From e489c36f92d69daf12cb155b4ebb17964a2540c2 Mon Sep 17 00:00:00 2001 From: Barbier--Darnal Joseph Date: Sat, 7 Oct 2023 22:02:32 +0200 Subject: [PATCH] anova --- ...-anova-visualization-with-matplotlib.ipynb | 396 ++++++++++++++++++ src/pages/boxplot.js | 5 + src/pages/statistics.js | 15 + src/pages/violin-plot.js | 25 ++ ...-anova-visualization-with-matplotlib-1.png | Bin 0 -> 30458 bytes ...-anova-visualization-with-matplotlib-2.png | Bin 0 -> 35618 bytes ...-anova-visualization-with-matplotlib-3.png | Bin 0 -> 31569 bytes 7 files changed, 441 insertions(+) create mode 100644 src/notebooks/557-anova-visualization-with-matplotlib.ipynb create mode 100644 static/graph/557-anova-visualization-with-matplotlib-1.png create mode 100644 static/graph/557-anova-visualization-with-matplotlib-2.png create mode 100644 static/graph/557-anova-visualization-with-matplotlib-3.png diff --git a/src/notebooks/557-anova-visualization-with-matplotlib.ipynb b/src/notebooks/557-anova-visualization-with-matplotlib.ipynb new file mode 100644 index 0000000000..c3aa6f5e53 --- /dev/null +++ b/src/notebooks/557-anova-visualization-with-matplotlib.ipynb @@ -0,0 +1,396 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Libraries\n", + "\n", + "First, you need to install the following librairies:\n", + "- [matplotlib](https://python-graph-gallery.com/matplotlib/) is used for plot creating the charts\n", + "- [pandas](https://python-graph-gallery.com/pandas/) is used to put the data into a dataframe\n", + "- `numpy` is used to generate some data\n", + "\n", + "The **Anova test** will be done using `scipy`: install it using the `pip install scipy` command" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import scipy.stats as stats" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dataset\n", + "\n", + "When creating **nice output tables**, we first need to have the dataframe with the values we want. \n", + "\n", + "In this post, we'll use *fake weather data* from different cities. We'll take a look at different simple features of [pandas](https://python-graph-gallery.com/pandas/) to make this table more **aesthetically appealing**." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "sample_size = 100\n", + "\n", + "groupA = np.random.normal(10, 10, sample_size)\n", + "groupB = np.random.normal(70, 10, sample_size)\n", + "groupC = np.random.normal(40, 10, sample_size)\n", + "category = ['GroupA']*sample_size + ['GroupB']*sample_size + ['GroupC']*sample_size\n", + "\n", + "df = pd.DataFrame({'value': np.concatenate([groupA, groupB, groupC]),\n", + " 'category': category})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Get statistical values\n", + "\n", + "First, we'll start by retrive the values we want to add on the plot: the **p value** and the **F statistic**. For this, we need to use the `f_oneway()` function from `scipy`.\n", + "\n", + "Also, we retrieve the **mean** of each group.\n", + "\n", + "*Important: This post does not cover any statistical/math details*" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T-statistic: 960.8980055803397\n", + "P-value: 2.0225642197230424e-130\n", + "Mean groupA: 8.745526783582141\n", + "Mean groupB: 70.56101076624377\n", + "Mean groupC: 40.310280651985394\n" + ] + } + ], + "source": [ + "# groups\n", + "groupA = df[df['category']=='GroupA']['value']\n", + "groupB = df[df['category']=='GroupB']['value']\n", + "groupC = df[df['category']=='GroupC']['value']\n", + "\n", + "# Perform a paired t-test\n", + "F_statistic, p_value = stats.f_oneway(groupA, groupB, groupC)\n", + "\n", + "# Get means\n", + "mean_groupA = groupA.mean()\n", + "mean_groupB = groupB.mean()\n", + "mean_groupC = groupC.mean()\n", + "\n", + "# Print the results\n", + "print(\"T-statistic:\", F_statistic)\n", + "print(\"P-value:\", p_value)\n", + "print(\"Mean groupA:\", mean_groupA)\n", + "print(\"Mean groupB:\", mean_groupB)\n", + "print(\"Mean groupC:\", mean_groupC)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's **round them** in order to make the chart **more readable** at the end" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "F_statistic = round(F_statistic,2)\n", + "p_value = round(p_value,5) # more decimal since it's a lower value in general\n", + "mean_groupA = round(mean_groupA,2)\n", + "mean_groupB = round(mean_groupB,2)\n", + "mean_groupC = round(mean_groupC,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Boxplot with statistical elements\n", + "\n", + "Now let's use the stats we got above and add them to the plot of [boxplots](https://python-graph-gallery.com/boxplot/) of each group using the `text()` function from [matplotlib](https://python-graph-gallery.com/matplotlib/).\n", + "\n", + "For this graph, we'll also add the **average of each group** next to its associated [boxplot](https://python-graph-gallery.com/boxplot/). " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAIOCAYAAAD3OcaUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5f0lEQVR4nO3dd1xV9f8H8NdlX7ayURCQKbkARcWZszQ1LScpWqaSZc7U3AO3YZpaqThwpmCZlRNMAxRRzMFwIaagoQimDIXP7w9/nK9X5kUuQ1/Px+M+5J7zOZ/zvgtefs75nCsTQggQEREREamAWlUXQERERESvL4ZNIiIiIlIZhk0iIiIiUhmGTSIiIiJSGYZNIiIiIlIZhk0iIiIiUhmGTSIiIiJSGYZNIiIiIlIZhk0iIiIiUhmGTaqRoqKi8OGHH8LKygpaWlqwtLTEBx98gMjIyKourdr79ttvIZPJ8NZbb1V1KRUqKSkJMpkMy5Ytq7A+79y5g9mzZyM2NrbC+qTKdeHCBchkMmhqaiIlJeWV+ip4j714MzQ0ROPGjREYGIi8vLwKqrpi2NnZwc/Pr0xtMzMzsWDBAnh5ecHQ0BDa2tqws7PD8OHDcfbsWdUWSq89hk2qcVatWgUfHx/8888/WLJkCY4cOYJly5bh9u3baN26NVavXl3VJVZrGzduBABcunQJp06dquJqqrc7d+5gzpw5DJs12Pr16wEAz549w5YtWyqkz88//xyRkZGIjIzE7t274ePjg3HjxmHy5MkV0n9lu3btGpo2bYpFixahQ4cO2LFjBw4dOoQ5c+bg7t278PT0REZGRlWXSTWYRlUXQKSMv/76C19++SXeffddhIaGQkPjf2/hAQMG4P3338fYsWPRtGlT+Pj4VGGl1dOZM2dw/vx5dO/eHQcOHMCGDRvg7e1d1WVRDfX06VPIZDKFz2F1kpOTg23btqFx48ZIS0vDxo0b8dVXX71yv7a2tmjRooV0v1u3brh48SJ27NiB5cuXv3L/lSkvLw/vv/8+0tLSEBkZqXDEo127dhg6dCh+//13aGpqVmGVVNNxZJNqlIULF0Imk2Ht2rWF/sBpaGhgzZo1kMlkWLRokbR89uzZkMlkuHTpEgYOHAgjIyNYWFhg+PDhhf63LoTAmjVr0KRJE8jlctSqVQsffPABrl+/XmJdly5dgkwmw08//SQti4mJgUwmg7u7u0Lbnj17wtPTU7q/a9cudOnSBVZWVpDL5XBzc8OUKVPw+PFjqc3WrVshk8mKPE1g7ty50NTUxJ07d0qsEQA2bNgAAFi0aBFatWqFnTt34smTJwptXjwcvWLFCtjb20NfXx8tW7ZEVFRUoT5/+eUXtGzZErq6ujAwMEDnzp0V6ty3bx9kMhmOHj1