diff --git a/index.html b/index.html index ef59f03..86f9909 100644 --- a/index.html +++ b/index.html @@ -258,7 +258,7 @@

Install IbisML

Create your first recipe

With recipes, you can define sequences of feature engineering steps to get your data ready for modeling. For example, create a recipe to replace missing values using the mean of each numeric column and then normalize numeric data to have a standard deviation of one and a mean of zero.

-
+
import ibis_ml as ml
 
 imputer = ml.ImputeMean(ml.numeric())
@@ -266,14 +266,14 @@ 

Create your first rec = ml.Recipe(imputer, scaler)

A recipe can be chained in a Pipeline like any other transformer.

-
+
from sklearn.pipeline import Pipeline
 from sklearn.svm import SVC
 
 pipe = Pipeline([("rec", rec), ("svc", SVC())])

The pipeline can be used as any other estimator and avoids leaking the test set into the train set.

-
+
from sklearn.datasets import make_classification
 from sklearn.model_selection import train_test_split
 
diff --git a/reference/core.html b/reference/core.html
index fff51bd..f8895b9 100644
--- a/reference/core.html
+++ b/reference/core.html
@@ -633,7 +633,6 @@ 

is_fitted

set_output

set_output(transform=None)

Set output type returned by transform.

-

This is part of the standard Scikit-Learn API.

Parameters

diff --git a/reference/support-matrix/index.html b/reference/support-matrix/index.html index b56b1f0..bace66a 100644 --- a/reference/support-matrix/index.html +++ b/reference/support-matrix/index.html @@ -299,7 +299,7 @@
-
+
@@ -469,9 +469,9 @@