-
Notifications
You must be signed in to change notification settings - Fork 0
/
hungarian_algorithm.py
339 lines (275 loc) · 12.5 KB
/
hungarian_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
'''
Hungarian algorithm implementation. Details about the algorithm: https://en.wikipedia.org/wiki/Hungarian_algorithm
'''
import numpy
import itertools
import random
def debug(message):
print message
def info(message):
print message
_INFINITY = 99999999
_EPSILON = 0.0000001
_equal_zero = lambda x : abs(x) < _EPSILON
def _assertion(x, defensive = True):
if defensive:
assert x
def find_optimal_assignment(matrix, expect_optimal = True):
'''
Return a tuple of tuples (x,y) indicating the optimal assignment.
Input:
SQUARE matrix of size n x n
expect_optimal: if this is True, the function asserts at the end that indeed n results are found
'''
#Dimension of the square matrix
n = matrix.shape[0]
output = []
min_value = {
'min_value' : _INFINITY,
'min_coordinate' : None
}
# debug("Finding optimal solution...")
# debug(matrix)
zero_counts = tuple(count.tolist()[0] for count in _equal_zero(matrix).nonzero())
#List of all coordinates of zeroes in the matrix
zero_coordinates = list(zip(*zero_counts))
def _pick(axis, value, index):
'''
Pick a coordinate as part of the solution
axis is either 0 (x) or 1 (y)
value is the index of the coordinate on the axis
index is the index of the other axis on the other axis
'''
coordinate = (index, value) if axis == 1 else (value, index)
# debug('Picking %s' % str(coordinate))
_assertion(coordinate in zero_coordinates)
min_value['min_coordinate'] = None
min_value['min_value'] = _INFINITY
#Ignore zeroes on the picked row and columns
filtered_coordinates = [value for value in zero_coordinates if value[0] != coordinate[0] and value[1] != coordinate[1]]
zero_coordinates[:] = [] #Empty the list
zero_coordinates.extend(filtered_coordinates) #Regenerate the list of zeros in the matrix
# debug('New zero list is %s' % zero_coordinates)
output.append(coordinate)
def _find_by_axis(axis, count_by_axis):
'''
Find the index of the row/col which has the least amount of zeros in the matrix.
Will pick the entry as part of solution if the row/col has only one zero.
Otherwise update the min_value variable
Input
axis is either 0 (x) or 1 (y)
An iterator where each element is a tuple of 2 elements:
the index of the zero on the axis, and
an iterator containing index of the zeros on the other axis
'''
# debug("Finding with axis %s" % ('x' if axis == 0 else 'y'))
for value, iterator in count_by_axis:
zero_indices = list(iterator)
# debug('For this axis %s, value is %s and zero indices are %s' % (axis, value, zero_indices))
# debug('Index %s has %s indices' % (value, len(zero_indices)))
if len(zero_indices) == 1:
_pick(axis, value, zero_indices[0][1 - axis])
return True
else:
# debug("This has %s zeros on it and min val is %s" % (len(zero_indices), min_value['min_value']))
if min_value['min_value'] > len(zero_indices):
# debug("Found min %s with value %s on axis %s" % (len(zero_indices), value, 'x' if axis == 0 else 'y'))
min_value['min_value'] = len(zero_indices)
min_value['min_coordinate'] = (axis, value, zero_indices[0][1 - axis])
return False
def _find_unique_zero():
'''
Among the zeros coordinates, attempt to find the one that is unique on its row/col (i.e. it is the only zero on the row/col)
If such zero exists, add it to the optimal solution
If not, add the zero whose row/col has the smallest amount of zeros to the optimal solution
'''
for axis in range(len(zero_counts)):
key_function = lambda pair : pair[axis]
count_by_axis = itertools.groupby(sorted(zero_coordinates, key = key_function), key = key_function)
if _find_by_axis(axis, count_by_axis):
return True
return False
while True:
if not _find_unique_zero():
_pick(*min_value['min_coordinate'])
if len(zero_coordinates) == 0:
break
# debug("Found %s" % output)
_assertion(len(output) == n, expect_optimal)
return output
def find_zero_covering_lines(matrix):
'''
Find the minimum number of horizontal and vertical lines that can cover all zeroes in the matrix
Input:
a square matrix with either
at least one zero in each row or
at least one zero in each column
Return a tuple of two elements: (x_lines, y_lines) where
x_lines is an iterable with indices of all covered rows
y_lines is an iterable with indices of all covered columns
'''
_assertion(matrix.shape[0] == matrix.shape[1])
n = matrix.shape[0]
output = (set(), set())
# debug("Finding zero covering lines...")
# debug(matrix)
zero_counts = tuple(count.tolist()[0] for count in _equal_zero(matrix).nonzero())
#List of all coordinates of zeroes in the matrix
zero_coordinates = sorted(list(zip(*zero_counts)))
# debug("There are %s zeros" % len(zero_coordinates))
using_matrix = numpy.matrix(matrix)
marked_rows, marked_cols = set(), set()
assigned_rows, assigned_cols, assignments = set(), set(), set()
def _mark(x, y):
# debug("Mark %s, %s" % (x, y))
assigned_rows.add(x)
assigned_cols.add(y)
assignments.add((x, y))
for x, y in find_optimal_assignment(using_matrix, expect_optimal = False):
_mark(x, y)
#Mark all rows have no assignment
marked_rows = set(range(n)) - assigned_rows
newly_marked_rows = set(marked_rows)
while True:
#Mark all columns (that haven't been marked) having zero in newly marked rows
newly_marked_cols = set()
for row in newly_marked_rows:
new_cols = [col for col in xrange(n) if _equal_zero(matrix[row, col]) and col not in marked_cols]
for col in new_cols:
newly_marked_cols.add(col)
marked_cols.add(col)
if len(newly_marked_cols) == 0:
break
#Mark all rows (that haven't been marked) having assignment in newly marked cols
newly_marked_rows = set()
for col in newly_marked_cols:
new_rows = [row for row in xrange(n) if (row, col) in assignments and row not in marked_rows]
for row in new_rows:
newly_marked_rows.add(row)
marked_rows.add(row)
if len(newly_marked_rows) == 0:
break
#Draw lines through all UNMARKED rows and marked columns
output = (tuple(set(range(n)) - marked_rows), tuple(marked_cols))
_assertion(sum(map(len, output)) <= len(zero_coordinates)) #Number of lines drawn is at most the number of zeros present
# debug("Found %s. That's %s lines" % (str(output), sum(map(len, output))))
return output
def smallest_uncovered_entry(matrix, covering_lines):
'''
Retrieve the smallest entry in the matrix that are not covered by the covering_lines
Input:
square matrix input
a tuple (x_lines, y_lines) where
x_lines is an iterable with indices of all covered rows
y_lines is an iterable with indices of all covered columns
'''
# debug("Finding smallest uncovered entry for")
# debug(matrix)
# debug(covering_lines)
x_lines, y_lines = covering_lines
truncated_matrix = numpy.delete(matrix, x_lines, 0)
truncated_matrix = numpy.delete(truncated_matrix, y_lines, 1)
output = truncated_matrix.min()
return output
def hungarian_algorithm_square(input_square_matrix):
'''
Apply hungarian algorithm to the input matrix
Input:
A SQUARE matrix
Output:
a tuple of tuples (x,y) indicating the optimal assignment.
