This repository has been archived by the owner on Jan 24, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run-test.py
442 lines (414 loc) · 16.3 KB
/
run-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""
Executa os testes
"""
import os
import argparse
from datetime import datetime
import pandas as pd
import logging
import sys
from os import path
from charset_normalizer import from_path
from io import StringIO
from jinja2 import Environment, FileSystemLoader
#Configuração do logger
logging.basicConfig(
level=logging.INFO,
handlers=[
logging.StreamHandler(sys.stdout)
],
format='%(asctime)s %(levelname)s %(message)s',
datefmt='%d/%m/%Y %H:%M:%S'
)
logging.info('Carregando as configurações...')
# Configurações
entidades = {
0: {
'orgaos': (2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
'nome': 'Prefeitura',
'rules': (
'info_patrim.csv',
'info_orc.csv',
'info_controle.csv',
'suprim.csv',
'parcerias_apropriar.csv',
'precatorios_apagar.csv',
'rpps_apagar.csv',
'rgps_apagar.csv',
'fgts_apagar.csv',
'rpp_apagar.csv',
'pasep_apagar.csv',
'prev_rec_inicial.csv',
'prev_ded_fundeb_inicial.csv',
'prev_outras_ded_inicial.csv',
'reestimativa_receita.csv',
'dotacao_inicial.csv',
'credito_suplementar.csv',
'credito_especial.csv',
# 'credito_especial_reaberto.csv',
'credito_extraordinario.csv',
# 'credito_superavit.csv',
# 'credito_excesso.csv',
# 'credito_anulacao.csv',
# 'credito_reabertura.csv',
'anulacao_dotacao.csv',
'emissao_empenhos.csv',
'rpnp_inscritos.csv',
'rpnp_inscritos_anterior.csv',
'rpnp_inscricao_exe.csv',
'rpp_inscritos.csv',
'rpp_inscritos_anterior.csv',
'rpp_inscricao_exe.csv',
'receita_arealizar.csv',
'receita_realizada.csv',
'deducao_receita_fundeb.csv',
'deducao_receita_renuncia.csv',
'deducao_receita_outras.csv',
'empenhado_aliquidar.csv',
'liquidado_apagar.csv',
'pago.csv',
'rpnp_aliquidar.csv',
'rpnp_apagar.csv',
'rpnp_pago.csv',
'rpnp_cancelado.csv',
'rpp_pago.csv',
'rnp_cancelado.csv',
'niveis_orc.csv',
'niveis_controle.csv',
'disponibilidades.csv',
'resultado_financeiro.csv',
'resultado.csv',
'situacao.csv',
'ddr_disponivel.csv',
'ddr_empenhada.csv',
'ddr_liquidada.csv',
'ddr_utilizada.csv'
)
},
1: {
'orgaos': (12,),
'nome': 'FPSM',
'rules': (
'info_patrim.csv',
'info_orc.csv',
'info_controle.csv',
'suprim.csv',
'rpps_apagar.csv',
'rpp_apagar.csv',
'pasep_apagar.csv',
'prev_rec_inicial.csv',
'prev_outras_ded_inicial.csv',
'reestimativa_receita.csv',
'dotacao_inicial.csv',
'credito_suplementar.csv',
'credito_especial.csv',
# 'credito_especial_reaberto.csv',
'credito_extraordinario.csv',
# 'credito_superavit.csv',
# 'credito_excesso.csv',
# 'credito_anulacao.csv',
# 'credito_reabertura.csv',
'anulacao_dotacao.csv',
'emissao_empenhos.csv',
'rpnp_inscritos.csv',
'rpnp_inscritos_anterior.csv',
'rpnp_inscricao_exe.csv',
'rpp_inscritos.csv',
'rpp_inscritos_anterior.csv',
'rpp_inscricao_exe.csv',
'receita_arealizar.csv',
'receita_realizada.csv',
'deducao_receita_outras.csv',
'empenhado_aliquidar.csv',
'liquidado_apagar.csv',
'pago.csv',
'rpnp_aliquidar.csv',
'rpnp_apagar.csv',
'rpnp_pago.csv',
'rpnp_cancelado.csv',
'rpp_pago.csv',
'rnp_cancelado.csv',
'niveis_orc.csv',
