Skip to content

Latest commit

 

History

History
75 lines (58 loc) · 2.63 KB

File metadata and controls

75 lines (58 loc) · 2.63 KB

Step-by-Step

This document describes the step-by-step instructions for reproducing stable diffusion tuning results with Intel® Neural Compressor.

The script run_diffusion.py is based on huggingface/diffusers and provides post-training static quantization approach based on Intel® Neural Compressor.

Prerequisite

1. Environment

pip install -r requirements.txt

Note: Validated PyTorch Version.

2. Prepare Datasets

Metric and Ground Truth Image

FID metric is used to evaluate the model in this case, so we should download training datasets and choose one image to a directory(like "base_images").

Note: In this case we used picture: Ground_Truth_Image.

Quantization

python run_diffusion.py \
    --model_name_or_path lambdalabs/sd-pokemon-diffusers \
    --tune \
    --quantization_approach PostTrainingStatic \
    --perf_tol 0.02 \
    --output_dir /tmp/diffusion_output \
    --base_images base_images \
    --input_text "a drawing of a gray and black dragon" \
    --calib_text "a drawing of a green pokemon with red eyes"

The ground truth images and before and after quantization images show below:

The ground truth image:

The image generated by original model(FID with ground truth: 333):

The image generated by quantized UNet(FID with ground truth: 246):

Performance

Original model

python run_diffusion.py \
    --model_name_or_path lambdalabs/sd-pokemon-diffusers \
    --output_dir /tmp/diffusion_output \
    --base_images base_images \
    --benchmark

The model of quantized UNet

python run_diffusion.py \
    --model_name_or_path lambdalabs/sd-pokemon-diffusers \
    --output_dir /tmp/diffusion_output \
    --base_images base_images \
    --benchmark \
    --int8

Note: Inference performance speedup with Intel DL Boost (VNNI) on Intel(R) Xeon(R) hardware, Please refer to Performance Tuning Guide for more optimizations.