import ibis_ml as ml
= ml.ImputeMean(ml.numeric())
@@ -266,14 +266,14 @@ imputer Create your first
= ml.Recipe(imputer, scaler) rec
A recipe can be chained in a Pipeline
like any other transformer.
+
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
= Pipeline([("rec", rec), ("svc", SVC())]) pipe
The pipeline can be used as any other estimator and avoids leaking the test set into the train set.
-
+
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
diff --git a/reference/core.html b/reference/core.html
index fff51bd..f8895b9 100644
--- a/reference/core.html
+++ b/reference/core.html
@@ -633,7 +633,6 @@ is_fitted
set_output
set_output(transform=None)
Set output type returned by transform
.
-This is part of the standard Scikit-Learn API.
Parameters
diff --git a/reference/support-matrix/index.html b/reference/support-matrix/index.html
index b56b1f0..bace66a 100644
--- a/reference/support-matrix/index.html
+++ b/reference/support-matrix/index.html
@@ -299,7 +299,7 @@
-
+
@@ -469,9 +469,9 @@