'niveis_controle.csv',
'disponibilidades.csv',
'resultado_financeiro.csv',
'resultado.csv',
'situacao.csv',
'ddr_disponivel.csv',
'ddr_empenhada.csv',
'ddr_liquidada.csv',
'ddr_utilizada.csv'
)
},
2: {
'orgaos': (1,),
'nome': 'Câmara de Vereadores',
'rules': (
'info_patrim.csv',
'info_orc.csv',
'info_controle.csv',
'suprim.csv',
'rpps_apagar.csv',
'rgps_apagar.csv',
'fgts_apagar.csv',
'rpp_apagar.csv',
'pasep_apagar.csv',
'dotacao_inicial.csv',
'credito_suplementar.csv',
'credito_especial.csv',
# 'credito_especial_reaberto.csv',
'credito_extraordinario.csv',
# 'credito_superavit.csv',
# 'credito_anulacao.csv',
# 'credito_reabertura.csv',
'anulacao_dotacao.csv',
'emissao_empenhos.csv',
'rpnp_inscritos.csv',
'rpnp_inscritos_anterior.csv',
'rpnp_inscricao_exe.csv',
'rpp_inscritos.csv',
'rpp_inscritos_anterior.csv',
'rpp_inscricao_exe.csv',
'empenhado_aliquidar.csv',
'liquidado_apagar.csv',
'pago.csv',
'rpnp_aliquidar.csv',
'rpnp_apagar.csv',
'rpnp_pago.csv',
'rpnp_cancelado.csv',
'rpp_pago.csv',
'rnp_cancelado.csv',
'niveis_orc.csv',
'niveis_controle.csv',
'disponibilidades.csv',
'resultado_financeiro.csv',
'resultado.csv',
'situacao.csv',
'ddr_disponivel.csv',
'ddr_empenhada.csv',
'ddr_utilizada.csv'
)
},
9: {
'orgaos': (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
'nome': 'Município (Agregado)',
'rules': (
'receita_despesa_intra.csv',
'intra_ofss_ativo_passivo.csv',
'intra_ofss_resultado.csv',
'contribuicao_previdenciaria_areceber.csv',
'suplementacao_reducao_outra_entidade.csv',
'credito_anulacao.csv',
'credito_especial_reaberto.csv',
'credito_excesso.csv',
'credito_reabertura.csv',
'credito_superavit.csv'
)
}
}
rulesdir = r'rules'
padcsvdir = r'C:\Users\Everton\Desktop\Prefeitura\PAD'
outputdir = r'output'
templatesdir = r'templates'
datasetspath = r'datasets/datasets.xlsx'
# Parse command line arguments
logging.info('Identificando argumentos da linha de comando...')
parser = argparse.ArgumentParser(
prog='run-test',
description='Executa os testes de consistência contábil',
)
parser.add_argument('profile', nargs=1, type=int, choices=entidades.keys(), help='Número da entidade', metavar='profile')
parser.add_argument('mes', nargs=1, type=int, choices=range(1, 13, 1), help='Número do mês para processar', metavar='mês')
parser.add_argument('ano', nargs=1, type=int, help='Ano para processar', metavar='ano')
profile = parser.parse_args().profile[0]
mes = str(parser.parse_args().mes[0]).rjust(2, '0')
ano = str(parser.parse_args().ano[0])
# Seleciona o profile
logging.info('Profile selecionado:')
profile = entidades[profile]
logging.debug(profile)
# Carrega as rules
logging.info('Carregando as regras de consistência...')
rules = pd.DataFrame(columns=['rule', 'side', 'dataset', 'field', 'filter', 'subtract'])
for rulefile in profile['rules']:
csv = StringIO(str(from_path(path.join('.', rulesdir, rulefile)).best()))
ruledf = pd.read_csv(csv, sep=';')
rules = pd.concat([rules, ruledf], join='outer', ignore_index=True)
rules.fillna(False, axis='columns', inplace=True)
rules['left_val'] = 0.0
rules['right_val'] = 0.0
rules['diff'] = None
logging.info('Carregando o conjunto de dados...')
