diff --git a/R/check_tbl_value_col_ascending.R b/R/check_tbl_value_col_ascending.R index 0488825c..fb1e85c9 100644 --- a/R/check_tbl_value_col_ascending.R +++ b/R/check_tbl_value_col_ascending.R @@ -35,6 +35,7 @@ check_tbl_value_col_ascending <- function(tbl, file_path, hub_path, round_id) { ) } + # FIX for # sort the table by config by merging from config ---------------- tbl_sorted <- order_output_type_ids(tbl, accepted_vals, c("cdf", "quantile")) output_type_tbl <- split_cdf_quantile(tbl_sorted) @@ -73,14 +74,6 @@ check_values_ascending <- function(tbl) { # group by all of the target columns check_tbl <- dplyr::group_by(tbl, dplyr::across(dplyr::all_of(group_cols))) %>% - # FIX for - # output_type_ids are grouped together and we want to make sure the numeric - # ids are sorted correctly. To do this, we need to create a separate column - # for numeric IDs and sort by that first and then the recorded value of - # output_type_id second. This way, we can ensure that numeric values are - # not sorted by character. - # dplyr::mutate(num_id = suppressWarnings(as.numeric(.data$output_type_id))) %>% - # dplyr::arrange(.data$num_id, .data$output_type_id, .by_group = TRUE) %>% dplyr::summarise(non_asc = any(diff(.data[["value"]]) < 0)) if (!any(check_tbl$non_asc)) {