)
if from_lgn:
spatial = lgn.spatial_response(videos)
firing_rates = lgn.firing_rates_from_spatial(*spatial)
else:
firing_rates = tf.reshape(videos, [-1,17400])
# sample rate
# assuming dt = 1 ms
_p = 1 - tf.exp(-firing_rates / 1000.)
# _z = tf.cast(fixed_noise < _p, dtype)
if current_input:
_z = _p * 1.3
if not from_lgn:
_z = _z * mimc_lgn_std
_z = (_z - tf.reduce_mean(_z)) / tf.math.reduce_std(_z) * mimc_lgn_std + mimc_lgn_mean
else:
_z = tf.cast(tf.random.uniform(tf.shape(_p)) < _p, tf.float32)
yield _z
output_dtypes = (tf.float32)
# when using generator for dataset, it should not contain the batch dim
output_shapes = (tf.TensorShape((seq_len, 17400)))
data_set = tf.data.Dataset.from_generator(_g, output_dtypes, output_shapes=output_shapes).map(lambda _a:
tf.cast(_a, tf.float32))
return data_set
def generate_fine_orientation_discrimination(from_lgn=True, intensity=10, im_slice=100, pre_delay=50, post_delay=50,
pre_chunks=3, resp_chunks=1, post_chunks=0, current_input=True):
# hard code lgn scale for the case from_lgn=False
mimc_lgn_std, mimc_lgn_mean = 0.02855, 0.02146
lgn = lgn_model.LGN()
seq_len = pre_delay + im_slice + post_delay
chunk_size = 50 # ms
n_chunks = int(seq_len / chunk_size)
assert n_chunks == resp_chunks + pre_chunks + post_chunks
def _g():
while True:
orientation = 45 + tf.math.round(tf.random.uniform(shape=[1],minval=-0.5,maxval=0.5) * 40) / 10 # choose from [43,47] with the precision of 0.1
if from_lgn:
tiled_img = make_drifting_grating_stimulus(moving_flag=False, image_duration=im_slice, cpd = 0.05, temporal_f = 2, theta = orientation, phase = None, contrast = 1.0)
# make it in [-intensity, intensity]
tiled_img = (tiled_img[...,None] - .5) * intensity / .5
else:
tiled_img = make_drifting_grating_stimulus(row_size=100,col_size=174,moving_flag=False, image_duration=im_slice, cpd = 0.05, temporal_f = 2, theta = orientation, phase = None, contrast = 1.0)
tiled_img = tiled_img[...,None]
# add an empty period before a period of real image for continuing classification
z1 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (pre_delay, 1, 1, 1))
z2 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (post_delay, 1, 1, 1))
videos = tf.concat((z1, tiled_img, z2), 0)
if from_lgn:
spatial = lgn.spatial_response(videos)
firing_rates = lgn.firing_rates_from_spatial(*spatial)
else:
firing_rates = tf.reshape(videos, [-1,17400])
# sample rate
# assuming dt = 1 ms
_p = 1 - tf.exp(-firing_rates / 1000.)