'''
_assertion(input_square_matrix.shape[0] == input_square_matrix.shape[1])
n = input_square_matrix.shape[0]
using_matrix = numpy.matrix(input_square_matrix)
# debug("Input matrix")
# debug(input_square_matrix)
using_matrix = using_matrix - using_matrix.min(1) #For each row, subtract that row by its min
using_matrix = using_matrix - using_matrix.min(0) #For each column, subtract that col by its min
# debug("After cleaning")
# debug(using_matrix)
while True:
x_lines, y_lines = find_zero_covering_lines(using_matrix)
_assertion(x_lines is not None and y_lines is not None)
line_count = len(x_lines) + len(y_lines)
_assertion(line_count <= n)
if line_count == n:
return find_optimal_assignment(using_matrix)
else:
smallest = smallest_uncovered_entry(using_matrix, (x_lines, y_lines))
#Subtract the smallest value from all uncovered rows
for row in [r for r in xrange(n) if r not in x_lines]:
using_matrix[row] -= smallest
#Add the smallest value to all covered columns
for col in [c for c in xrange(n) if c in y_lines]:
using_matrix[:, col] += smallest
def hungarian_algorithm_general(input_matrix):
'''
Apply hungarian algorithm to the input matrix
Input:
A rectangular matrix (can be square or non-square)
Output:
a tuple of tuples (x,y) indicating the optimal assignment.
'''
m = input_matrix.shape[0]
n = input_matrix.shape[1]
using_matrix = None
if m > n: #Pad with 0s columns
null_matrix = numpy.matrix(numpy.zeros((m, m - n)))
using_matrix = numpy.append(input_matrix, null_matrix, 1)
elif n > m: #Pad with 0s rows
null_matrix = numpy.matrix(numpy.zeros((n - m, n)))
using_matrix = numpy.append(input_matrix, null_matrix, 0)
else: #Already square, doing nothing
using_matrix = input_matrix
return tuple((x, y) for x, y in hungarian_algorithm_square(using_matrix) if x < m and y < n)
def hungarian_algorithm_interface(iterable_of_iterable):
'''
Interface to this module. Apply hungarian algorithm to the input
Input:
An iterable of iterable. Has to be rectangular (i.e. each row has the same number of elements)
Output:
a tuple of tuples (x,y) indicating the optimal assignment.
'''
if not iterable_of_iterable:
return None
_assertion(len(set(map(len, iterable_of_iterable))) == 1) #assert rectangular iterable
return hungarian_algorithm_general(numpy.matrix(iterable_of_iterable))
def termination_test(iterable_of_iterable):
# debug("*" * 50)
# debug(iterable_of_iterable)
debug(hungarian_algorithm_interface(iterable_of_iterable))
def brute_force_solution(iterable_of_iterable):
n = len(iterable_of_iterable)
def _choices_generator(n):
for permutation in itertools.permutations(xrange(n), n):
yield zip(xrange(n), permutation)
def _calculate_cost(choice):
cost = sum(iterable_of_iterable[x][y] for x, y in choice)
if cost < _calculate_cost.best_cost:
_calculate_cost.best_choice = choice
_calculate_cost.best_cost = cost
_calculate_cost.best_choice = None
_calculate_cost.best_cost = 99999999
map(_calculate_cost, _choices_generator(n))
return (_calculate_cost.best_choice, _calculate_cost.best_cost)
if __name__ == "__main__":
pass
# info("Start testing...")
# xs = [[[1,2],[4,3]],
# [[40,0,5,0], [0,25,0,0], [55,0,0,5], [0,40,30,40]],
# [[250,400,350], [400,600,350], [200,400,250]],
# [[90,75,75,80], [35,85,55,65], [125,95,90,105], [45,110,95,115]],
# [[7,2,3],[4,5,6]], #Non square matrix
# [[10,19,8,15],[10,18,7,17],[13,16,9,14],[12,19,8,18],[14,17,10,19]],
# [[20,22,14,24],[20,19,12,20],[13,10,18,16],[22,23,9,28]],
# ]
# map(termination_test, xs)
# info("Start mass testing")
# dimension = [4, 5]
# sample_size = 10000
# for testing_dimension in dimension:
# for sample in xrange(sample_size):
# info("Testing dimension %s. Sample %s" % (testing_dimension, sample))
# m = [[random.randrange(100) for i in xrange(testing_dimension)] for j in xrange(testing_dimension)]
# termination_test(m)