# Carrega e prepara os csv do PAD
csvdir = path.join(padcsvdir, ano+'-'+mes)
datasets = {}
# bal_ver
logging.debug('...BAL_VER.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'bal_ver.csv')).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.')
datasets['balver'] = df[
(df['orgao'].isin(profile['orgaos']))
& (df['escrituracao'] == 'S')
].copy()
# bal_desp
logging.debug('...BAL_DESP.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'bal_desp.csv')).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.', dtype={'elemento': str})
datasets['baldesp'] = df[df['orgao'].isin(profile['orgaos'])].copy()
datasets['baldesp']['dotacao_atualizada'] = round(datasets['baldesp'].dotacao_inicial + datasets['baldesp'].atualizacao_monetaria + datasets['baldesp'].creditos_suplementares + datasets['baldesp'].creditos_especiais + datasets['baldesp'].creditos_extraordinarios - datasets['baldesp'].reducao_dotacao + datasets['baldesp'].suplementacao_recurso_vinculado - datasets['baldesp'].reducao_recurso_vinculado + datasets['baldesp'].transferencia + datasets['baldesp'].transposicao + datasets['baldesp'].remanejamento, 2)
datasets['baldesp']['a_empenhar'] = round(datasets['baldesp'].dotacao_atualizada - datasets['baldesp'].valor_empenhado, 2)
datasets['baldesp']['a_liquidar'] = round(datasets['baldesp'].valor_empenhado - datasets['baldesp'].valor_liquidado, 2)
datasets['baldesp']['a_pagar'] = round(datasets['baldesp'].valor_liquidado - datasets['baldesp'].valor_pago, 2)
# liquidacao
logging.debug('...LIQUIDACAO.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'liquidacao.csv')).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.', dtype={'rubrica': str})
datasets['liquidacao'] = df[df['orgao'].isin(profile['orgaos'])].copy()
# pagamento
logging.debug('...PAGAMENTO.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'pagamento.csv'), threshold=0.5).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.', dtype={'rubrica': str})
datasets['pagamento'] = df[df['orgao'].isin(profile['orgaos'])].copy()
# restos_pagar
logging.debug('...RESTOS_PAGAR.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'restos_pagar.csv'), threshold=0.5).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.', dtype={'rubrica': str})
ano_base = datetime.strptime(df['data_final'].max(), '%Y-%m-%d').year
df['ano_base'] = ano_base
datasets['rp'] = df[df['orgao'].isin(profile['orgaos'])].copy()
# bal_rec_alt
logging.debug('...BAL_REC_ALT.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'bal_rec_alt.csv'), threshold=0.5).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.', dtype={'codigo_receita': str})
datasets['balrec'] = df[
(df['orgao'].isin(profile['orgaos']))
& (df['tipo_nivel'] == 'A')
].copy()
# decreto
logging.debug('...DECRETO.txt')
dados = StringIO(str(from_path(path.join(csvdir, 'decreto.csv'), threshold=0.5).best()))
df = pd.read_csv(dados, sep=';', parse_dates=True, infer_datetime_format=True, decimal=',', thousands='.')
df['orgao'] = 2
df.loc[df['entidade'].str.startswith('CAMARA'), 'orgao'] = 1
df.loc[df['recurso_vinculado_suplementacao_demais_tce']==50, 'orgao'] = 12
df.loc[df['recurso_vinculado_reducao_tce']==50, 'orgao'] = 12
datasets['decreto'] = df[df['orgao'].isin(profile['orgaos'])].copy()
# Salva os datasets para auditoria e testes
logging.info('Salvando datasets...')
dsw = pd.ExcelWriter(datasetspath, engine='xlsxwriter')
for sheet, data in datasets.items():
data.to_excel(dsw, sheet_name=sheet)
dsw.save()
# Cria a lista de nomes de regras
logging.info('Montando lista de regras...')
rulelist = rules['rule'].unique()
# Cria o df de resultados
logging.info('Preparando armazém de resultados...')
results = pd.DataFrame(columns=['rule', 'side', 'dataset', 'field', 'filter', 'minus', 'left_val', 'right_val', 'diff'])
summary = pd.DataFrame(columns=['rule', 'left', 'right', 'diff'])
# Processa as rules
logging.info('Processando regras...')