# _z = tf.cast(fixed_noise < _p, dtype)
if current_input:
_z = _p * 1.3
if not from_lgn:
_z = _z * mimc_lgn_std
_z = (_z - tf.reduce_mean(_z)) / tf.math.reduce_std(_z) * mimc_lgn_std + mimc_lgn_mean
else:
_z = tf.cast(tf.random.uniform(tf.shape(_p)) < _p, tf.float32)
ground_truth = tf.cast(orientation > 45, tf.float32)
label = tf.concat([tf.zeros(pre_chunks)] + [ground_truth*tf.ones(resp_chunks)] + [tf.zeros(post_chunks)],axis=0)
weight = tf.concat([0.0*tf.ones(pre_chunks)] + [tf.ones(resp_chunks)] + [0.0*tf.ones(post_chunks)],axis=0)
# for plotting, label the image when it holds on
image_labels = tf.concat([tf.zeros(int(pre_delay/chunk_size))] + [orientation*tf.ones(int(im_slice/chunk_size))] + [tf.zeros(int(post_delay/chunk_size))],axis=0)
yield _z, label, image_labels, weight
output_dtypes = (tf.float32, tf.int32, tf.float32, tf.float32)
# when using generator for dataset, it should not contain the batch dim
output_shapes = (tf.TensorShape((seq_len, 17400)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)))
data_set = tf.data.Dataset.from_generator(_g, output_dtypes, output_shapes=output_shapes).map(lambda _a, _b, _c, _d:
(tf.cast(_a, tf.float32), tf.cast(_b, tf.int32), tf.cast(_c, tf.float32), tf.cast(_d, tf.float32)))
return data_set
def generate_VCD_orientation(intensity=2, im_slice=100, pre_delay=50, post_delay=150, p_reappear=0.5, pairs_in_epoch=50,
batch_size=2, current_input=True):
lgn = lgn_model.LGN()
seq_len = (pre_delay + im_slice + post_delay)*2
chunk_size = 50 # ms
n_chunks = int(seq_len / chunk_size)
resp_chunks = 1 # 50 ms response window
pre_chunks = 4 # include 50 ms predelay, 100 ms image, 50 ms post delay
post_chunks = 1 # 50 ms delay after response
assert n_chunks == 2*(resp_chunks + pre_chunks + post_chunks)
changes = np.random.uniform(size=[batch_size*pairs_in_epoch,2]) > p_reappear
for i in range(batch_size):
changes[i*pairs_in_epoch,0] = 0 # the first one cannot change
orientations = []
for i, change in enumerate(changes):
if change[0]:
new_ori = 135 + np.round(np.random.uniform(low=-0.5,high=0.5) * 300) / 10
while new_ori == orientations[-1]:
# choose from [120,150] with the precision of 0.1
new_ori = 135 + np.round(np.random.uniform(low=-0.5,high=0.5) * 300) / 10
orientations.append(new_ori)
else:
if i < 1:
orientations.append(135 + np.round(np.random.uniform(low=-0.5,high=0.5) * 300) / 10)
else:
orientations.append(orientations[-1])
if change[1]:
new_ori = 135 + np.round(np.random.uniform(low=-0.5,high=0.5) * 300) / 10
while new_ori == orientations[-1]:
# choose from [120,150] with the precision of 0.1
new_ori = 135 + np.round(np.random.uniform(low=-0.5,high=0.5) * 300) / 10
orientations.append(new_ori)
else:
orientations.append(orientations[-1])
orientations = np.array(orientations).reshape(batch_size, -1, 2)
changes = changes.reshape(batch_size, -1, 2)
# re-arrange for batches
temp_ori = []
temp_cha = []
for i in range(batch_size):
temp_ori.append(orientations[i,...])
temp_cha.append(changes[i,...])
orientations = np.concatenate(temp_ori, axis=1)
changes = np.concatenate(temp_cha, axis=1)
orientations = orientations.reshape(-1,2)
changes = changes.reshape(-1,2)
orientations = tf.cast(tf.convert_to_tensor(orientations), tf.float32)
changes = tf.cast(tf.convert_to_tensor(changes), tf.float32)
def gen_one_video(orientation):
tiled_img = make_drifting_grating_stimulus(moving_flag=False, image_duration=im_slice, cpd = 0.05, temporal_f = 2, theta = orientation, phase = None, contrast = 1.0)
# make it in [-intensity, intensity]
tiled_img = (tiled_img[...,None] - .5) * intensity / .5
# add an empty period before a period of real image for continuing classification
z1 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (pre_delay, 1, 1, 1))
z2 = tf.tile(tf.zeros_like(tiled_img[0,...])[None,...], (post_delay, 1, 1, 1))
video = tf.concat((z1, tiled_img, z2), 0)
return video, orientation
def _g():
for change, orientaion in zip(changes, orientations):
video1, orientation1 = gen_one_video(orientaion[0])
video2, orientation2 = gen_one_video(orientaion[1])
videos = tf.concat((video1, video2), 0)
spatial = lgn.spatial_response(videos)
firing_rates = lgn.firing_rates_from_spatial(*spatial)
# sample rate
# assuming dt = 1 ms
_p = 1 - tf.exp(-firing_rates / 1000.)
# _z = tf.cast(fixed_noise < _p, dtype)
if current_input:
_z = _p * 1.3
else:
_z = tf.cast(tf.random.uniform(tf.shape(_p)) < _p, tf.float32)
ground_truth = tf.cast(change, tf.float32)
label = tf.concat([tf.zeros(pre_chunks)] + [ground_truth[0]*tf.ones(resp_chunks)] + [tf.zeros(post_chunks)] +\
[tf.zeros(pre_chunks)] + [ground_truth[1]*tf.ones(resp_chunks)] + [tf.zeros(post_chunks)],axis=0)
weight = tf.concat([0.0*tf.ones(pre_chunks)] + [tf.ones(resp_chunks)] + [0.0*tf.ones(post_chunks)] +\
[0.0*tf.ones(pre_chunks)] + [tf.ones(resp_chunks)] + [0.0*tf.ones(post_chunks)], axis=0)
# for plotting, label the image when it holds on
image_label1 = tf.concat([tf.zeros(int(pre_delay/chunk_size))] + [orientation1*tf.ones(int(im_slice/chunk_size))] + [tf.zeros(int(post_delay/chunk_size))],axis=0)
image_label2 = tf.concat([tf.zeros(int(pre_delay/chunk_size))] + [orientation2*tf.ones(int(im_slice/chunk_size))] + [tf.zeros(int(post_delay/chunk_size))],axis=0)
image_labels = tf.concat([image_label1,image_label2],axis=0)
yield _z, label, image_labels, weight
output_dtypes = (tf.float32, tf.int32, tf.float32, tf.float32)
# when using generator for dataset, it should not contain the batch dim
output_shapes = (tf.TensorShape((seq_len, 17400)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)))
data_set = tf.data.Dataset.from_generator(_g, output_dtypes, output_shapes=output_shapes).map(lambda _a, _b, _c, _d:
(tf.cast(_a, tf.float32), tf.cast(_b, tf.int32), tf.cast(_c, tf.float32), tf.cast(_d, tf.float32)))
return data_set
def generate_evidence_accumulation(path, batch_size, seq_len=700, pause=200, n_cues=7, cue_len=30, interval_len=40, recall_len=80,
n_examples_per_epoch=100):
assert seq_len % 50 == 0
n_chunks_t = (seq_len - pause) // 50
n_chunks_p = pause // 50
with open(path, 'rb') as f:
firing_rates = pkl.load(f)
np_resting = firing_rates['resting'].astype(np.float32)
np_stimuli = np.stack((firing_rates['left'], firing_rates['right']), 0).astype(np.float32)
np_stimuli = np.tile(np_stimuli[:, None], (1, cue_len, 1))
np_stimuli = np.concatenate((np_stimuli, np.tile(np_resting[None, None], (2, interval_len - cue_len, 1))), 1)
np_recall = firing_rates['recall'].astype(np.float32)
with tf.device('/cpu'):
resting = tf.Variable(np_resting, trainable=False)
stimuli = tf.Variable(np_stimuli, trainable=False)
recall = tf.Variable(np_recall, trainable=False)
def gen_seq(_):
stim_id = tf.cast(tf.random.uniform((batch_size, n_cues)) * 2, tf.int32)
t_label = tf.cast(tf.reduce_mean(tf.cast(stim_id, tf.float32), 1) > .5, tf.int32)
t_label = tf.concat((
tf.zeros((batch_size, n_chunks_t - 1), tf.int32),
t_label[..., None], tf.zeros((batch_size, n_chunks_p), tf.int32)), -1)
t_w = tf.concat((
tf.zeros((batch_size, n_chunks_t - 1)), tf.ones((batch_size, 1)),
tf.zeros((batch_size, n_chunks_p))), -1)
t_stim = tf.gather(stimuli, stim_id, axis=0)
t_stim = tf.reshape(t_stim, (batch_size, interval_len * n_cues, -1))
t_pause = tf.tile(resting[None, None], (batch_size, seq_len - pause - n_cues * interval_len - recall_len, 1))
t_pause_2 = tf.tile(resting[None, None], (batch_size, pause, 1))
t_recall = tf.tile(recall[None, None], (batch_size, recall_len, 1))
t_task = tf.concat((t_stim, t_pause, t_recall, t_pause_2), 1)
t_task = 1 - tf.exp(-t_task / 1000.)
return t_task * 1.3, t_label, t_label, t_w
data_set = tf.data.Dataset.from_tensor_slices([0]).map(gen_seq).repeat(n_examples_per_epoch)
return data_set
def generate_evidence_accumulation_via_LGN(file_name, seq_len=600, pause=250, n_cues=5, cue_len=50, interval_len=10, recall_len=50, post_chunks=0):
lgn = lgn_model.LGN()
assert seq_len % 50 == 0
assert seq_len == pause + n_cues*(cue_len + interval_len) + recall_len
n_chunks = seq_len // 50
f = h5py.File(file_name, 'r')
left_cue = f['left_cue'][()]
right_cue = f['right_cue'][()]
gap = f['gap'][()]
recall = f['recall'][()]
f.close()
left_cue = np.tile(left_cue[None,...,None], [cue_len,1,1,1])
right_cue = np.tile(right_cue[None,...,None], [cue_len,1,1,1])
gap_between_cues = np.tile(gap[None,...,None], [interval_len,1,1,1])
left_cue = np.concatenate((left_cue, gap_between_cues),axis=0)
right_cue = np.concatenate((right_cue, gap_between_cues),axis=0)
cues = tf.Variable(tf.stack((left_cue,right_cue),axis=0), trainable=False)
recall = np.tile(recall[None,...,None], [recall_len,1,1,1])
delay = np.tile(gap[None,...,None], [pause,1,1,1])
def gen_seq():
while True:
stim_id = tf.cast(tf.random.uniform((n_cues,)) * 2, tf.int32)
t_label = tf.cast(tf.reduce_mean(tf.cast(stim_id, tf.float32), 0) > .5, tf.int32)
t_label = tf.concat((tf.zeros(n_chunks - 1, tf.int32), t_label[..., None]), -1)
t_w = tf.concat((tf.zeros(n_chunks - post_chunks-1,), tf.ones(1), tf.zeros(post_chunks,)), -1)
t_stim = tf.reshape(tf.gather(cues, stim_id, axis=0), [-1,120,240,1])
t_task = tf.cast(tf.concat((t_stim, delay, recall), 0),tf.float32)
spatial = lgn.spatial_response(t_task)
firing_rates = lgn.firing_rates_from_spatial(*spatial)
_p = 1.3*(1 - tf.exp(-firing_rates / 1000.))
image_label = tf.concat([stim_id, tf.cast(tf.zeros(int((recall_len + pause + 50)/50)),tf.int32)],axis=0) # 50 is chunk size; stim_id span on 60*5 ms (not 50 ms chunk) so I conpensate it with an extra dummy zeros
yield _p, t_label, image_label, t_w
output_dtypes = (tf.float32, tf.int32, tf.int32, tf.float32)
output_shapes = (tf.TensorShape((seq_len, 17400)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)), tf.TensorShape((n_chunks)))
data_set = tf.data.Dataset.from_generator(gen_seq, output_dtypes, output_shapes=output_shapes).map(lambda _a, _b, _c, _d:
(tf.cast(_a, tf.float32), tf.cast(_b, tf.int32), tf.cast(_c, tf.int32), tf.cast(_d, tf.float32)))
return data_set