-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
benchmarks.py
134 lines (125 loc) · 5.63 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import tensorflow as tf
import time
import cv2
from core.yolov4 import YOLOv4, YOLOv3_tiny, YOLOv3, decode
from absl import app, flags, logging
from absl.flags import FLAGS
from tensorflow.python.saved_model import tag_constants
from core import utils
from core.config import cfg
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny')
flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_string('weights', './data/yolov4.weights', 'path to weights file')
flags.DEFINE_string('image', './data/kite.jpg', 'path to input image')
flags.DEFINE_integer('size', 416, 'resize images to')
def main(_argv):
if FLAGS.tiny:
STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
else:
STRIDES = np.array(cfg.YOLO.STRIDES)
if FLAGS.model == 'yolov4':
ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
else:
ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
XYSCALE = cfg.YOLO.XYSCALE
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
input_size = FLAGS.size
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
if FLAGS.framework == 'tf':
input_layer = tf.keras.layers.Input([input_size, input_size, 3])
if FLAGS.tiny:
feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, NUM_CLASS, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights_tiny(model, FLAGS.weights)
else:
if FLAGS.model == 'yolov3':
feature_maps = YOLOv3(input_layer, NUM_CLASS)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, NUM_CLASS, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights_v3(model, FLAGS.weights)
elif FLAGS.model == 'yolov4':
feature_maps = YOLOv4(input_layer, NUM_CLASS)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, NUM_CLASS, i)
bbox_tensors.append(bbox_tensor)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights(model, FLAGS.weights)
elif FLAGS.framework == 'trt':
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING])
signature_keys = list(saved_model_loaded.signatures.keys())
print(signature_keys)
infer = saved_model_loaded.signatures['serving_default']
logging.info('weights loaded')
@tf.function
def run_model(x):
return model(x)
# Test the TensorFlow Lite model on random input data.
sum = 0
original_image = cv2.imread(FLAGS.image)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
original_image_size = original_image.shape[:2]
image_data = utils.image_preprocess(np.copy(original_image), [FLAGS.size, FLAGS.size])
image_data = image_data[np.newaxis, ...].astype(np.float32)
img_raw = tf.image.decode_image(
open(FLAGS.image, 'rb').read(), channels=3)
img_raw = tf.expand_dims(img_raw, 0)
img_raw = tf.image.resize(img_raw, (FLAGS.size, FLAGS.size))
batched_input = tf.constant(image_data)
for i in range(1000):
prev_time = time.time()
# pred_bbox = model.predict(image_data)
if FLAGS.framework == 'tf':
pred_bbox = []
result = run_model(image_data)
for value in result:
value = value.numpy()
pred_bbox.append(value)
if FLAGS.model == 'yolov4':
pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE)
else:
pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)
bboxes = utils.nms(bboxes, 0.213, method='nms')
elif FLAGS.framework == 'trt':
pred_bbox = []
result = infer(batched_input)
for key, value in result.items():
value = value.numpy()
pred_bbox.append(value)
if FLAGS.model == 'yolov4':
pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE)
else:
pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)
bboxes = utils.nms(bboxes, 0.213, method='nms')
# pred_bbox = pred_bbox.numpy()
curr_time = time.time()
exec_time = curr_time - prev_time
if i == 0: continue
sum += (1 / exec_time)
info = str(i) + " time:" + str(round(exec_time, 3)) + " average FPS:" + str(round(sum / i, 2)) + ", FPS: " + str(
round((1 / exec_time), 1))
print(info)
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass