forked from FluxML/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transfer_learning.jl
135 lines (114 loc) · 3.54 KB
/
transfer_learning.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# load packages
using Random: shuffle!
import Base: length, getindex
using Images
using Flux
using Flux: update!
using DataAugmentation
using Metalhead
device = Flux.CUDA.functional() ? gpu : cpu
# device = cpu
## Custom DataLoader
const CATS = readdir(abspath(joinpath("data", "animals", "cats")), join = true)
const DOGS = readdir(abspath(joinpath("data", "animals", "dogs")), join = true)
const PANDA = readdir(abspath(joinpath("data", "animals", "panda")), join = true)
struct ImageContainer{T<:Vector}
img::T
end
imgs = [CATS..., DOGS..., PANDA...]
shuffle!(imgs)
data = ImageContainer(imgs)
length(data::ImageContainer) = length(data.img)
const im_size = (224, 224)
tfm = DataAugmentation.compose(ScaleKeepAspect(im_size), CenterCrop(im_size))
name_to_idx = Dict{String,Int32}("cats" => 1, "dogs" => 2, "panda" => 3)
const mu = [0.485f0, 0.456f0, 0.406f0]
const sigma = [0.229f0, 0.224f0, 0.225f0]
function getindex(data::ImageContainer, idx::Int)
path = data.img[idx]
_img = Images.load(path)
_img = itemdata(apply(tfm, Image(_img)))
img = collect(channelview(float32.(RGB.(_img))))
img = permutedims((img .- mu) ./ sigma, (3, 2, 1))
name = replace(path, r"(.+)\\(.+)\\(.+_\d+)\.jpg" => s"\2")
y = name_to_idx[name]
return img, y
end
# define DataLoaders
const batchsize = 16
dtrain = Flux.DataLoader(
ImageContainer(imgs[1:2700]);
batchsize,
collate = true,
parallel = true,
)
device == gpu ? dtrain = Flux.CuIterator(dtrain) : nothing
deval = Flux.DataLoader(
ImageContainer(imgs[2701:3000]);
batchsize,
collate = true,
parallel = true,
)
device == gpu ? deval = Flux.CuIterator(deval) : nothing
# Fine-tune | 🐢 mode
# Load a pre-trained model:
m = Metalhead.ResNet(18, pretrain = true).layers
m_tot = Chain(m[1], AdaptiveMeanPool((1, 1)), Flux.flatten, Dense(512 => 3)) |> device
function eval_f(m, deval)
good = 0
count = 0
for (x, y) in deval
good += sum(Flux.onecold(m(x)) .== y)
count += length(y)
end
acc = round(good / count, digits = 4)
return acc
end
function train_epoch!(model; opt, dtrain)
for (x, y) in dtrain
grads = gradient(model) do m
Flux.Losses.logitcrossentropy(m(x), Flux.onehotbatch(y, 1:3))
end
update!(opt, model, grads[1])
end
end
opt = Flux.setup(Flux.Optimisers.Adam(1e-5), m_tot);
for iter = 1:5
@time train_epoch!(m_tot; opt, dtrain)
metric_train = eval_f(m_tot, dtrain)
metric_eval = eval_f(m_tot, deval)
@info "train" metric = metric_train
@info "eval" metric = metric_eval
end
# Fine-tune | 🐇 mode
# define models
m_infer = deepcopy(m[1]) |> device
m_tune = Chain(AdaptiveMeanPool((1, 1)), Flux.flatten, Dense(512 => 3)) |> device
function eval_f(m_infer, m_tune, deval)
good = 0
count = 0
for (x, y) in deval
good += sum(Flux.onecold(m_tune(m_infer(x))) .== y)
count += length(y)
end
acc = round(good / count, digits = 4)
return acc
end
function train_epoch!(m_infer, m_tune; opt, dtrain)
for (x, y) in dtrain
infer = m_infer(x)
grads = gradient(m_tune) do m
Flux.Losses.logitcrossentropy(m(infer), Flux.onehotbatch(y, 1:3))
end
update!(opt, m_tune, grads[1])
end
end
opt = Flux.setup(Flux.Optimisers.Adam(1e-3), m_tune);
# training loop
for iter = 1:5
@time train_epoch!(m_infer, m_tune; opt, dtrain)
metric_train = eval_f(m_infer, m_tune, dtrain)
metric_eval = eval_f(m_infer, m_tune, deval)
@info "train" metric = metric_train
@info "eval" metric = metric_eval
end