-
Notifications
You must be signed in to change notification settings - Fork 0
/
fineTuning_02.py
432 lines (365 loc) · 16.3 KB
/
fineTuning_02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# This version will construct a feature extractor from each specified pre-tranined CNN
#
# https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
# Learn how to use pre-trained CNN for feature extraction
# To reshape each CNN model for the target application, print the model (print(model_ft)) and observe where the output is from
# resnet: model.fc = nn.Linear(512, num_classes)
# Alexnet: model.classifier[6] = nn.Linear(4096,num_classes)
# Vgg: model.classifier[6] = nn.Linear(4096,num_classes)
# Squeezenet: model.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
# Densenet: model.classifier = nn.Linear(1024, num_classes)
# Inception v3: model.AuxLogits.fc = nn.Linear(768, num_classes)
# model.fc = nn.Linear(2048, num_classes)
#
#
# https://towardsdatascience.com/visualizing-convolution-neural-networks-using-pytorch-3dfa8443e74e
# Learn how to extract feature extractor from pretrained CNN models (used vgg as an example)
# Finally, notice that inception_v3 requires the input size to be (299,299),
# whereas all of the other models expect (224,224).
#%%
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)
#%%
data_dir = "/home/hchen/MEGA/fineTuning/hymenoptera_data"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_list = ["resnet", "alexnet", "vgg", "squeezenet", "densenet", "inception"]
model_name = model_list[2]
# Number of classes in the dataset
num_classes = 2
# Batch size for training (change depending on how much memory you have)
batch_size = 8
# Number of epochs to train for
num_epochs = 15
# Flag for feature extracting. When False, we finetune the whole model,
# when True we only update the reshaped layer params
feature_extract = True
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False):
since = time.time()
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
# Special case for inception because in training it has an auxiliary output. In train
# mode we calculate the loss by summing the final output and the auxiliary output
# but in testing we only consider the final output.
if is_inception and phase == 'train':
# From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2
else:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_acc_history.append(epoch_acc)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
# Initialize these variables which will be set in this if statement. Each of these
# variables is model specific.
model_ft = None
input_size = 0
if model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "alexnet":
""" Alexnet
"""
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224
elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224
elif model_name == "squeezenet":
""" Squeezenet
"""
model_ft = models.squeezenet1_0(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
model_ft.num_classes = num_classes
input_size = 224
elif model_name == "densenet":
""" Densenet
"""
model_ft = models.densenet121(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "inception":
""" Inception v3
Be careful, expects (299,299) sized images and has auxiliary output
"""
model_ft = models.inception_v3(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
# Handle the auxilary net
num_ftrs = model_ft.AuxLogits.fc.in_features
model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
# Handle the primary net
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs,num_classes)
input_size = 299
else:
print("Invalid model name, exiting...")
exit()
return model_ft, input_size
class FeatureExtractor(nn.Module):
def __init__(self, model_name,use_pretrained = True):
super(FeatureExtractor, self).__init__()
self.model_name = model_name
if model_name == "vgg":
model = models.vgg11_bn(pretrained=use_pretrained)
# Extract VGG-16 Feature Layers
self.features = list(model.features)
self.features = nn.Sequential(*self.features)
# Extract VGG-16 Average Pooling Layer
self.pooling = model.avgpool
# Convert the image into one-dimensional vector
self.flatten = nn.Flatten()
# Extract the first part of fully-connected layer from VGG16
self.fc1 = model.classifier[0]
self.relu1 = model.classifier[1] #nn.ReLU(inplace=True)
self.dropout1 = model.classifier[2] #nn.Dropout(p=0.5,inplace=False)
self.fc2=model.classifier[3] #nn.Linear(in_features=4096, out_features=4096, bias=True)
self.relu2 = model.classifier[4] #nn.ReLU(inplace=True)
self.dropout2 = model.classifier[5] #nn.Dropout(p=0.5,inplace=False)
def forward(self, x):
# It will take the input 'x' until it returns the feature vector called 'out'
if self.model_name == "vgg":
out = self.features(x)
out = self.pooling(out)
out = self.flatten(out)
out = self.fc1(out)
out = self.relu1(out)
out = self.dropout1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.dropout2(out)
return out
class NewClassifier(nn.Module):
def __init__(self, featureExtractor):
super(NewClassifier, self).__init__()
self.features = featureExtractor
self.fc = nn.Linear(in_features=4096, out_features=2, bias=True)
def forward(self, x):
# It will take the input 'x' until it returns the feature vector called 'out'
out = self.features(x)
out = self.fc(out)
return out
def initialize_new_model(model_name, num_classes, feature_extract, use_pretrained=True):
