diff --git a/README.md b/README.md index dc74609bd..a7cdf82ff 100644 --- a/README.md +++ b/README.md @@ -370,6 +370,8 @@ You can refine your search by selecting the task you're interested in (e.g., [te 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/abs/2306.09364) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. +1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from Princeton University, IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[Phi](https://huggingface.co/docs/transformers/main/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee. 1. **[Phi3](https://huggingface.co/docs/transformers/main/model_doc/phi3)** (from Microsoft) released with the paper [Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone](https://arxiv.org/abs/2404.14219) by Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, Xiren Zhou. 1. **[PVT](https://huggingface.co/docs/transformers/main/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. diff --git a/docs/snippets/6_supported-models.snippet b/docs/snippets/6_supported-models.snippet index 60fadaeb4..85005c705 100644 --- a/docs/snippets/6_supported-models.snippet +++ b/docs/snippets/6_supported-models.snippet @@ -85,6 +85,8 @@ 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. +1. **[PatchTSMixer](https://huggingface.co/docs/transformers/main/model_doc/patchtsmixer)** (from IBM) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/abs/2306.09364) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. +1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from Princeton University, IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[Phi](https://huggingface.co/docs/transformers/main/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee. 1. **[Phi3](https://huggingface.co/docs/transformers/main/model_doc/phi3)** (from Microsoft) released with the paper [Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone](https://arxiv.org/abs/2404.14219) by Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, Xiren Zhou. 1. **[PVT](https://huggingface.co/docs/transformers/main/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. diff --git a/src/models.js b/src/models.js index 031b85f01..f2ec1ed0f 100644 --- a/src/models.js +++ b/src/models.js @@ -5970,6 +5970,38 @@ export class DecisionTransformerModel extends DecisionTransformerPreTrainedModel ////////////////////////////////////////////////// + +////////////////////////////////////////////////// +// PatchTST Transformer models +export class PatchTSTPreTrainedModel extends PreTrainedModel { } + +/** + * The bare PatchTST Model outputting raw hidden-states without any specific head. + */ +export class PatchTSTModel extends PatchTSTPreTrainedModel { } + +/** + * The PatchTST for prediction model. + */ +export class PatchTSTForPrediction extends PatchTSTPreTrainedModel { } +////////////////////////////////////////////////// + +////////////////////////////////////////////////// +// PatchTSMixer Transformer models +export class PatchTSMixerPreTrainedModel extends PreTrainedModel { } + +/** + * The bare PatchTSMixer Model outputting raw hidden-states without any specific head. + */ +export class PatchTSMixerModel extends PatchTSMixerPreTrainedModel { } + +/** + * The PatchTSMixer for prediction model. + */ +export class PatchTSMixerForPrediction extends PatchTSMixerPreTrainedModel { } +////////////////////////////////////////////////// + + ////////////////////////////////////////////////// // AutoModels, used to simplify construction of PreTrainedModels // (uses config to instantiate correct class) @@ -6108,6 +6140,8 @@ const MODEL_MAPPING_NAMES_ENCODER_ONLY = new Map([ ['efficientnet', ['EfficientNetModel', EfficientNetModel]], ['decision_transformer', ['DecisionTransformerModel', DecisionTransformerModel]], + ['patchtst', ['PatchTSTForPrediction', PatchTSTModel]], + ['patchtsmixer', ['PatchTSMixerForPrediction', PatchTSMixerModel]], ['mobilenet_v1', ['MobileNetV1Model', MobileNetV1Model]], ['mobilenet_v2', ['MobileNetV2Model', MobileNetV2Model]], @@ -6392,6 +6426,11 @@ const MODEL_FOR_IMAGE_MATTING_MAPPING_NAMES = new Map([ ['vitmatte', ['VitMatteForImageMatting', VitMatteForImageMatting]], ]); +const MODEL_FOR_TIME_SERIES_PREDICTION_MAPPING_NAMES = new Map([ + ['patchtst', ['PatchTSTForPrediction', PatchTSTForPrediction]], + ['patchtsmixer', ['PatchTSMixerForPrediction', PatchTSMixerForPrediction]], +]) + const MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES = new Map([ ['swin2sr', ['Swin2SRForImageSuperResolution', Swin2SRForImageSuperResolution]], ]) @@ -6433,6 +6472,7 @@ const MODEL_CLASS_TYPE_MAPPING = [ [MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], [MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], [MODEL_FOR_IMAGE_MATTING_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], + [MODEL_FOR_TIME_SERIES_PREDICTION_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], [MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], [MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], [MODEL_FOR_NORMAL_ESTIMATION_MAPPING_NAMES, MODEL_TYPES.EncoderOnly], diff --git a/tests/tiny_random.test.js b/tests/tiny_random.test.js index e0a3d9369..37059650d 100644 --- a/tests/tiny_random.test.js +++ b/tests/tiny_random.test.js @@ -53,6 +53,10 @@ import { VisionEncoderDecoderModel, Florence2ForConditionalGeneration, MarianMTModel, + PatchTSTModel, + PatchTSTForPrediction, + PatchTSMixerModel, + PatchTSMixerForPrediction, // Pipelines pipeline, @@ -69,6 +73,7 @@ import { // Other full, RawImage, + Tensor, } from "../src/transformers.js"; import { init, MAX_TEST_TIME, MAX_MODEL_LOAD_TIME, MAX_TEST_EXECUTION_TIME, MAX_MODEL_DISPOSE_TIME } from "./init.js"; @@ -1837,6 +1842,142 @@ describe("Tiny random models", () => { }, MAX_MODEL_DISPOSE_TIME); }); }); + + describe("patchtsmixer", () => { + const dims = [64, 512, 7]; + const prod = dims.reduce((a, b) => a * b, 1); + const past_values = new Tensor( + "float32", + Float32Array.from({ length: prod }, (_, i) => i / prod), + dims, + ); + + describe("PatchTSMixerModel", () => { + const model_id = "hf-internal-testing/tiny-random-PatchTSMixerModel"; + + /** @type {PatchTSMixerModel} */ + let model; + beforeAll(async () => { + model = await PatchTSMixerModel.from_pretrained(model_id, { + // TODO move to config + ...DEFAULT_MODEL_OPTIONS, + }); + }, MAX_MODEL_LOAD_TIME); + + it( + "default", + async () => { + const { last_hidden_state } = await model({ past_values }); + + const { num_input_channels, num_patches, d_model } = model.config; + expect(last_hidden_state.dims).toEqual([dims[0], num_input_channels, num_patches, d_model]); + expect(last_hidden_state.mean().item()).toBeCloseTo(0.03344963490962982, 5); + }, + MAX_TEST_EXECUTION_TIME, + ); + + afterAll(async () => { + await model?.dispose(); + }, MAX_MODEL_DISPOSE_TIME); + }); + + describe("PatchTSMixerForPrediction", () => { + const model_id = "onnx-community/granite-timeseries-patchtsmixer"; + + /** @type {PatchTSMixerForPrediction} */ + let model; + beforeAll(async () => { + model = await PatchTSMixerForPrediction.from_pretrained(model_id, { + // TODO move to config + ...DEFAULT_MODEL_OPTIONS, + }); + }, MAX_MODEL_LOAD_TIME); + + it( + "default", + async () => { + const { prediction_outputs } = await model({ past_values }); + + const { prediction_length, num_input_channels } = model.config; + expect(prediction_outputs.dims).toEqual([dims[0], prediction_length, num_input_channels]); + expect(prediction_outputs.mean().item()).toBeCloseTo(0.5064773559570312, 5); + }, + MAX_TEST_EXECUTION_TIME, + ); + + afterAll(async () => { + await model?.dispose(); + }, MAX_MODEL_DISPOSE_TIME); + }); + }); + + describe("patchtst", () => { + const dims = [64, 512, 7]; + const prod = dims.reduce((a, b) => a * b, 1); + const past_values = new Tensor( + "float32", + Float32Array.from({ length: prod }, (_, i) => i / prod), + dims, + ); + + describe("PatchTSTModel", () => { + const model_id = "hf-internal-testing/tiny-random-PatchTSTModel"; + + /** @type {PatchTSTModel} */ + let model; + beforeAll(async () => { + model = await PatchTSTModel.from_pretrained(model_id, { + // TODO move to config + ...DEFAULT_MODEL_OPTIONS, + }); + }, MAX_MODEL_LOAD_TIME); + + it( + "default", + async () => { + const { last_hidden_state } = await model({ past_values }); + + const { num_input_channels, d_model } = model.config; + expect(last_hidden_state.dims).toEqual([dims[0], num_input_channels, 43, d_model]); + expect(last_hidden_state.mean().item()).toBeCloseTo(0.016672514379024506, 5); + }, + MAX_TEST_EXECUTION_TIME, + ); + + afterAll(async () => { + await model?.dispose(); + }, MAX_MODEL_DISPOSE_TIME); + }); + + describe("PatchTSTForPrediction", () => { + const model_id = "onnx-community/granite-timeseries-patchtst"; + + /** @type {PatchTSTForPrediction} */ + let model; + beforeAll(async () => { + model = await PatchTSTForPrediction.from_pretrained(model_id, { + // TODO move to config + ...DEFAULT_MODEL_OPTIONS, + }); + }, MAX_MODEL_LOAD_TIME); + + it( + "default", + async () => { + const { prediction_outputs } = await model({ past_values }); + + const { prediction_length, num_input_channels } = model.config; + expect(prediction_outputs.dims).toEqual([dims[0], prediction_length, num_input_channels]); + expect(prediction_outputs.mean().item()).toBeCloseTo(0.506528377532959, 5); + }, + MAX_TEST_EXECUTION_TIME, + ); + + afterAll(async () => { + await model?.dispose(); + }, MAX_MODEL_DISPOSE_TIME); + }); + }); }); describe("Tiny random pipelines", () => {