for rulename in rulelist:
rulespec = rules[rules['rule'] == rulename]
logging.debug(f'...{rulename}')
# Valor esquerdo
lrule = rulespec[rulespec['side'] == 'left']
lval = 0.0
for key, item in lrule.iterrows():
dataset = item['dataset']
field = item['field']
filter = item['filter']
minus = item['minus']
subset = datasets[dataset].query(filter)
val = subset[field].sum()
if minus is not False:
val = val * -1
val = round(val, 2)
rules.at[key, 'left_val'] = val
lval += val
# Valor direito
rrule = rulespec[rulespec['side'] == 'right']
rval = 0.0
for key, item in rrule.iterrows():
dataset = item['dataset']
field = item['field']
filter = item['filter']
minus = item['minus']
subset = datasets[dataset].query(filter)
val = subset[field].sum()
if minus is not False:
val = val * -1
val = round(val, 2)
rules.at[key, 'right_val'] = val
rval += val
diff = round(lval - rval, 2)
total = pd.DataFrame({
'rule': rulename,
'side': 'total',
'dataset': None,
'field': None,
'filter': None,
'minus': None,
'left_val': round(lval, 2),
'right_val': round(rval, 2),
'diff': round(diff, 2)
}, index=[0])
total_resume = pd.DataFrame({
'rule': rulename,
'left': round(lval, 2),
'right': round(rval, 2),
'diff': round(diff, 2)
}, index=[0])
results = pd.concat([results, total], ignore_index=True)
summary = pd.concat([summary, total_resume], ignore_index=True)
rules = pd.concat([rules, results], ignore_index=True)
logging.info('Montando resultados detalhados...')
details = {}
for rulename in rulelist:
logging.debug(f'...{rulename}')
left = rules.query(f'rule=="{rulename}" & side == "left"')[['dataset', 'field', 'filter', 'left_val', 'minus']].to_dict('records')
right = rules.query(f'rule=="{rulename}" & side == "right"')[['dataset', 'field', 'filter', 'right_val', 'minus']].to_dict('records')
total = rules.query(f'rule=="{rulename}" & side == "total"')[['left_val', 'right_val', 'diff']].to_dict('records')
details[rulename] = {'total': total}
llen = len(left)
rlen = len(right)
if llen < rlen:
left = left + [{'dataset': '', 'field': '', 'filter': '', 'left_val': '', 'minus': ''} for i in range(0, rlen-llen, 1)]
if rlen < llen:
right = right + [{'dataset': '', 'field': '', 'filter': '', 'right_val': '', 'minus': ''} for i in range(0, llen-rlen, 1)]
lst = []
for k in range(0, len(left)):
lst.append({
'l_dataset': left[k]['dataset'],
'l_field': left[k]['field'],
'l_filter': left[k]['filter'],
'l_value': left[k]['left_val'],
'l_minus': left[k]['minus'],
'r_dataset': right[k]['dataset'],
'r_field': right[k]['field'],
'r_filter': right[k]['filter'],
'r_value': right[k]['right_val'],
'r_minus': right[k]['minus'],
})
details[rulename] = {
'items': lst,
'total': total[0]
}
# Salva os resultados
logging.info('Salvando resultados...')
rules.to_excel(path.join('.', outputdir, 'result.xlsx'))
# Cria o relatório HTML
logging.info('Criando relatório HTML...')
jinja_env = Environment(
loader=FileSystemLoader(templatesdir)
)
template = jinja_env.get_template('report.html')
database = datasets['balver']['data_final'].unique()[0]
datainicial = datasets['balver']['data_inicial'].unique()[0]
datageracao = datasets['balver']['data_geracao'].unique()[0]
html = template.render(database=database, perfil=profile['nome'], summary=summary, details=details, datetime=datetime, datainicial=datainicial, datageracao=datageracao)
logging.info('Salvando relatório HTML...')
with open(path.join('.', outputdir, 'report.html'), 'w', encoding='utf-8') as f:
f.write(html)
print(r'file:///'+os.path.join(os.getcwd(), r'output/report.html').replace('\\', '/'))
logging.info('Processo terminado!')