# Initialize these variables which will be set in this if statement. Each of these
# variables is model specific.
featureExtractor = FeatureExtractor(model_name,use_pretrained)
set_parameter_requires_grad(featureExtractor, feature_extract)
model_ft = NewClassifier(featureExtractor)
input_size = 224
if model_name == "resnet":
""" Resnet18
"""
#model_ft = models.resnet18(pretrained=use_pretrained)
#set_parameter_requires_grad(model_ft, feature_extract)
#num_ftrs = model_ft.fc.in_features
#model_ft.fc = nn.Linear(num_ftrs, num_classes)
#input_size = 224
elif model_name == "alexnet":
""" Alexnet
"""
#model_ft = models.alexnet(pretrained=use_pretrained)
#set_parameter_requires_grad(model_ft, feature_extract)
#num_ftrs = model_ft.classifier[6].in_features
#model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
#input_size = 224
elif model_name == "vgg":
""" VGG11_bn
"""
#model_ft = models.vgg11_bn(pretrained=use_pretrained)
#set_parameter_requires_grad(model_ft, feature_extract)
#num_ftrs = model_ft.classifier[6].in_features
#model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
#input_size = 224
elif model_name == "squeezenet":
""" Squeezenet
"""
#model_ft = models.squeezenet1_0(pretrained=use_pretrained)
#set_parameter_requires_grad(model_ft, feature_extract)
#model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
#model_ft.num_classes = num_classes
#input_size = 224
elif model_name == "densenet":
""" Densenet
"""
#model_ft = models.densenet121(pretrained=use_pretrained)
#set_parameter_requires_grad(model_ft, feature_extract)
#num_ftrs = model_ft.classifier.in_features
#model_ft.classifier = nn.Linear(num_ftrs, num_classes)
#input_size = 224
elif model_name == "inception":
""" Inception v3
Be careful, expects (299,299) sized images and has auxiliary output
"""
#model_ft = models.inception_v3(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
# Handle the auxilary net
#num_ftrs = model_ft.AuxLogits.fc.in_features
#model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
# Handle the primary net
#num_ftrs = model_ft.fc.in_features
#model_ft.fc = nn.Linear(num_ftrs,num_classes)
input_size = 299
else:
print("Invalid model name, exiting...")
exit()
return model_ft, input_size
# Initialize the model for this run
model_new,input_size = initialize_new_model(model_name,num_classes,feature_extract,use_pretrained=True)
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print("Initializing Datasets and Dataloaders...")
# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Send the model to GPU
model_new = model_new.to(device)
# Gather the parameters to be optimized/updated in this run. If we are
# finetuning we will be updating all parameters. However, if we are
# doing feature extract method, we will only update the parameters
# that we have just initialized, i.e. the parameters with requires_grad
# is True.
params_to_update = model_new.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name,param in model_new.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_new.named_parameters():
if param.requires_grad == True:
print("\t",name)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
# Train and evaluate
model_new, hist = train_model(model_new, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))
# Comparison with Model Trained from Scratch
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_new_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))
# Plot the training curves of validation accuracy vs. number
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []
ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]
plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.savefig("vgg_new.png")
plt.show()
plt.pause(5)
plt.close()
# %%