aaNu1a9dCJpPh77//BvA8DA8YMAB2dnaQy+Wws7PDwIEDcfPmzVIfW4H8/HwsWLAAtra20NHRgZeXV5H7vnLlCgYNGgRzc3Noa2vDzc0N3333nbQ+PDwczZo1AwAMGzZMOmw6e/ZsHDhwADKZDNHR0VL7vXv3QiaToXv37gr7adSoEfr27SvdV+Y9duTIEXTs2BGGhobQ1dWFj49PoceizPu7KEIIBAQEoF69etLzdfjwYbRv3x7t27dXeD5kMhm2bt2KCRMmoE6dOtDW1sbVq1cBPB8xb9y4MXR0dFC7dm28//77iIuLU9jXy30W8PPzg52dnXS/4D24ZMmSMr2Wxdm3bx/u37+PTz75BEOHDkViYiJOnjxZ5u2VYWRkVKZAVtb3+KZNmyCTyRAWFobRo0fD1NQUJiYm6NOnT6HP+tOnTzF58mRYWlpCV1cXrVu3xunTp8tU9759+3DhwgVMnTq12FNr3nnnHejq6papP6IiCaIa4tmzZ0JXV1d4e3uX2K558+ZCV1dXPHv2TAghxKxZswQA4eLiImbOnCkOHz4sVqxYIbS1tcWwYcMUth0xYoTQ1NQUEyZMEH/88YfYvn27cHV1FRYWFiI1NbXE/VpZWYlPP/1Uur9o0SIhl8sFAHH79m0hhBBPnz4VhoaGYvLkyVK7efPmiW+++UYcOHBAhIeHi3Xr1gl7e3vRoUMHqU1OTo6wtLQUgwcPVtjn06dPhbW1tfjwww9LrE0IIZ48eSKMjIxEs2bNhBBCrF+/XgAQmzZtUmh348YNAUDY2dmJbt26iX379ol9+/aJhg0bilq1aomHDx9Kbbdt2yYAiC5duoh9+/aJXbt2CU9PT6GlpSVOnDgh1Whubl6odiGev1YeHh7S/Z9++knMnDlThIaGiuPHj4udO3eKdu3aCTMzM/Hvv/+W+PgK6raxsRGtW7cWe/fuFT/99JNo1qyZ0NTUFBEREVLbS5cuCSMjI9GwYUOxZcsWcejQITFhwgShpqYmZs+eLYQQIiMjQwQFBQkAYvr06SIyMlJERkaKW7duiUePHglNTU0REBAg9Tlq1Cghl8uFnp6eyM3NFUIIcffuXSGTycSaNWukdmV9j23dulXIZDLRu3dvERISIvbv3y969Ogh1NXVxZEjR6R2yry/izJ16lQBQHz66afijz/+ED/++KOwtbUVVlZWol27dlK7sLAwAUDUqVNHfPDBB+KXX34Rv/76q7h//74ICAgQAMTAgQPFgQMHxJYtW4SDg4MwMjISiYmJUh/t2rVT6LPA0KFDRb169cr1Wpakc+fOQltbWzx48EBcvXpVyGQy4efnV6Zti1JQ1+LFi8XTp0/F06dPRVpamtiwYYPQ0NAQX3/9dal9lPU9XvDec3BwEJ9//rk4ePCgWL9+vahVq5bC7wYhnj9/MplMTJo0SRw6dEisWLFC1KlTRxgaGoqhQ4eWWM+nn34qAIi4uLhyPSdEZcGwSTVGamqqACAGDBhQYrv+/fsLAOLu3btCiP/9MV6yZIlCO39/f6GjoyPy8/OFEEJERkYKAGL58uUK7W7duiXkcrlCQCyKr6+vcHBwkO536tRJjBgxQtSqVUts3rxZCCHEX3/9JQCIQ4cOFdlHfn6+ePr0qTh+/LgAIM6fPy+tmzVrltDS0pIelxBC7Nq1SwAQx48fL7E2IYTYsmWLACDWrVsnhBDi0aNHQl9fX7Rp00ahXcEf1IYNG0qBXQghTp8+LQCIHTt2CCGEyMvLE9bW1qJhw4YiLy9Pavfo0SNhbm4uWrVqJS0bP368kMvlCkH18uXLAoBYtWpVsTU/e/ZM/Pfff0JPT0+sXLmyxMdXULe1tbXIysqSlmdmZoratWuLTp06Scu6du0q6tatKzIyMhT6GDNmjNDR0REPHjwQQggRHR0tAIigoKBC+2vdurV4++23pfuOjo5i0qRJQk1NTXo9CsJ4QeAq63vs8ePHonbt2uK9995TaJeXlycaN24smjdvLi0r6/u7KA8ePBDa2tqif//+CssL6iwqbLZt21ahbXp6upDL5eLdd99VWJ6cnCy0tbXFoEGDpGXKhs2yvJbFSUpKEmpqagq/L9q1ayf09PREZmZmqdsXpaCuom5+fn4Kn5eyKu49XhA2/f39FdovWbJEABApKSlCCCHi4uIEADFu3DiFdgXvvdLCZrdu3QQAkZ2drXTtRGXFw+j02hFCAABkMpnC8p49eyrcb9SoEbKzs3Hv3j0AwK+//gqZTAZfX188e/ZMullaWqJx48YIDw8vcb8dO3bE9evXcePGDWRnZ+PkyZPo1q0bOnTogMOHDwN4flhUW1sbrVu3lra7fv06Bg0aBEtLS6irq0NTUxPt2rUDAIXDkKNHjwYA/Pjjj9Ky1atXo2HDhmjbtm2pz8uGDRsgl8sxYMAAAIC+vj4+/PBDnDhxAleuXCnUvnv37lBXV1d4vgBIh/sSEhJw584dfPTRR1BT+9+vEn19ffTt2xdRUVHSIfrhw4cjKysLu3btktoFBQVBW1sbgwYNkpb9999/+Oqrr+Do6AgNDQ1oaGhAX18fjx8/LnRItjh9+vSBjo6OdN/AwADvvfce/vzzT+Tl5SE7OxtHjx7F+++/D11dXYXX+t1330V2dnaRpwu8rGPHjvjrr7+QlZWFmzdv4urVqxgwYACaNGmi8Hrb2trCyckJQNnfYxEREXjw4AGGDh2q0C4/Px/dunVDdHS0wmkWQOnv76JERUUhJycH/fr1U1jeokULhcPaL3rxlAAAiIyMRFZWVqFZzzY2Nnj77beVOuz9stJey5IEBQUhPz8fw4cPl5YNHz4cjx8/VngflsfYsWMRHR2N6OhohIWFISAgALt378bAgQNL3VbZ93hRryvwv89hWFgYAGDw4MEK7fr161dtz6WlNw/DJtUYpqam0NXVxY0bN0psl5SUBF1dXdSuXVthuYmJicJ9bW1tAEBWVhYA4O7duxBCwMLCApqamgq3qKgopKWllbjfTp06AXgeME6ePImnT5/i7bffRqdOnaQ/uEeOHIGPjw/kcjmA53942rRpg1OnTmH+/PkIDw9HdHQ0QkJCFGoDAAsLC/Tv3x/ff/898vLy8Pfff+PEiRMYM2ZMiXUBwNWrV/Hnn3+ie/fuEELg4cOHePjwIT744AMA/5uhrszzdf/+fQCAlZVVoW2tra2Rn5+P9PR0AIC7uzuaNWuGoKAgAM8nJQQHB6NXr14Kr9OgQYOwevVqfPLJJzh48CBOnz6N6OhomJmZKTwXJbG0tCxyWW5uLv777z/cv38fz549w6pVqwq9zu+++y4AlPpaA89f75ycHJw8eRKHDx+GqakpmjZtik6dOuHIkSMAgKNHj0rvC6Ds77G7d+8CAD744INC7RYvXgwhBB48eKBQT2mvV1EKXkMLC4tC64paBhR+vUt7HxSsL4/SXsvi5OfnY9OmTbC2toanp6f0fu/UqRP09PSkc5fLq27duvDy8oKXlxfat2+PqVOnYsaMGfjpp59w8ODBErdV9j1e1s/hy8+VhoZGoW2LYmtrCwCl/l4lehX8bw/VGOrq6ujQoQP++OMP/PPPP6hbt26hNv/88w9iYmLwzjvvKIzKlYWpqSlkMhlOnDgh/UJ/UVHLXlS3bl04OzvjyJEjsLOzg5eXF4yNjdGxY0f4+/vj1KlTiIqKwpw5c6Rtjh07hjt37iA8PFwazQSAhw8fFrmPsWPHYuvWrfj555/xxx9/wNjYuNCIRlE2btwIIQT27NmDPXv2FFq/efNmzJ8/X6nnrOAPWVHXLrxz5w7U1NRQq1YtadmwYcPg7++PuLg4XL9+HSkpKRg2bJi0PiMjA7/++itmzZqFKVOmSMtzcnIKBauSpKamFrlMS0sL+vr60NTUhLq6Oj766CN89tlnRfZhb29f6n68vb2hr6+PI0eOICkpCR07doRMJkPHjh2xfPlyREdHIzk5WSFslvU9ZmpqCuD5Zb5enPX8ouLCoDIKXsOCcPui1NTUIkc3Xz5iUNr7oOCxAICOjk6Rk5aKC/elvZbFOXLkiDTyV1TgioqKwuXLl9GgQYNi+1BWwYjj+fPn0bVr1yLbVNR7/EUFjy81NRV16tSRlj979qxMQb9r16744YcfsG/fPoWaiCoSRzapRpk6dSqEEPD39y90GC0vLw+jR4+GEAJTp05Vuu8ePXpACIHbt29LoxYv3ho2bFhqH506dcKxY8dw+PBhdO7cGQDg7OwMW1tbzJw5E0+fPlUIHwV/uF8OHt9//32R/Xt6eqJVq1ZYvHgxtm3bBj8/P+jp6ZVYU15eHjZv3oz69esjLCys0G3ChAlISUnB77//Xurje5GLiwvq1KmD7du3S6cuAMDjx4+xd+9eaYZ6gYEDB0JHRwebNm3Cpk2bUKdOHXTp0kXhuRBCFHou1q9fr9TFskNCQpCdnS3df/ToEfbv3482bdpAXV0durq66NChA86dO4dGjRoV+VoX/AEvaXRQU1MTbdu2xeHDh3Hs2DHp9W7Tpg00NDQwffp0KXwWKOt7zMfHB8bGxrh8+XKR7by8vKClpVXm56Q43t7e0NbWLnRYOSoqqsxXAGjZsiXkcjmCg4MVlv/zzz84duyYwuO3s7NDYmIicnJypGX3799HREREkX2X9loWZ8OGDVBTU8O+ffsKvd+3bt0KoOjR/FdRcC1Wc3PzYttU1Hv8RQWz+7dt26awfPfu3Xj27Fmp2/fq1QsNGzbEwoULcfHixSLbHDx4sNBVK4iUUiVnihK9gm+//VaoqamJFi1aiODgYPHnn3+K4OBg0bJlS6Gmpia+/fZbhfYFEyhens1ccAL+jRs3pGWffvqp0NXVFZMmTRL79+8Xx44dE9u2bROjR49WmFFcnL1790oTBl6ctDNs2DABQNSqVUthMk1aWpqoVauWaNy4sTTjeMCAAcLJyanYiSkFk4JkMpnCTN/i7N+/X5pBW5R///1XaGtri969ewsh/jcJYunSpYXaAhCzZs2S7hdMQnj33XfFzz//LHbv3i2aNWumMBv9RQMHDhTm5uZCS0tLTJs2rdD6tm3bitq1a4sff/xRHD58WEyfPl1YWVkJY2PjUic6vDyDOSQkROzZs0c0a9ZMaGhoiJMnT0ptL126JGrVqiWaN28ugoKCRFhYmPjll1/EihUrFGb6Pn78WMjlcuHj4yPCwsJEdHS0dGUBIYRYvny59HonJSVJyzt06CAAiEaNGhWqs6zvsa1btwo1NTXRv39/8dNPP4njx4+LPXv2iBkzZohRo0ZJ7ZR5fxelYDb6yJEjxR9//CHWr18vbGxshJWVlcJzUTBB6KeffirUR8Fs9I8++kj89ttvYuvWrcLR0bHQbPSTJ08KAOKDDz4QBw8eFNu3bxdNmjQR9erVK3E2ekmv5cvS0tKEtra2eOedd4pt4+HhIczMzKSrBhQ8V0V93l5UUNfnn38uXZ3gyJEjYt68eUJXV1fUq1ev0KSzl5X1PV5QU3R0tML2Ba9DWFiYtMzX11fIZDIxefJkaTa6tbV1mWajCyHE1atXhYODg9DX1xeTJk0Sv/32mzh+/LjYsmWL6Nmzp5DJZAqT+4iUxbBJNVJkZKT44IMPhIWFhdDQ0BDm5uaiT58+RV4SRdk/xhs3bhTe3t5CT09PyOVyUb9+fTFkyBBx5syZUutKT08XampqCpe/EeJ/oaxPnz6FtomIiBAtW7YUurq6wszMTHzyySfi7Nmzxf7xy8nJEdra2qJbt26l1iOEEL179xZaWlri3r17xbYZMGCA0NDQEKmpqUqFTSGE2Ldvn/D29hY6OjpCT09PdOzYUfz1119F7ufQoUNSOCsqKP/zzz+ib9++olatWsLAwEB069ZNXLx4UdSrV6/MYXPx4sVizpw5om7dukJLS0s0bdpUHDx4sMj2w4cPF3Xq1BGamprCzMxMtGrVSsyfP1+h3Y4dO4Srq6vQ1NQs9PjPnz8vAAgnJyeFbRYsWCAAiPHjxxdZa1nfY8ePHxfdu3cXtWvXFpqamqJOnTqie/fuCoHvVcNmfn6+mD9/vvR8NWrUSPz666+icePG4v3335falRQ2hXh+Ka1GjRoJLS0tYWRkJHr16iUuXbpUqN3mzZuFm5ub0NHREQ0aNBC7du0qdjZ6WV/LFwUGBgoAYt++fcW2WbdunQAg9u7dK4QQYtWqVQKA+OOPP0rsu6jZ6Do6OsLZ2Vl8+eWX0gzxkpT1Pa5M2MzJyRETJkwQ5ubmQkdHR7Ro0UJERkaW6XNT4OHDh2LevHnCw8ND6OvrC01NTWFrayt8fX2L/TwTlZVMiBeOfxFRtbd//3707NkTBw4ckCa0EFWkGzduwNXVFbNmzcK0adMqff9JSUmwt7fH0qVLMXHiRJXvr1+/frhx44bCRfqJqOJwghBRDXH58mXcvHkTEyZMQJMmTfDOO+9UdUn0Gjh//jx27NiBVq1awdDQEAkJCViyZAkMDQ3x8ccfV3V5KieEQHh4eKFzTomo4jBsEtUQ/v7++Ouvv+Dh4YHNmzcXmhVMVB56eno4c+YMNmzYgIcPH8LIyAjt27fHggULKmTGe3Unk8lKvBYpEb06HkYnIiIiIpXhpY+IiIiISGUYNomIiIhIZRg2iYiIiEhlqt0Eofz8fNy5cwcGBgacAEFERERUDQkh8OjRI1hbW0NNreSxy2oXNu/cuQMbG5uqLoOIiIiISnHr1i3UrVu3xDbVLmwaGBgAeF68oaFhFVdDRERERC/LzMyEjY2NlNtKUu3CZsGhc0NDQ4ZNIiIiomqsLKc8coIQEREREakMwyYRERERqQzDJhERERGpTLU7Z5OIiIjeHHl5eXj69GlVl0FF0NTUhLq6+iv3w7BJRERElU4IgdTUVDx8+LCqS6ESGBsbw9LS8pWufc6wSURERJWuIGiam5tDV1eXX+RSzQgh8OTJE9y7dw8AYGVlVe6+GDaJiIioUuXl5UlB08TEpKrLoWLI5XIAwL1792Bubl7uQ+qcIERERESVquAcTV1d3SquhEpT8Bq9ynm1DJtERERUJXjovPqriNeIYZOIiIiIVIbnbBIREVH18TgZyEmrnH1pmwJ6tpWzrzcYwyYRERFVD4+Tgf0uQH525exPTQd4L0GpwJmamoqFCxfiwIED+Oeff2BkZAQnJyf4+vpiyJAh1f481ICAAMyYMQMLFizAlClTKmWfPIxORERE1UNOWuUFTeD5vpQYRb1+/TqaNm2KQ4cOISAgAOfOncORI0cwbtw47N+/H0eOHCl22+py4fqgoCBMnjwZGzdurLR9MmwSERERlYG/vz80NDRw5swZ9OvXD25ubmjYsCH69u2LAwcO4L333pPaymQyrFu3Dr169YKenh7mz58PAFi7di3q168PLS0tuLi4YOvWrdI2SUlJkMlkiI2NlZY9fPgQMpkM4eHhAIDw8HDIZDIcOHAAjRs3ho6ODry9vXHhwoVS6z9+/DiysrIwd+5cPH78GH/++WfFPDGlYNgkIiIiKsX9+/dx6NAhfPbZZ9DT0yuyzcszt2fNmoVevXrhwoULGD58OEJDQzF27FhMmDABFy9exMiRIzFs2DCEhYUpXc+kSZOwbNkyREdHw9zcHD179ix19HTDhg0YOHAgNDU1MXDgQGzYsEHp/ZYHwyYRERFRKa5evQohBFxcXBSWm5qaQl9fH/r6+vjqq68U1g0aNAjDhw+Hg4MD6tWrh2XLlsHPzw/+/v5wdnbG+PHj0adPHyxbtkzpembNmoXOnTujYcOG2Lx5M+7evYvQ0NBi22dmZmLv3r3w9fUFAPj6+mLPnj3IzMxUet/KYtgkIiIiKqOXRy9Pnz6N2NhYuLu7IycnR2Gdl5eXwv24uDj4+PgoLPPx8UFcXJzSdbRs2VL6uXbt2nBxcSmxn+3bt8PBwQGNGzcGADRp0gQODg7YuXOn0vtWFmejExGVwZMnTxAfH1+ubbOyspCUlAQ7Ozvp69/Kw9XVtdrPdCV6XTk6OkImkxX6PeDg4AAARX62izrc/nJYFUJIy9TU1KRlBZSZWFTSBdg3btyIS5cuQUPjf9EvPz8fGzZswKefflrmfZQHwyYRURnEx8fD09OzSmuIiYmBh4dHldZA9KYyMTFB586dsXr1anz++efFnrdZEjc3N5w8eRJDhgyRlkVERMDNzQ0AYGZmBgBISUlB06ZNAUBhstCLoqKiYGv7/JJN6enpSExMhKura5FtL1y4gDNnziA8PBy1a9eWlj98+BBt27bFxYsX8dZbbyn9eMqKYZOIqAxcXV0RExNTrm3j4uLg6+uL4OBg6Y9KeWsgoqqzZs0a+Pj4wMvLC7Nnz0ajRo2gpqaG6OjoMv2HdNKkSejXrx88PDzQsWNH7N+/HyEhIdIlk+RyOVq0aIFFixbBzs4OaWlpmD59epF9zZ07FyYmJrCwsMDXX38NU1NT9O7du8i2GzZsQPPmzdG2bdtC61q2bIkNGzbgm2++Ue7JUALDJhFRGejq6r7yqKKbmxtHJolqsPr16+PcuXMICAjA1KlT8c8//0BbWxsNGjTAxIkT4e/vX+L2vXv3xsqVK7F06VJ88cUXsLe3R1BQENq3by+12bhxI4YPHw4vLy+4uLhgyZIl6NKlS6G+Fi1ahLFjx+LKlSto3LgxfvnlF2hpaRVql5ubi+Dg4EKTlwr07dsXCxcuxOLFi4vcviLIxIsnBlQDmZmZMDIyQkZGBgwNDau6HCKiV3b27Fl4enryMDjR/8vOzsaNGzdgb28PHR2d/62oAd8gVNXCw8PRoUMHpKenw9jYWOX7K+61UiavcWSTiIiIqgc92+fhj9+N/lph2CQiIqLqQ8+WAfA1w7BJREREVEO0b98e1ewMyFLxou5EREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyvPQRERERVRsZyRl4kvakUvala6oLI1ujStnXm4xhk4iIiKqFjOQMrHZZjWfZzyplfxo6GhiTMEapwJmamoqFCxfiwIED+Oeff2BkZAQnJyf4+vpiyJAh0NXVVWHF5WdnZ4ebN28CANTU1GBhYYF33nkHy5YtQ61atVS6bx5GJyIiomrhSdqTSguaAPAs+5lSo6jXr19H06ZNcejQIQQEBODcuXM4cuQIxo0bh/379+PIkSPFbvv06dOKKPmVzJ07FykpKUhOTsa2bdvw559/4osvvlD5fhk2iYiIiMrA398fGhoaOHPmDPr16wc3Nzc0bNgQffv2xYEDB/Dee+9JbWUyGdatW4devXpBT08P8+fPBwCsXbsW9evXh5aWFlxcXLB161Zpm6SkJMhkMsTGxkrLHj58CJlMhvDwcABAeHg4ZDIZDhw4gMaNG0NHRwfe3t64cOFCqfUbGBjA0tISderUQYcOHTBkyBCcPXu2Yp6cEjBsEhEREZXi/v37OHToED777DPo6ekV2UYmkyncnzVrFnr16oULFy5g+PDhCA0NxdixYzFhwgRcvHgRI0eOxLBhwxAWFqZ0PZMmTcKyZcsQHR0Nc3Nz9OzZU6nR09u3b+PXX3+Ft7e30vtWFsMmERERUSmuXr0KIQRcXFwUlpuamkJfXx/6+vr46quvFNYNGjQIw4cPh4ODA+rVq4dly5bBz88P/v7+cHZ2xvjx49GnTx8sW7ZM6XpmzZqFzp07o2HDhti8eTPu3r2L0NDQErf56quvoK+vD7lcjrp160Imk2HFihVK71tZDJtEREREZfTy6OXp06cRGxsLd3d35OTkKKzz8vJSuB8XFwcfHx+FZT4+PoiLi1O6jpYtW0o/165dGy4uLqX2M2nSJMTGxuLvv//G0aNHAQDdu3dHXl6e0vtXBmejExEREZXC0dERMpkM8fHxCssdHBwAAHK5vNA2RR1ufzmsCiGkZWpqatKyAsocGn+575eZmprC0dERAODk5ITAwEC0bNkSYWFh6NSpU5n3oyyObBIRERGVwsTEBJ07d8bq1avx+PHjcvXh5uaGkydPKiyLiIiAm5sbAMDMzAwAkJKSIq1/cbLQi6KioqSf09PTkZiYCFdXV6XqUVdXBwBkZWUptZ2yOLJJREREVAZr1qyBj48PvLy8MHv2bDRq1AhqamqIjo5GfHw8PD09S9x+0qRJ6NevHzw8PNCxY0fs378fISEh0iWT5HI5WrRogUWLFsHOzg5paWmYPn16kX3NnTsXJiYmsLCwwNdffw1TU1P07t27xP0/evQIqampEELg1q1bmDx5MkxNTdGqVatyPR9lxZFNIiIiojKoX78+zp07h06dOmHq1Klo3LgxvLy8sGrVKkycOBHz5s0rcfvevXtj5cqVWLp0Kdzd3fH9998jKCgI7du3l9ps3LgRT58+hZeXF8aOHStdMullixYtwtixY+Hp6YmUlBT88ssv0NLSKnH/M2fOhJWVFaytrdGjRw/o6enh8OHDMDExUfq5UAZHNomIiKha0DXVhYaORqV+g5CuqXLf+GNlZYVVq1Zh1apVJbZ78bzLF40ePRqjR48udjs3NzdERkaW2lfr1q1x8eLFMlT8XFJSUpnbVjSGTSIiIqoWjGyNMCZhDL8b/TXDsElERETVhpGtEQPga4Zhk4iIiKiGaN++fbGH6KsrThAiIiIiIpVh2CQiIiIilWHYJCIiIiKVYdgkIiIiIpVh2CQiIiIilWHYJCIiIiKV4aWPiIiIqNp4kPUY/+VmV8q+9LV0UFuuVyn7epMxbBIREVG18CDrMWaH7cOz/PxK2Z+Gmhpmd+itVOBMTU3FwoULceDAAfzzzz8wMjKCk5MTfH19MWTIEOjqKvf1l5Xp3LlzCAgIwJ9//omMjAzY2tqiXbt2mDRpEpydnVW2Xx5GJyIiomrhv9zsSguaAPAsP1+pUdTr16+jadOmOHToEAICAnDu3DkcOXIE48aNw/79+3HkyJFit3369GlFlFxuv/76K1q0aIGcnBxs27YNcXFx2Lp1K4yMjDBjxgyV7pthk4iIiKgM/P39oaGhgTNnzqBfv35wc3NDw4YN0bdvXxw4cADvvfee1FYmk2HdunXo1asX9PT0MH/+fADA2rVrUb9+fWhpacHFxQVbt26VtklKSoJMJkNsbKy07OHDh5DJZAgPDwcAhIeHQyaT4cCBA2jcuDF0dHTg7e2NCxcuFFv3kydPMGzYMLz77rv45Zdf0KlTJ9jb28Pb2xvLli3D999/X7FP1EsYNomIiIhKcf/+fRw6dAifffYZ9PSKPuwuk8kU7s+aNQu9evXChQsXMHz4cISGhmLs2LGYMGECLl68iJEjR2LYsGEICwtTup5JkyZh2bJliI6Ohrm5OXr27Fns6OnBgweRlpaGyZMnF7ne2NhY6f0rg2GTiIiIqBRXr16FEAIuLi4Ky01NTaGvrw99fX189dVXCusGDRqE4cOHw8HBAfXq1cOyZcvg5+cHf39/ODs7Y/z48ejTpw+WLVumdD2zZs1C586d0bBhQ2zevBl3795FaGhokW2vXLkCAHB1dVV6PxWBYZOIiIiojF4evTx9+jRiY2Ph7u6OnJwchXVeXl4K9+Pi4uDj46OwzMfHB3FxcUrX0bJlS+nn2rVrw8XFpdh+hBBK91+RGDaJiIiISuHo6AiZTIb4+HiF5Q4ODnB0dIRcLi+0TVGH218Oq0IIaZmampq0rIAyE4te7rtAwUzzl2uvLAybRERERKUwMTFB586dsXr1ajx+/Lhcfbi5ueHkyZMKyyIiIuDm5gYAMDMzAwCkpKRI61+cLPSiqKgo6ef09HQkJiYWe5i8S5cuMDU1xZIlS4pc//Dhw7I+hHLhdTaJiIiIymDNmjXw8fGBl5cXZs+ejUaNGkFNTQ3R0dGIj4+Hp6dnidtPmjQJ/fr1g4eHBzp27Ij9+/cjJCREumSSXC5HixYtsGjRItjZ2SEtLQ3Tp08vsq+5c+fCxMQEFhYW+Prrr2FqaorevXsX2VZPTw/r16/Hhx9+iJ49e+KLL76Ao6Mj0tLSsHv3biQnJ2Pnzp2v9NyUhCObRERERGVQv359nDt3Dp06dcLUqVPRuHFjeHl5YdWqVZg4cSLmzZtX4va9e/fGypUrsXTpUri7u+P7779HUFAQ2rdvL7XZuHEjnj59Ci8vL4wdO1a6ZNLLFi1ahLFjx8LT0xMpKSn45ZdfoKWlVey+e/XqhYiICGhqamLQoEFwdXXFwIEDkZGRUew+KgpHNomIiKha0NfSgYaaWqV+g5C+lo5S21hZWWHVqlVYtWpVie2Km5QzevRojB49utjt3NzcEBkZWWpfrVu3xsWLF8tQ8f94eXlh7969Sm1TERg2iYiIqFqoLdfD7A69+d3orxmGTSIiIqo2asv1GABfMwybRERERDVE+/btq/y6mcriBCEiIiIiUhmGTSIiIqoSNW2E7k1UEa8RwyYRERFVKk1NTQDAkydPqrgSKk3Ba1TwmpWHUudsPnv2DLNnz8a2bduQmpoKKysr+Pn5Yfr06QpfsTRnzhz88MMPSE9Ph7e3N7777ju4u7uXu0giIiJ6fairq8PY2Bj37t0DAOjq6hb7VYtUNYQQePLkCe7duwdjY2Ooq6uXuy+lwubixYuxbt06bN68Ge7u7jhz5gyGDRsGIyMjjB07FgCwZMkSrFixAps2bYKzszPmz5+Pzp07IyEhAQYGBuUulIiIiF4flpaWACAFTqqejI2NpdeqvJQKm5GRkejVqxe6d+8OALCzs8OOHTtw5swZAM9TcGBgIL7++mv06dMHALB582ZYWFhg+/btGDly5CsVS0RERK8HmUwGKysrmJub4+nTp1VdDhVBU1PzlUY0CygVNlu3bo1169YhMTERzs7OOH/+PE6ePInAwEAAwI0bN5CamoouXbpI22hra6Ndu3aIiIgoMmzm5OQgJydHup+ZmVnOh0JEREQ1jbq6eoUEGqq+lAqbX331FTIyMuDq6gp1dXXk5eVhwYIFGDhwIAAgNTUVAGBhYaGwnYWFBW7evFlknwsXLsScOXPKUzsRERERVXNKzUbftWsXgoODsX37dpw9exabN2/GsmXLsHnzZoV2L5/kK4Qo9sTfqVOnIiMjQ7rdunVLyYdARERERNWVUiObkyZNwpQpUzBgwAAAQMOGDXHz5k0sXLgQQ4cOlU4gLZipXuDevXuFRjsLaGtrQ1tbu7z1ExEREVE1ptTI5pMnT6RLHBVQV1dHfn4+AMDe3h6WlpY4fPiwtD43NxfHjx9Hq1atKqBcIiIiIqpJlBrZfO+997BgwQLY2trC3d0d586dw4oVKzB8+HAAzw+ff/nllwgICICTkxOcnJwQEBAAXV1dDBo0SCUPgIiIiIiqL6XC5qpVqzBjxgz4+/vj3r17sLa2xsiRIzFz5kypzeTJk5GVlQV/f3/pou6HDh3iNTaJiIiI3kAyUc2+mDQzMxNGRkbIyMiAoaFhVZdDRK+R5ORkpKWlVfp+4+Li4Ovri+DgYLi5uVX6/k1NTWFra1vp+yWi15cyeU2pkU0iopoqOTkZri6uyMrOqrIafH19q2S/ch054hPiGTiJqEowbBLRGyEtLQ1Z2Vnogz4whWml7vsZnuEhHsIYxtCo5F+7aUhDSHYI0tLSGDaJqEowbBLRG8UUprCGdaXv1xYMekT0ZlLq0kdERERERMpg2CQiIiIilWHYJCIiIiKVYdgkIiIiIpVh2CQiIiIilWHYJCIiIiKVYdgkIiIiIpVh2CQiIiIilWHYJCIiIiKVYdgkIiIiIpVh2CQiIiIilWHYJCIiIiKVYdgkIiIiIpVh2CQiIiIilWHYJCIiIiKVYdgkIiIiIpVh2CQiIiIilWHYJCKi11Zqaio6d+4MPT09GBsbV3U5RG8khk0iIlLg5+cHmUyGUaNGFVrn7+8PmUwGPz+/yi+sHL755hukpKQgNjYWiYmJxbbLzMzEjBkz4O7uDrlcDhMTEzRr1gxLlixBenp6JVasnPbt20Mmk0Emk0FNTQ0WFhb48MMPcfPmTaX62bRpk9TPy7d79+5J7S5cuIB27dpBLpejTp06mDt3LoQQJfZtZ2dXqM8pU6YUWUOjRo2go6MDS0tLjBkzRqnHQNWXRlUXQERE1Y+NjQ127tyJb775BnK5HACQnZ2NHTt2wNbWtoqrK7tr167B09MTTk5OxbZ58OABWrdujczMTMybNw+enp7Q0tLC1atXsX37dmzfvh2fffZZkdvm5uZCS0tLVeWXyYgRI6TQd/PmTXz55Zfw9fXFiRMnytxH//790a1bN4Vlfn5+yM7Ohrm5OYDngbxz587o0KEDoqOjkZiYCD8/P+jp6WHChAkl9j937lyMGDFCuq+vr6+wfsWKFVi+fDmWLl0Kb29vZGdn4/r162Wun6o3jmwSEVEhHh4esLW1RUhIiLQsJCQENjY2aNq0qUJbIQSWLFkCBwcHyOVyNG7cGHv27JHW5+Xl4eOPP4a9vT3kcjlcXFywcuVKhT78/PzQu3dvLFu2DFZWVjAxMcFnn32Gp0+flljn2rVrUb9+fWhpacHFxQVbt26V1tnZ2WHv3r3YsmVLiaOx06ZNQ3JyMk6dOoVhw4ahUaNGcHV1RY8ePbB9+3b4+/sr9Dl//nz4+fnByMhIClB79+6Fu7s7tLW1YWdnh+XLlyvsQyaTYd++fQrLjI2NsWnTJgBAUlISZDIZdu7ciVatWkFHRwfu7u4IDw8v8fEDgK6uLiwtLWFlZYUWLVrgs88+w9mzZ0vd7kVyuRyWlpbSTV1dHceOHcPHH38stdm2bRuys7OxadMmvPXWW+jTpw+mTZuGFStWlDq6aWBgoND/i2EzPT0d06dPx5YtWzBo0CDUr18f7u7ueO+995R6DFR9MWwSEVGRhg0bhqCgIOn+xo0bMXz48ELtpk+fjqCgIKxduxaXLl3CuHHj4Ovri+PHjwMA8vPzUbduXezevRuXL1/GzJkzMW3aNOzevVuhn7CwMFy7dg1hYWHYvHkzNm3aJIWxooSGhmLs2LGYMGECLl68iJEjR2LYsGEICwsDAERHR6Nbt27o168fUlJSCgXcgtp27doFX19f1KlTp8j9yGQyhftLly7FW2+9hZiYGMyYMQMxMTHo168fBgwYgAsXLmD27NmYMWNGibUXZ9KkSZgwYQLOnTuHVq1aoWfPnrh//36Zt3/w4AF++ukneHt7Kyy3s7PD7Nmzy9zPli1boKuriw8++EBaFhkZiXbt2kFbW1ta1rVrV9y5cwdJSUkl9rd48WKYmJigSZMmWLBgAXJzc6V1hw8fRn5+Pm7fvg03NzfUrVsX/fr1w61bt8pcL1VvDJtERFSkjz76CCdPnkRSUhJu3ryJv/76C76+vgptHj9+jBUrVmDjxo3o2rUrHBwc4OfnB19fX3z//fcAAE1NTcyZMwfNmjWDvb09Bg8eDD8/v0Jhs1atWli9erU0qti9e3ccPXq02PqWLVsGPz8/+Pv7w9nZGePHj0efPn2wbNkyAICZmRm0tbWlUTsjI6NCffz77794+PAhXFxcFJZ7enpCX18f+vr6GDhwoMK6t99+GxMnToSjoyMcHR2xYsUKdOzYETNmzICzszP8/PwwZswYLF26tOxP9v8bM2YM+vbtCzc3N6xduxZGRkbYsGFDidusWbMG+vr60NPTg4mJCRISErBx40aFNvXr14epqWmZ69i4cSMGDRoknUIBPJ9sZWFhodCu4H5qamqxfY0dOxY7d+5EWFgYxowZg8DAQIXR4uvXryM/Px8BAQEIDAzEnj178ODBA3Tu3FkhlFLNxXM2iYioSKampujevTs2b94MIQS6d+9eKLBcvnwZ2dnZ6Ny5s8Ly3NxchcPt69atw/r163Hz5k1kZWUhNzcXTZo0UdjG3d0d6urq0n0rKytcuHCh2Pri4uLw6aefKizz8fEpcgSzNC+PXoaGhiI3NxdfffUVsrKyFNZ5eXkVqqNXr16F6ggMDEReXp7CYypNy5YtpZ81NDTg5eWFuLi4ErcZPHgwvv76awDA3bt3ERAQgC5duiAmJgYGBgYAUGJof1lkZCQuX76MLVu2FFr38vNUcPj85eUvGjdunPRzo0aNUKtWLXzwwQfSaGd+fj6ePn2Kb7/9Fl26dAEA7NixA5aWlggLC0PXrl3LXDtVTwybRERUrOHDh0uzgr/77rtC6/Pz8wEABw4cKHQYuuBw6+7duzFu3DgsX74cLVu2hIGBAZYuXYpTp04ptNfU1FS4L5PJpP6LU1T4KSn4vMzMzAzGxsaIj49XWF4wCcrAwAAPHz5UWKenp1fqPl8+h1EmkxVaVtr5qC9uWxIjIyM4OjoCABwdHbFhwwZYWVlh165d+OSTT8q0jxetX78eTZo0gaenp8JyS0vLQiOYBTPVXx7xLEmLFi0AAFevXoWJiQmsrKwAAA0aNJDamJmZwdTUFMnJyUrXT9UPD6MTEVGxunXrhtzcXOTm5hY5wtSgQQNoa2sjOTlZOqxccLOxsQEAnDhxAq1atYK/vz+aNm0KR0dHXLt27ZVrc3Nzw8mTJxWWRUREwM3Nrcx9qKmpoV+/fggODsbt27fLVUeDBg2KrMPZ2Vka1TQzM0NKSoq0/sqVK3jy5EmhvqKioqSfnz17hpiYGLi6uipVT8E+Xx6RLYv//vsPu3fvVpgYVKBly5b4888/FQ5tHzp0CNbW1rCzsyvzPs6dOwcAUsj08fEBACQkJEhtHjx4gLS0NNSrV0/px0DVD8MmEREVS11dHXFxcYiLiyvycLCBgQEmTpyIcePGYfPmzbh27RrOnTuH7777Dps3bwbwfLTtzJkzOHjwIBITEzFjxgxER0e/cm2TJk3Cpk2bsG7dOly5cgUrVqxASEgIJk6cqFQ/AQEBqFOnDry9vbFx40b8/fffuHbtGkJDQxEZGVnqYfAJEybg6NGjmDdvHhITE7F582asXr1aoY63334bq1evxtmzZ3HmzBmMGjWq0Egu8Hz0ODQ0FPHx8fjss8+Qnp5e5KSsFz158gSpqalITU3F+fPn4e/vDx0dHemQNAB07NgRq1evLvW52LVrF549e4bBgwcXWjdo0CBoa2vDz88PFy9eRGhoKAICAjB+/Hhp9PX06dNwdXWVgntkZCS++eYbxMbG4saNG9i9ezdGjhyJnj17SqPHzs7O6NWrF8aOHYuIiAhcvHgRQ4cOhaurKzp06FBqzVT98TA6Eb0RCkZ50pBWxZVUroLHW55RrgKGhoYlrp83bx7Mzc2xcOFCXL9+HcbGxvDw8MC0adMAAKNGjUJsbCz69+8PmUyGgQMHwt/fH7///nu5awKA3r17Y+XKlVi6dCm++OIL2NvbIygoCO3bt1eqHxMTE5w+fRqLFy/G0qVLcePGDaipqcHJyQn9+/fHl19+WeL2Hh4e2L17N2bOnIl58+bBysoKc+fOVbjU0vLlyzFs2DC0bdsW1tbWWLlyJWJiYgr1tWjRIixevBjnzp1D/fr18fPPP5c6sefHH3/Ejz/+COD5JKtGjRrht99+U5j0dO3aNaSllf7e37BhA/r06YNatWoVWmdkZITDhw/js88+g5eXF2rVqoXx48dj/PjxUpsnT54gISFBOkVAW1sbu3btwpw5c5CTk4N69ephxIgRmDx5skLfW7Zswbhx49C9e3eoqamhXbt2+OOPP4oM5FTzyERpF8eqZJmZmTAyMkJGRkapv+CIiMpq27ZthWZSv0mCg4OLHK2i6iEpKQn29vY4d+5coYlTRNWRMnmNI5tE9EYoOKesD/rAFGW/BExNl4Y0hCBEqXPqiIgqEsMmEb0RCq4XaApTWMO6iqupfC9eL5GIqDIxbBIREVUxOzu7Ur/ykaim4mx0IiIiIlIZhk0iIiIiUhmGTSIiIiJSGYZNIiIiIlIZhk0iIiIiUhnORiciIiKVefLkCeLj48u1bVZWFpKSkmBnZ/dKl+9ydXWFrq5uubenV8OwSURERCoTHx8PT0/PKq0hJiYGHh4eVVrDm4xhk4iIiFTG1dW1yO+BL4u4uDj4+voiODgYbm5ur1QDVR2GTSIiIlIZXV3dVx5VdHNz48hkDcYJQkRERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIaVV0AEVFlSkNape/zGZ7hIR7CGMbQqORfu1XxeImIXsSwSURvBFNTU8h15AjJDqnqUiqdXEcOU1PTqi6DiN5QDJtE9EawtbVFfEI80tIqf6QvLi4Ovr6+CA4OhpubW6Xv39TUFLa2tpW+XyIigGGTiN4gtra2VRq63Nzc4OHhUWX7JyKqCpwgREREREQqw7BJRERERCrDsElEREREKqN02Lx9+zZ8fX1hYmICXV1dNGnSBDExMdJ6IQRmz54Na2tryOVytG/fHpcuXarQoomIiIioZlAqbKanp8PHxweampr4/fffcfnyZSxfvhzGxsZSmyVLlmDFihVYvXo1oqOjYWlpic6dO+PRo0cVXTsRERERVXNKzUZfvHgxbGxsEBQUJC2zs7OTfhZCIDAwEF9//TX69OkDANi8eTMsLCywfft2jBw5smKqJiIiIqIaQamRzV9++QVeXl748MMPYW5ujqZNm+LHH3+U1t+4cQOpqano0qWLtExbWxvt2rVDREREkX3m5OQgMzNT4UZERERErwelwub169exdu1aODk54eDBgxg1ahS++OILbNmyBQCQmpoKALCwsFDYzsLCQlr3soULF8LIyEi62djYlOdxEBEREVE1pFTYzM/Ph4eHBwICAtC0aVOMHDkSI0aMwNq1axXayWQyhftCiELLCkydOhUZGRnS7datW0o+BCIiIiKqrpQKm1ZWVmjQoIHCMjc3NyQnJwMALC0tAaDQKOa9e/cKjXYW0NbWhqGhocKNiIiIiF4PSoVNHx8fJCQkKCxLTExEvXr1AAD29vawtLTE4cOHpfW5ubk4fvw4WrVqVQHlEhEREVFNotRs9HHjxqFVq1YICAhAv379cPr0afzwww/44YcfADw/fP7ll18iICAATk5OcHJyQkBAAHR1dTFo0CCVPAAiIiIiqr6UCpvNmjVDaGgopk6dirlz58Le3h6BgYEYPHiw1Gby5MnIysqCv78/0tPT4e3tjUOHDsHAwKDCiyciIiKi6k2psAkAPXr0QI8ePYpdL5PJMHv2bMyePftV6iIiIiKi1wC/G52IiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZh8zXRvn17yGQy+Pn5VXUpRERERBKGTapwqampGDZsGMzNzaGtrY0GDRrg22+/LdO2V65cQd++fVG7dm3I5XJ4eHhgx44dKq6YiIiIVEWjqgug18t///2Htm3b4sqVK5DL5ahXrx7i4uIwduxY3L17FwsWLCh229u3b6NVq1ZIS0uDoaEhrKyscO7cOQwaNAj//fcfRowYUYmPhIiIiCoCRzZfkZ2dHWQyGaZMmQJ/f3/Url0bRkZG8Pf3R05OTrHbZWdnw9jYGDKZDCtXrpSWJyUlQSaTQSaT4eDBg3j8+DF69+4Ne3t76OnpQVtbG05OTpg5cyZyc3OL7f/FfsLDwwvVO3v2bGnZnTt3MHz4cFhbW0NLSwsODg6YN28enj17JrXZtGmT1F9SUlKx+/3+++9x5coVyGQyREVFITExEePHjwcALFmyBKmpqcVuu2jRIqSlpcHAwABxcXG4fv06+vbtCwCYOnVqiY+XiIiIqieGzQoSGBiI3bt3w9jYGJmZmVi7di2mTp1abHsdHR3069cPALBz505pecHP1tbW6NSpE7KysvDzzz8jKysLzs7OMDc3x9WrVzFv3jx8/fXXr1x3WloaWrRogaCgIPz3339wc3PDrVu3MHPmTHz66adK9/fHH38AAJycnNCoUSMAkALjs2fPcOzYsVK3bdmyJaytrQEAffr0AQDcv38fZ86cUboeIiIiqloMmxXE1tYWN27cwPXr1zFw4EAAwHfffYeMjIxitxk6dCgAICoqCjdv3gQA7Nq1CwDw0UcfQV1dHYaGhrh06RJSU1Nx7tw53Lp1C76+vgAUQ2p5fffdd7h16xYsLCxw7do1nD9/Hnv27AHwfDTz6tWrAAAjIyO4uLjAxcUFmpqaxfZ369YtAIC5ubm0zMLCQvo5OTlZJdsSERFR9cSwWUF69OgBAwMDAMCAAQMAALm5uUhMTMSBAwfQokUL6fb+++8DAHx8fODo6AjgechMTExEbGwsgP8FUXV1dQQHB8PZ2Rna2tqQyWQIDg4G8Pzw96s6ffo0AODu3bswNzeHTCZD7969AQBCCJw6dQoA8P777yM+Ph7x8fGoU6dOsf0JIUpcJpPJlKrvVbYlIiKiqscJQhWkpCD077//SqENAOrVqyf9PGTIEMycORO7du1CdnY2AKB58+Zwc3MD8Pw8xoULF0rbWVpa4p9//sHt27eRn59fpnry8vKkn18eaS0IcwYGBmjQoEGhfnR1dYvdR1FsbW2RmJiIu3fvSsvu3bsn/WxjY1PstjY2Nrh69Wq5tiUiIqLqiSObFWT//v149OgRAGD37t0AAC0tLTg7O8PPzw9CCOn24gSbIUOGQCaT4ezZs1i7di2A/41qAs8PsQOAs7MzkpKSEBERgcaNG5daz4uHohMTEwEAR44cwcOHDxXaNW/eHACgoaGBnTt3IioqClFRUTh8+DD8/f2lUdjQ0FC4urrC1dUVt2/fLna/3bp1AwBcvXpVGqX96aefpH107NgRALB69Wqpv5e3jYqKkvZRcEjfxMQEXl5epT5uIiIiql4YNivInTt3YG9vj/r162Pbtm0AgNGjR8PIyKjE7erVq4d27doBeH59Sm1tbekwPABpkk1iYiLs7e1ha2srBdCSyOVytGzZEgAwceJEvP322+jVqxfU1BRf8s8++wx16tRBeno6XFxc0KRJE9SvXx8mJiYKoTcjIwMJCQlISEjA06dPi93vyJEj4eTkBCEEWrVqBWdnZwQGBgIAJk+eLJ2DmZaWJvVXYMqUKTA1NcWjR4/QoEED2NvbIzQ0FACwcOFCaGlplfq4iYiIqHph2KwgX3zxBQYPHoz09HQYGBhg5MiRWLRoUZm2fTHUvffee6hdu7Z0f9q0aRgyZIg0y33AgAHw9/cvU7+bNm1CmzZtIITAP//8gzVr1hQ6FG1mZoaoqCgMGzYMJiYmuHTpErKystCmTRt88803ZdrPi/T19XH8+HEMHToUenp6SEpKgqurKwIDA0u8xiYA1KlTB3/99Rf69OkDmUyGlJQUNGnSBNu2beM1NomIiGoomShqRkcVyszMhJGRETIyMmBoaFjV5ZTKzs4ON2/exKxZsxSuXUlEr5cnT54gPj6+XNvGxcXB19cXwcHB0vnY5eHq6qr0edRENdnZs2fh6emJmJgYeHh4VHU59AJl8honCBERlUF8fDw8PT1fqY+Cy5aVF//gElFNxLBJRFQGrq6uiImJKde2WVlZSEpKgp2dHeRy+SvVQERU0zBsvqKSvrqRiF4furq6rzSq6OPjU4HVEBHVHJwgREREREQqw7BJRERERCrDsElEREREKsOwSUREREQqw7BJRERERCrD2eivgdmzZ2POnDmoV68eZ8cTEVGFS05ORlpaWqXvNy4uTuHfymZqagpbW9sq2fdrRVQzGRkZAoDIyMio6lLKpF27dgJAkbfQ0NBKqWHWrFkCgKhXr16l7K8kN27cEEOHDhW2trZCW1tbODs7i8WLF4u8vLxCbdevXy+8vLyErq6u0NPTE+7u7mLjxo0KbbZt2yaaNm0qdHR0RK1atUTfvn1FYmJiqXXcu3dPfPHFF8LBwUFoa2uLevXqiSlTpojs7OwKe6xERG+CmzdvCrmuvNi/da/zTa4rFzdv3qzql6BaUiavcWSzgmhpaaFp06YKy178jvM3wb///ovmzZvj33//hb6+PlxcXHDp0iV89dVXuHPnDgIDA6W2n3/+OVavXg0AsLW1Re3atXHnzh389ddfGDZsGADghx9+wMiRIwEA9vb2uH//Pvbu3Ys///wTsbGxsLa2LrKOnJwctGnTBgkJCdDW1oarqysSEhKwaNEixMfHIzQ0VLVPBBHRayQtLQ1ZT7LQccIo1Kpb9O9dVXmWm4tHd9NgYGEKDS2tSt13+j93cHT5OqSlpXF08xUxbFYQKysrREVFlbl9165dcejQIfTu3Vsh/Njb2yMpKQlTpkzBwoULMWnSJPz222+4ffs2Hj9+DDMzM3Tu3BmLFi2ClZVVsf0X9Z3tfn5+2Lx5M9q1a4fw8HAAz4NZQEAAtm/fjuTkZBgZGaFHjx5YsmQJTE1NATy/cL29vT0AICgoCH5+fkXu86effsK///4LAIiMjMRbb72F9evXY8SIEVi1ahUmTJgAGxsbREZGYvXq1VBTU8OePXvw/vvvS308evRIqmvatGkAgL59+2LPnj24c+cOXF1d8e+//2LhwoVYtWpVkXUcPXoUCQkJAIA9e/agR48eOHLkCDp37ox9+/YhIiICrVq1KunlISKil9Sqaw0zR7tK369VA+dK3ydVLE4QqiJDhw4FAPz+++/IzMwEAERFRUnnXL64/vbt27CxsYGjoyNSU1OxZcsW9OrVq0Lq6NOnD+bOnYsbN27A1dUVOTk5CAoKQrt27ZCVlaVUX/n5+dLPMplM4d/8/HyEhYUBAHbv3g0AqFOnDjZu3AgjIyPY2tri888/hxACAHDmzBncv38fwPOwCQDW1tZo0aIFAODgwYPlqgMAjhw5otTjIiIiovJj2KwgN2/ehEwmU7g9fPiw2Pbvv/8+DA0NkZOTg3379gEAdu3aBQDw9vaWvgN5+/btePDgAS5cuIC4uDj88MMPAIDo6Ghcu3btlWo+fvw4fvvtNwDAsWPHcP78ecTHx0Mul+Py5cvYvn07AEBTUxMuLi5wcXGBkZFRsf11794d+vr6AICWLVuiSZMmGDVqlLT+9u3bACCNOt66dQtHjx6FjY0N/vnnH6xevRqDBw+W1hUwNzeXfrawsADw/GT14rRu3Rp16tQB8DyoNm3aFO+9916hOoiIiEj1GDYriJaWFry9vRVuGhoaSElJQYsWLRRuKSkpkMvl+PDDDwEAO3fuhBACP/30E4D/jWoCwPnz59GsWTPo6+tDJpNhxIgR0ro7d+68Us2nT5+Wfm7Xrh1kMhmsra2lEc2C0wLq1KmD+Ph4xMfHKxzyfpm9vT2OHDmCjh07Ql1dHbdv34afn580qqipqQkAePbsmbTNoUOHcPHiRcyZMwcA8OuvvyIpKUka4XxZwfIXRypfZmxsjCNHjqBXr17Q19dHUlISevfuDWNjY4U6iIiISPV4zmYFKe6czbS0NJw6dUphWU5ODoDnoXLDhg04cuQI9u3bh9u3b0NbWxsDBgwAAJw8eRJDhw6FEAImJiZo0KAB/vvvP+kSEHl5ecXWUxDGXmyTkZGh0ObFQOft7V2oD0tLyxIfc1G8vb0VDlNHRkZi/fr1AAAXFxcAkEYdAaBZs2YAgObNm0vLkpKSFE7Gvnv3rvTzvXv3AAA2NjYl1uHq6iqNGAPPg/mOHTsU6iAiIiLV48imitnZ2UEIoXCzs7MDALRp0wYODg54+vQp/P39AQA9e/ZErVq1AACnTp2SAuGFCxdw+vRpDBkypEz7LTj0nJiYCOB56C2YFFTgxYA3depUREVFISoqCidPnsTs2bPx8ccfA3h+2NnV1RWurq6lzuQ+efKkFHDT09MxceJEAM+vVdaxY0cAQKdOnaT2Z86cUfhXJpPB0dERzZo1g4mJCQBg7969Uh2RkZEAgG7dukl9FNRWMLsdeD4qWxDqs7Ky8PnnnwN4PqrZp0+fEh8DERERVRyGzSpWEB5TU1MBQGGmd6NGjaSfGzZsCDc3NyxdurRM/RYEu927d6NNmzZo2LChNBGpQPv27dG1a1cAQO/eveHq6gp3d3cYGxvjnXfekSYrPX36FAkJCUhISCg0OvqyUaNGwdTUFI0aNULdunUREREBdXV1rFu3Drq6ugCAfv36wcvLCwDQpUsXNGzYEDNmzAAADBs2DHXr1oWWlhYCAgIAACEhIXBwcJBGdk1NTTFlyhRpnwW1vXjB4fnz50t1WFlZISQkBACwdOlShZFVIiIiUi2GzSo2ZMgQ6ZC3paWlFP4AoHPnzli8eLF0HqWrqyvWrl1bpn6nTp0KX19fGBsbIzExEUOGDJEOz79o3759mDlzJpycnHD9+nWkpqbCzc0N06dPx1tvvaX04+nSpQsMDQ2RkJAADQ0NdOnSBceOHZNmlAPPRxcPHTqEkSNHwtDQEFevXoW7uzsCAwOlCVAA8OmnnyI4OBhNmjTBnTt3IJPJ0KdPH0RERBR7jc0C7dq1g6WlJa5cuYJnz56hdevWCA0NxdixY5V+TERERFR+MlHcTIwqkpmZCSMjI2RkZMDQ0LCqyyEiInqjnT17Fp6envjgm7lVcp3NqvLv1STsGTcTMTEx8PDwqOpyqh1l8hpHNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYhIaampqejcuTP09PRgbGxc1eUQUTXGsElEVEn8/Pwgk8kwatSoQuv8/f0hk8kUvrK2Ovvmm2+QkpKC2NhYJCYmFtsuMzMTM2bMgLu7O+RyOUxMTNCsWTMsWbIE6enplVix8q5evSp9ha62tjbs7e0xcOBAnDlzplz95eTkoEmTJpDJZIiNjVVYl5ycjPfeew96enowNTXFF198gdzc3BL7GzlyJOrXrw+5XA4zMzP06tUL8fHxCm0WLFiAVq1aQVdXl/8poCrDsElEVIlsbGywc+dOZGVlScuys7OxY8cO2NraVmFlyrl27Ro8PT3h5OQEc3PzIts8ePAALVq0QFBQECZOnIhTp07hr7/+wqxZsxAbG4vt27cX239pQUvVzpw5A09PTyQmJuL777/H5cuXERoaCldXV0yYMKFcfU6ePLnIr9rNy8tD9+7d8fjxY5w8eRI7d+7E3r17S92Pp6cngoKCEBcXh4MHD0IIgS5duiAvL09qk5ubiw8//BCjR48uV81EFYFhk4ioEnl4eMDW1hYhISHSspCQENjY2KBp06YKbYUQWLJkCRwcHCCXy9G4cWPs2bNHWp+Xl4ePP/4Y9vb2kMvlcHFxwcqVKxX68PPzQ+/evbFs2TJYWVnBxMQEn332GZ4+fVpinWvXrkX9+vWhpaUFFxcXbN26VVpnZ2eHvXv3YsuWLSWOxk6bNg3Jyck4deoUhg0bhkaNGsHV1RU9evTA9u3b4e/vr9Dn/Pnz4efnByMjI4wYMQIAsHfvXri7u0NbWxt2dnZYvny5wj5kMhn27dunsMzY2BibNm0CACQlJUEmk2Hnzp1o1aoVdHR04O7ujvDw8GIfuxACfn5+cHJywokTJ9C9e3fUr18fTZo0waxZs/Dzzz+X+NwV5ffff8ehQ4ewbNmyQusOHTqEy5cvIzg4GE2bNkWnTp2wfPly/Pjjj8jMzCy2z08//RRt27aFnZ0dPDw8MH/+fNy6dQtJSUlSmzlz5mDcuHFo2LCh0jUTVRSGTSKiSjZs2DAEBQVJ9zdu3Ijhw4cXajd9+nQEBQVh7dq1uHTpEsaNGwdfX18cP34cAJCfn4+6deti9+7duHz5MmbOnIlp06Zh9+7dCv2EhYXh2rVrCAsLw+bNm7Fp0yYpjBUlNDQUY8eOxYQJE3Dx4kWMHDkSw4YNQ1hYGAAgOjoa3bp1Q79+/ZCSklIo4BbUtmvXLvj6+qJOnTpF7kcmkyncX7p0Kd566y3ExMRgxowZiImJQb9+/TBgwABcuHABs2fPxowZM0qsvTiTJk3ChAkTcO7cObRq1Qo9e/bE/fv3i2wbGxuLS5cuYcKECVBTK/xn8sXD0e3bty/11Ie7d+9ixIgR2Lp1K3R1dQutj4yMxFtvvaUw6tm1a1fk5OQgJiamTI/v8ePHCAoKgr29PWxsbMq0DVFlYdgkIqpkH330EU6ePImkpCTcvHkTf/31F3x9fRXaPH78GCtWrMDGjRvRtWtXODg4wM/PD76+vvj+++8BAJqampgzZw6aNWsGe3t7DB48GH5+foXCZq1atbB69WppVLF79+44evRosfUtW7YMfn5+8Pf3h7OzM8aPH48+ffpIo3JmZmbQ1taGXC6HpaUljIyMCvXx77//4uHDh3BxcVFY7unpCX19fejr62PgwIEK695++21MnDgRjo6OcHR0xIoVK9CxY0fMmDEDzs7O8PPzw5gxY7B06dKyP9n/b8yYMejbty/c3Nywdu1aGBkZYcOGDUW2vXLlCgDA1dW11H5tbW1hZWVV7PqCUdJRo0bBy8uryDapqamwsLBQWFarVi1oaWkhNTW1xP2vWbNGej7/+OMPHD58GFpaWqXWTVSZGDaJiCqZqakpunfvjs2bNyMoKAjdu3eHqampQpvLly8jOzsbnTt3lsKEvr4+tmzZgmvXrknt1q1bBy8vL5iZmUFfXx8//vgjkpOTFfpyd3eHurq6dN/Kygr37t0rtr64uDj4+PgoLPPx8UFcXJzSj/Xl0cvQ0FDExsaia9euCuetAigUxoqr48qVKwrnJZZFy5YtpZ81NDTg5eVV7OMRQhRZe1G2bNmChQsXFrt+1apVyMzMxNSpU0vsp6h9CSFKrWHw4ME4d+4cjh8/DicnJ/Tr1w/Z2dml1k1UmTSqugAiojfR8OHDMWbMGADAd999V2h9fn4+AODAgQOFDkNra2sDAHbv3o1x48Zh+fLlaNmyJQwMDLB06VKcOnVKob2mpqbCfZlMJvVfnJdDTlmCz4vMzMxgbGxcaHZ0wSQoAwMDPHz4UGGdnp5eqfssCIIv1vnystLOR31x26I4OzsDeB52mzRpUqa+inPs2DFERUVJr1kBLy8vDB48GJs3b4alpWWh1yw9PR1Pnz4tNOL5MiMjIxgZGcHJyQktWrRArVq1EBoaWmjUmKgqvdLI5sKFCyGTyfDll19Ky4QQmD17NqytrSGXy9G+fXtcunTpVeskInqtdOvWDbm5ucjNzUXXrl0LrW/QoAG0tbWRnJwsHVYuuBWck3fixAm0atUK/v7+aNq0KRwdHRVGPcvLzc0NJ0+eVFgWEREBNze3MvehpqaGfv36ITg4GLdv3y5XHQ0aNCiyDmdnZ2mk1szMDCkpKdL6K1eu4MmTJ4X6ioqKkn5+9uwZYmJiij1M3qRJEzRo0ADLly8vMpS/HJJL8u233+L8+fOIjY1FbGwsfvvtNwDArl27sGDBAgDPR10vXryo8DgOHToEbW1teHp6lnlfwPO/wTk5OUptQ6Rq5R7ZjI6Oxg8//IBGjRopLF+yZAlWrFiBTZs2wdnZGfPnz0fnzp2RkJAAAwODVy6YiOh1oK6uLh3GffEQdwEDAwNMnDgR48aNQ35+Plq3bo3MzExERERAX18fQ4cOhaOjI7Zs2YKDBw/C3t4eW7duRXR0NOzt7V+ptkmTJqFfv37w8PBAx44dsX//foSEhODIkSNK9RMQEIDw8HB4e3tj7ty58PLygp6eHv7++29pUkxJJkyYgGbNmmHevHno378/IiMjsXr1aqxZs0Zq8/bbb2P16tVo0aIF8vPz8dVXXxUayQWejx47OTnBzc0N33zzDdLT04uclAU8H/EMCgpCp06d0LZtW0ybNg2urq7477//sH//fhw6dEiapDVkyBDUqVOn2EPpL1/OSl9fHwBQv3591K1bFwDQpUsXNGjQAB999BGWLl2KBw8eYOLEiRgxYgQMDQ0BALdv30bHjh2xZcsWNG/eHNevX8euXbvQpUsXmJmZ4fbt21i8eDHkcjneffddaX/Jycl48OABkpOTkZeXJ13f09HRUaqlNAWnO6TfulOm9q+Lgsf78ukeVA6iHB49eiScnJzE4cOHRbt27cTYsWOFEELk5+cLS0tLsWjRIqltdna2MDIyEuvWrStT3xkZGQKAyMjIKE9pRETV1tChQ0WvXr2KXd+rVy8xdOhQ6X5+fr5YuXKlcHFxEZqamsLMzEx07dpVHD9+XAjx/Pern5+fMDIyEsbGxmL06NFiypQponHjxiXuc+zYsaJdu3Yl1rpmzRrh4OAgNDU1hbOzs9iyZUuJtRbn4cOHYurUqcLV1VVoa2sLuVwuGjVqJGbMmCHu378vtatXr5745ptvCm2/Z88e0aBBA6GpqSlsbW3F0qVLFdbfvn1bdOnSRejp6QknJyfx22+/CSMjIxEUFCSEEOLGjRsCgNi+fbvw9vYWWlpaws3NTRw9erTU2hMSEsSQIUOEtbW10NLSEvXq1RMDBw4UZ8+eldq0a9euTM9DgYJ6zp07p7D85s2bonv37kIul4vatWuLMWPGiOzs7ELbhYWFSY/7nXfeEebm5kJTU1PUrVtXDBo0SMTHxyv0O3ToUAGg0K2gn7IIDg4uso835RYcHFzm5+pNokxekwnx0skuZTB06FDUrl0b33zzDdq3b48mTZogMDAQ169fR/369XH27FmF68X16tULxsbG2Lx5c6G+cnJyFIb8MzMzYWNjg4yMDOl/dEREROWRlJQEe3t7nDt37pXPv3xT/fXXX2jdujU6jh+FWjaFL0r/ukq/dQdHV6zDyZMnC01Uo+d5zcjIqEx5TenD6Dt37sTZs2cRHR1daF3BJRpePqHZwsICN2/eLLK/hQsXYs6cOcqWQURERJVALpcDAGrZWMPM0a5qi6kCBY+fyk+pCUK3bt3C2LFjERwcDB0dnWLbKTOLcerUqcjIyJBut27dUqYkIiIiIqrGlBrZjImJwb179xRmx+Xl5eHPP//E6tWrkZCQAOD5COeLF7m9d+9esZdv0NbWLnRJCCIioopgZ2dX6NJIRFS5lBrZ7NixIy5cuCBdwiE2Nla6VlhsbCwcHBxgaWmJw4cPS9vk5ubi+PHjaNWqVYUXT0RERETVm1IjmwYGBoUuVaGnpwcTExNp+ZdffomAgAA4OTnByckJAQEB0NXVxaBBgyquaiIiIiKqESr8G4QmT56MrKws+Pv7Iz09Hd7e3jh06BCvsUlERET0BnrlsBkeHq5wXyaTYfbs2Zg9e/ardk1ERERENdwrfV0lEREREVFJGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGU0qroAqjny8vJw4sQJpKSkwMrKCm3atIG6unpVl0VERETVGEc2qUxCQkLg6OiIDh06YNCgQejQoQMcHR0REhJS1aURERFRNcawSaUKCQnBBx98gIYNGyIyMhKPHj1CZGQkGjZsiA8++ICBk4iIiIrFsEklysvLw4QJE9CjRw/s27cPLVq0gL6+Plq0aIF9+/ahR48emDhxIvLy8qq6VCIiIqqGGDapRCdOnEBSUhKmTZsGNTXFt4uamhqmTp2KGzdu4MSJE1VUIREREVVnDJtUopSUFADAW2+9VeT6guUF7YiIiIhexLBJJbKysgIAXLx4scj1BcsL2hERERG9iJc+ohK1adMGdnZ2CAgIwL59+xQOpefn52PhwoWwt7dHmzZtqrBKIiJStfR/7lT6Pp/l5uLR3TQYWJhCQ0urUvddFY/3dcWwSSVSV1fH8uXL8cEHH6B3796YOnUq3nrrLVy8eBELFy7Er7/+ij179vB6m0RErylTU1PIdeU4unxdVZdS6eS6cpiamlZ1GTWeTAghqrqIF2VmZsLIyAgZGRkwNDSs6nLo/4WEhGDChAlISkqSltnb22PZsmXo06dP1RVGREQql5ycjLS0tErfb1xcHHx9fREcHAw3N7dK37+pqSlsbW0rfb81gTJ5jSObVCZ9+vRBr169+A1CRERvIFtb2yoNXW5ubvDw8Kiy/dOrYdikMlNXV0f79u2rugwiIiKqQTgbnYiIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIbfIPSGefLkCeLj48u9fVZWFpKSkmBnZwe5XF6uPlxdXaGrq1vuGoiIiKjmYNh8w8THx8PT07NKa4iJieF33BIREb0hGDbfMK6uroiJiSn39nFxcfD19UVwcDDc3NzKXQMRERG9GRg23zC6uroVMqro5ubG0UkiIiIqFScIEREREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcooFTYXLlyIZs2awcDAAObm5ujduzcSEhIU2gghMHv2bFhbW0Mul6N9+/a4dOlShRZNRERERDWDUmHz+PHj+OyzzxAVFYXDhw/j2bNn6NKlCx4/fiy1WbJkCVasWIHVq1cjOjoalpaW6Ny5Mx49elThxRMRERFR9aahTOM//vhD4X5QUBDMzc0RExODtm3bQgiBwMBAfP311+jTpw8AYPPmzbCwsMD27dsxcuTIiquciIiIiKq9VzpnMyMjAwBQu3ZtAMCNGzeQmpqKLl26SG20tbXRrl07REREvMquiIiIiKgGUmpk80VCCIwfPx6tW7fGW2+9BQBITU0FAFhYWCi0tbCwwM2bN4vsJycnBzk5OdL9zMzM8pZERERERNVMuUc2x4wZg7///hs7duwotE4mkyncF0IUWlZg4cKFMDIykm42NjblLYmIiIiIqplyhc3PP/8cv/zyC8LCwlC3bl1puaWlJYD/jXAWuHfvXqHRzgJTp05FRkaGdLt161Z5SiIiIiKiakipsCmEwJgxYxASEoJjx47B3t5eYb29vT0sLS1x+PBhaVlubi6OHz+OVq1aFdmntrY2DA0NFW5ERERE9HpQ6pzNzz77DNu3b8fPP/8MAwMDaQTTyMgIcrkcMpkMX375JQICAuDk5AQnJycEBARAV1cXgwYNUskDICIiIqLqS6mwuXbtWgBA+/btFZYHBQXBz88PADB58mRkZWXB398f6enp8Pb2xqFDh2BgYFAhBRMRERFRzaFU2BRClNpGJpNh9uzZmD17dnlrIiIiIqLXBL8bnYiIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFSGYZOIiIiIVIZhk4iIiIhUhmGTiIiIiFRGo6oLoPJJTk5GWlpape83Li5O4d/KZmpqCltb2yrZNxERESmPYbMGSk5OhpurC55kZVdZDb6+vlWyX125DuLiExg4iYiIagiGzRooLS0NT7KyEewPuFlX7r6zcoGkNMDOFJBrVe6+4+4AvmuykZaWxrBJRERUQzBs1mBu1oCHfeXv18el8vdJRERENRMnCBERERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEhEREZHKMGwSERERkcowbBIRERGRyjBsEtUAqamp6Ny5M/T09GBsbFzV5RAREZUZwya9tvz8/CCTyTBq1KhC6/z9/SGTyeDn51f5hZXDN998g5SUFMTGxiIxMbHYdpmZmZgxYwbc3d0hl8thYmKCZs2aYcmSJUhPT6/Eistn+/btUFdXL/I1K6vAwEC4uLhALpfDxsYG48aNQ3Z28V/tOnv2bMhkskI3PT09qU14eHiRbeLj48tdJxHRm4Jhk15rNjY22LlzJ7KysqRl2dnZ2LFjR436ystr167B09MTTk5OMDc3L7LNgwcP0KJFCwQFBWHixIk4deoU/vrrL8yaNQuxsbHYvn17sf3n5uaqqnSlbNy4EZMnT8bOnTvx5MkTpbfftm0bpkyZglmzZiEuLg4bNmzArl27MHXq1GK3mThxIlJSUhRuDRo0wIcffliobUJCgkI7JycnpWskInrT8Osq6bXm4eGB69evIyQkBIMHDwYAhISEwMbGBg4ODgpthRBYunQp1q1bh5SUFDg7O2PGjBn44IMPAAB5eXn49NNPcezYMaSmpsLW1hb+/v4YO3as1Iefnx8ePnyI1q1bY/ny5cjNzcWAAQMQGBgITU3NYutcu3Ytli1bhlu3bsHe3h7Tp0/HRx99BACws7PDzZs3AQBbtmzB0KFDsWnTpkJ9TJs2DcnJyUhISECdOnWk5a6urujRoweEENIyOzs7fPLJJ7h69SpCQ0PRu3dvbN68GXv37sXMmTNx9epVWFlZ4fPPP8eECROk7WQymdS+gLGxMQIDA+Hn54ekpCTY29tjx44d+Pbbb3H27FnUr18f3333Hdq3b1/ia5WUlISIiAjs3bsXYWFh2LNnD4YMGVLiNi+LjIyEj48PBg0aJD3OgQMH4vTp08Vuo6+vD319fen++fPncfnyZaxbt65QW3Nzc57GQKSkJ0+elPsoQFxcnMK/5eXq6gpdXd1X6oPKj2GTXnvDhg1DUFCQFDY3btyI4cOHIzw8XKHd9OnTERISgrVr18LJyQl//vknfH19YWZmhnbt2iE/Px9169bF7t27YWpqioiICHz66aewsrJCv379pH7CwsJgZWWFsLAwXL16Ff3790eTJk0wYsSIIusLDQ3F2LFjERgYiE6dOuHXX3/FsGHDULduXXTo0AHR0dEYMmQIDA0NsXLlSsjl8kJ95OfnY9euXfD19VUImi+SyWQK95cuXYoZM2Zg+vTpAICYmBj069cPs2fPRv/+/REREQF/f3+YmJgofbrBpEmTEBgYiAYNGmDFihXo2bMnbty4ARMTk2K32bhxI7p37w4jIyP4+vpiw4YNCmEzPDwcHTp0wI0bN2BnZ1dkH61bt0ZwcDBOnz6N5s2b4/r16/jtt98wdOjQMte+fv16ODs7o02bNoXWNW3aFNnZ2WjQoAGmT5+ODh06lLlfojdVfHw8PD09X6kPX1/fV9o+JiYGHh4er9QHlR/DJr32PvroI0ydOhVJSUmQyWT466+/sHPnToWw+fjxY6xYsQLHjh1Dy5YtAQAODg44efIkvv/+e7Rr1w6ampqYM2eOtI29vT0iIiKwe/duhbBZq1YtrF69Gurq6nB1dUX37t1x9OjRYsPmsmXL4OfnB39/fwDA+PHjERUVhWXLlqFDhw4wMzODtrY25HI5LC0ti+zj33//xcOHD+Hi4qKw3NPTEwkJCQCA9957Dzt27JDWvf3225g4caJ0f/DgwejYsSNmzJgBAHB2dsbly5exdOlSpcPmmDFj0LdvXwDPR23/+OMPbNiwAZMnTy6yfX5+PjZt2oRVq1YBAAYMGIDx48fj6tWrcHR0BADo6urCxcWlxBHiAQMG4N9//0Xr1q0hhMCzZ88wevRoTJkypUx15+TkSIfiX2RlZYUffvgBnp6eyMnJwdatW9GxY0eEh4ejbdu2Zeqb6E3l6uqKmJiYcm2blZWFpKQk2NnZFfkfbWVqoKrDsEmvPVNTU3Tv3h2bN2+GEALdu3eHqampQpvLly8jOzsbnTt3Vliem5uLpk2bSvfXrVuH9evX4+bNm8jKykJubi6aNGmisI27uzvU1dWl+1ZWVrhw4UKx9cXFxeHTTz9VWObj44OVK1cq+1ALjV6GhoYiNzcXX331lcJ5qwDg5eVVqI5evXoVqiMwMBB5eXkKj6k0BYEdADQ0NODl5VXiYbBDhw7h8ePHeOeddwA8f826dOmCjRs3IiAgAADQvHnzUg/FhYeHY8GCBVizZg28vb1x9epVjB07FlZWVlKILklISAgePXpU6PC9i4uLQpBv2bIlbt26hWXLljFsEpVCV1f3lUYVfXx8KrAaqgoMm/RGGD58OMaMGQMA+O677wqtz8/PBwAcOHCg0GFobW1tAMDu3bsxbtw4LF++HC1btoSBgQGWLl2KU6dOKbR/eeRNJpNJ/Rfn5ZAohCi0rCRmZmYwNjYuFMYKJkEZGBjg4cOHCutenG1d3D5fPM+zoM6Xlz19+rRMNZb0eDZu3IgHDx4onFOVn5+Pc+fOYd68eWUOujNmzMBHH32ETz75BADQsGFDPH78GJ9++im+/vprqKmVPCdy/fr16NGjR7EjyC9q0aIFgoODy1QXEdGbjLPR6Y3QrVs35ObmIjc3F127di20vkGDBtDW1kZycjIcHR0VbjY2NgCAEydOoFWrVvD390fTpk3h6OiIa9euvXJtbm5uOHnypMKyiIgIuLm5lbkPNTU19OvXD8HBwbh9+3a56mjQoEGRdTg7O0thz8zMDCkpKdL6K1euFDlrPCoqSvr52bNniImJKfYw1v379/Hzzz9j586diI2NVbj9999/+P3338v8GJ48eVIoUKqrq0MIUSgkv+zGjRsICwvDxx9/XKZ9nTt3DlZWVmWujYjoTcWRTXojqKurS4dxixolMzAwwMSJEzFu3Djk5+ejdevWyMzMREREBPT19TF06FA4Ojpiy5YtOHjwIOzt7bF161ZER0fD3t7+lWqbNGkS+vXrBw8PD3Ts2BH79+9HSEgIjhw5olQ/AQEBCA8Ph7e3N+bOnQsvLy/o6enh77//RmRkJN56660St58wYQKaNWuGefPmoX///oiMjMTq1auxZs0aqc3bb7+N1atXo0WLFsjPz8dXX31V5DmU3333HZycnODm5oZvvvkG6enpGD58eJH73bp1K0xMTPDhhx8WCoo9evTAhg0b0KNHD5w+fRpDhgzB0aNHi50E9d5772HFihVo2rSpdBh9xowZ6Nmzp/S6r169GqGhoTh69KjCths3boSVlZV0KP9FgYGBsLOzg7u7O3JzcxEcHIy9e/di7969JT6nRETEsElvEENDwxLXz5s3D+bm5li4cCGuX78OY2NjeHh4YNq0aQCAUaNGITY2Fv3794dMJsPAgQPh7++v1MhbUXr37o2VK1di6dKl+OKLL2Bvb4+goKBSLxX0MhMTE5w+fRqLFy/G0qVLcePGDaipqcHJyQn9+/fHl19+WeL2Hh4e2L17N2bOnIl58+bBysoKc+fOVZgctHz5cgwbNgxt27aFtbU1Vq5cWeSJ/4sWLcLixYtx7tw51K9fHz///HOh82QLbNy4Ee+//36Rh7j79u2L/v374+7du3jy5AkSEhJKPGw/ffp0yGQyTJ8+Hbdv34aZmRnee+89LFiwQGqTlpZWaES6YIKSn59fkf8Zyc3NxcSJE3H79m3I5XK4u7vjwIEDePfdd4uthYiInpOJ0o4tVbLMzEwYGRkhIyOj1HDwpjp79iw8PT0RMx/weLVBtRrl7A3AczovYVGdFVxn89y5c4UmThER0etDmbzGkc0aqGBWcdydKi6kkhU83pdnVRMREVH1xbBZAyUlJQEAfNeU3O51lZSUxEthEBER1RAMmzVQwbenBPsDbtZVW0tlirvzPGAX9+0xVPXs7OxKnfVNRERvFobNGqjgWxTcrN+sczYLvMq3SBAREVHl4nU2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGUYNomIiIhIZRg2iYiIiEhlGDaJiIiISGU0qroAKr+4O5W/z6xcICkNsDMF5FqVu++qeLxERET0ahg2ayBTU1PoynXguya7qkupdLpyHZiamlZ1GURERFRGDJs1kK2tLeLiE5CWllbp+46Li4Ovry+Cg4Ph5uZW6fs3NTWFra1tpe+XiIiIyodhs4aytbWt0tDl5uYGDw+PKts/ERER1QycIEREREREKqOysLlmzRrY29tDR0cHnp6eOHHihKp2RURERETVlErC5q5du/Dll1/i66+/xrlz59CmTRu88847SE5OVsXuiIiIiKiaUknYXLFiBT7++GN88skncHNzQ2BgIGxsbLB27VpV7I6IiIiIqqkKD5u5ubmIiYlBly5dFJZ36dIFERERFb07IiIiIqrGKnw2elpaGvLy8mBhYaGw3MLCAqmpqYXa5+TkICcnR7qfmZlZ0SURERERURVR2QQhmUymcF8IUWgZACxcuBBGRkbSzcbGRlUlEREREVElq/CwaWpqCnV19UKjmPfu3Ss02gkAU6dORUZGhnS7detWRZdERERERFWkwsOmlpYWPD09cfjwYYXlhw8fRqtWrQq119bWhqGhocKNiIiIiF4PKvkGofHjx+Ojjz6Cl5cXWrZsiR9++AHJyckYNWqUKnZHRERERNWUSsJm//79cf/+fcydOxcpKSl466238Ntvv6FevXqq2B0RERERVVMq+250f39/+Pv7q6p7IiIiIqoB+N3oRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyDJtEREREpDIMm0RERESkMgybRERERKQyGlVdAFWuJ0+eID4+vtzbx8XFKfxbHq6urtDV1S339kRERFRzMGy+YeLj4+Hp6fnK/fj6+pZ725iYGHh4eLxyDURERFT9MWy+YVxdXRETE1Pu7bOyspCUlAQ7OzvI5fJy10BERERvBpkQQlR1ES/KzMyEkZERMjIyYGhoWNXlEBEREdFLlMlrnCBERERERCrDsElEREREKsOwSUREREQqw7BJRERERCrDsElEREREKsOwSUREREQqw7BJRERERCrDsElEREREKsOwSUREREQqw7BJRERERCrDsElEREREKsOwSUREREQqw7BJRERERCrDsElEREREKsOwSUREREQqw7BJRERERCrDsElEREREKqNR1QW8TAgBAMjMzKziSoiIiIioKAU5rSC3laTahc1Hjx4BAGxsbKq4EiIiIiIqyaNHj2BkZFRiG5koSyStRPn5+bhz5w4MDAwgk8mquhx6SWZmJmxsbHDr1i0YGhpWdTlENQI/N0Tlw89O9SWEwKNHj2BtbQ01tZLPyqx2I5tqamqoW7duVZdBpTA0NOQHn0hJ/NwQlQ8/O9VTaSOaBThBiIiIiIhUhmGTiIiIiFSGYZOUoq2tjVmzZkFbW7uqSyGqMfi5ISoffnZeD9VughARERERvT44sklEREREKsOwSUREREQqw7BJRERERCrDsElEREREKsOw+ZpKTU3F2LFj4ejoCB0dHVhYWKB169ZYt24dnjx5UtXlKXBxcYGWlhZu375d1aXQG666f27Cw8Mhk8mkm1wuh7u7O3744YeqLo3ecNX9swM8/8abH374Ad7e3tDX14exsTG8vLwQGBhYbWp8XVW7bxCiV3f9+nX4+PjA2NgYAQEBaNiwIZ49e4bExERs3LgR1tbW6NmzZ6Htnj59Ck1NzUqt9eTJk8jOzsaHH36ITZs24euvv67U/RMVqEmfm4SEBBgaGiIrKwv79+/H6NGjUb9+fXTs2LFS6yACas5n56OPPkJISAimT5+O1atXw8zMDOfPn0dgYCDs7OzQu3fvSqvljSPotdO1a1dRt25d8d9//xW5Pj8/XwghBACxdu1a0bNnT6GrqytmzpwphBBizZo1wsHBQWhqagpnZ2exZcsWadsbN24IAOLcuXPSsvT0dAFAhIWFCSGECAsLEwDEr7/+Kho1aiS0tbVF8+bNxd9//12oFj8/PzFlyhTx+++/CwcHB6k2ospWEz43BW3S09MVanNwcBBLliypgGeBSHk14bOza9cuAUDs27evyPoePnz4qk8DlYBh8zWTlpYmZDKZWLhwYaltAQhzc3OxYcMGce3aNZGUlCRCQkKEpqam+O6770RCQoJYvny5UFdXF8eOHRNCKPfBd3NzE4cOHRJ///236NGjh7CzsxO5ubnSdpmZmUJPT09cvHhRPHv2TFhYWEj7IapMNeVz83LYzM/PF7///rvQ1NQUx48fr9DnhKgsaspnp2fPnsLFxaXCHz+VDcPmayYqKkoAECEhIQrLTUxMhJ6entDT0xOTJ08WQjz/4H/55ZcK7Vq1aiVGjBihsOzDDz8U7777rhBCuQ/+zp07pTb3798Xcrlc7Nq1S1r2ww8/iCZNmkj3x44dKwYPHlz+B09UTjXlc1PQpqAmDQ0NoaamJubPn18hzwORsmrKZ8fNzU307NmzQh4zKY8ThF5TMplM4f7p06cRGxsLd3d35OTkSMu9vLwU2sXFxcHHx0dhmY+PD+Li4pSuoWXLltLPtWvXhouLi0I/GzZsgK+vr3Tf19cXISEhePjwodL7IqoINeFzAwAnTpxAbGwsYmNjsX79egQEBGDt2rVK74uoolT3z44QolCNVHk4Qeg14+joCJlMhvj4eIXlDg4OAAC5XK6wXE9Pr1AfL38gX/yQqqmpScsKPH36tMz1FfRz+fJlnDp1CtHR0fjqq6+k9Xl5edixYwdGjx5d5j6JXlVN+dwUsLe3h7GxMQDA3d0dp06dwoIFC/i5oUpXUz47zs7O5QqwVDE4svmaMTExQefOnbF69Wo8fvxY6e3d3Nxw8uRJhWURERFwc3MDAJiZmQEAUlJSpPWxsbFF9hUVFSX9nJ6ejsTERLi6ugJ4PqrZtm1bnD9/XhqhiY2NxeTJk7Fhwwal6yZ6FTXlc1McdXV1ZGVlKV030auqKZ+dQYMGITExET///HOh7YQQyMjIULp2UkLVHcEnVbl69aqwsLAQrq6uYufOneLy5csiPj5ebN26VVhYWIjx48cLIZ6fPxMaGqqwbWhoqNDU1BRr164ViYmJ0snaBefGCCFEixYtRJs2bcSlS5fE8ePHRfPmzYs8f8bd3V0cOXJEXLhwQfTs2VPY2tqKnJwckZubK8zMzMTatWsL1Z6YmCgAiNjYWFU9PURFqu6fmxfbJCQkiJSUFJGUlCR2794tDAwMxLBhwyrjaSIqpCZ8dvLz80X//v2FXC4XAQEBIjo6WiQlJYn9+/eLt99+u1BdVLEYNl9Td+7cEWPGjBH29vZCU1NT6Ovri+bNm4ulS5eKx48fCyGK/uALUfJlKIQQ4vLly6JFixZCLpeLJk2aiEOHDhX5wd+/f79wd3cXWlpaolmzZlKA3LNnj1BTUxOpqalF1t6wYUPx+eefV9yTQVRG1flz82KbgpuGhoawt7cXEydOLPayM0SVobp/doQQIi8vT6xdu1Y0a9ZM6OrqCkNDQ+Hp6SlWrlwpnjx5opLnhZ6TCfHCiRBEFSA8PBwdOnRAenq6dF4ZEZWMnxui8uFnp/rjOZtEREREpDIMm0RERESkMjyMTkREREQqw5FNIiIiIlIZhk0iIiIiUhmGTSIiIiJSGYZNIiIiIlIZhk0iIiIiUhmGTSIiIiJSGYZNIiIiIlIZhk0iIiIiUhmGTSIiIiJSmf8DR/1+hG5lVrwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Group our dataset with our 'Group' variable\n", + "grouped = df.groupby('category')['value']\n", + "\n", + "# Init a figure and axes\n", + "fig, ax = plt.subplots(figsize=(8, 6))\n", + "\n", + "# Create the plot with different colors for each group\n", + "boxplot = ax.boxplot(x=[group.values for name, group in grouped],\n", + " labels=grouped.groups.keys(),\n", + " patch_artist=True,\n", + " medianprops={'color': 'black'}\n", + " ) \n", + "\n", + "# Define colors for each group\n", + "colors = ['orange', 'purple', '#69b3a2']\n", + "\n", + "# Assign colors to each box in the boxplot\n", + "for box, color in zip(boxplot['boxes'], colors):\n", + " box.set_facecolor(color)\n", + " \n", + "# Add the p value and the t\n", + "p_value_text = f'p-value: {p_value}'\n", + "ax.text(0.7, 50, p_value_text, weight='bold')\n", + "f_value_text = f'F-value: {F_statistic}'\n", + "ax.text(0.7, 45, f_value_text, weight='bold')\n", + "\n", + "# Add the mean for each group\n", + "ax.text(1.2, mean_groupA, f'Mean of Group A: {mean_groupA}', fontsize=10)\n", + "ax.text(2.2, mean_groupB, f'Mean of Group B: {mean_groupB}', fontsize=10)\n", + "ax.text(2, mean_groupC, f'Mean of Group C: {mean_groupC}', fontsize=10)\n", + "\n", + "# Add a title and axis label\n", + "ax.set_title('One way Anova between group A, B and C')\n", + "\n", + "# Add a legend\n", + "legend_labels = ['Group A', 'Group B', 'Group C']\n", + "legend_handles = [plt.Rectangle((0,0),1,1, color=color) for color in colors]\n", + "ax.legend(legend_handles, legend_labels)\n", + "\n", + "# Display it\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Violin plot with statistical elements" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAIOCAYAAAD3OcaUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTCUlEQVR4nOzdd3xT5f4H8M9JmqTp3gsKLbS0ZY8iU0GZigKisoXCvYoWFJmKyhCUDaKi4ICyZClDudwrQwFFQAqCsncpowVK90rb5Pn90V8joU3blLYZ/bxfr7xsTp7znG9yYvn2mZIQQoCIiIiIqArIzB0AEREREdkuJptEREREVGWYbBIRERFRlWGySURERERVhskmEREREVUZJptEREREVGWYbBIRERFRlWGySURERERVhskmEREREVUZJptklY4cOYKXXnoJ/v7+UCqV8PPzw4svvojDhw+bOzSL9+mnn0KSJDRu3NjcoVSquLg4SJKEhQsXVlqdt2/fxowZM3Dy5MlKq5Oq16lTpyBJEhQKBRISEh6prqLv2IMPFxcXNGvWDEuWLIFWq62kqCtHUFAQoqKiylU2PT0dH330ESIjI+Hi4gKVSoWgoCCMHDkSf/75Z9UGSjaPySZZnc8++wwdOnTAzZs3MX/+fOzduxcLFy7ErVu30LFjRyxdutTcIVq0lStXAgDOnDmDP/74w8zRWLbbt2/jgw8+YLJpxb755hsAQEFBAdasWVMpdb7xxhs4fPgwDh8+jM2bN6NDhw4YN24cJk+eXCn1V7crV66gRYsWmDt3Lp588kls2LABu3fvxgcffIA7d+6gVatWSEtLM3eYZMXszB0AkSl+//13vPXWW3jmmWewbds22Nn98xUeOHAgnn/+eYwdOxYtWrRAhw4dzBipZTp27Bj++usv9OrVCzt37sSKFSvQpk0bc4dFVio/Px+SJBn8f2hJNBoNvv32WzRr1gxJSUlYuXIl3n777Ueut06dOmjbtq3+ec+ePXH69Gls2LABixYteuT6q5NWq8Xzzz+PpKQkHD582KDHo1OnThg+fDj+97//QaFQmDFKsnZs2SSrMmfOHEiShGXLlhX7B87Ozg5ffPEFJEnC3Llz9cdnzJgBSZJw5swZDBo0CK6urvD19cXIkSOL/bUuhMAXX3yB5s2bQ61Ww93dHS+++CKuXr1aalxnzpyBJEn47rvv9MeOHz8OSZLQqFEjg7K9e/dGq1at9M83bdqE7t27w9/fH2q1GhEREXjnnXeQlZWlL7N27VpIklTiMIGZM2dCoVDg9u3bpcYIACtWrAAAzJ07F+3bt8fGjRuRnZ1tUObB7ujFixcjODgYTk5OaNeuHY4cOVKszh9//BHt2rWDg4MDnJ2d0a1bN4M4t2/fDkmS8PPPPxc7d9myZZAkCX///TeAwmR44MCBCAoKglqtRlBQEAYNGoTr16+X+d6K6HQ6fPTRR6hTpw7s7e0RGRlZ4rUvXbqEwYMHw8fHByqVChEREfj888/1r+/fvx+tW7cGAIwYMULfbTpjxgzs3LkTkiQhNjZWX37Lli2QJAm9evUyuE7Tpk3xwgsv6J+b8h3bu3cvunTpAhcXFzg4OKBDhw7F3osp3++SCCEwe/Zs1K1bV/957dmzB507d0bnzp0NPg9JkrB27VpMmDABtWrVgkqlwuXLlwEUtpg3a9YM9vb28PDwwPPPP49z584ZXOvhOotERUUhKChI/7zoOzh//vxy3Utjtm/fjvv37+Pf//43hg8fjosXL+LgwYPlPt8Urq6u5UrIyvsdX7VqFSRJwr59+/D666/Dy8sLnp6e6NevX7H/1/Pz8zF58mT4+fnBwcEBHTt2xNGjR8sV9/bt23Hq1ClMmTLF6NCap59+Gg4ODuWqj6hEgshKFBQUCAcHB9GmTZtSyz322GPCwcFBFBQUCCGEmD59ugAgwsLCxLRp08SePXvE4sWLhUqlEiNGjDA495VXXhEKhUJMmDBB/PTTT2L9+vUiPDxc+Pr6isTExFKv6+/vL1599VX987lz5wq1Wi0AiFu3bgkhhMjPzxcuLi5i8uTJ+nKzZs0SH3/8sdi5c6fYv3+/WL58uQgODhZPPvmkvoxGoxF+fn5iyJAhBtfMz88XAQEB4qWXXio1NiGEyM7OFq6urqJ169ZCCCG++eYbAUCsWrXKoNy1a9cEABEUFCR69uwptm/fLrZv3y6aNGki3N3dRWpqqr7st99+KwCI7t27i+3bt4tNmzaJVq1aCaVSKX777Td9jD4+PsViF6LwXrVs2VL//LvvvhPTpk0T27ZtEwcOHBAbN24UnTp1Et7e3uLevXulvr+iuAMDA0XHjh3Fli1bxHfffSdat24tFAqFOHTokL7smTNnhKurq2jSpIlYs2aN2L17t5gwYYKQyWRixowZQggh0tLSRExMjAAg3n//fXH48GFx+PBhcePGDZGRkSEUCoWYPXu2vs7XXntNqNVq4ejoKPLy8oQQQty5c0dIkiS++OILfbnyfsfWrl0rJEkSffv2FVu3bhU7duwQzz77rJDL5WLv3r36cqZ8v0syZcoUAUC8+uqr4qeffhJff/21qFOnjvD39xedOnXSl9u3b58AIGrVqiVefPFF8eOPP4r//Oc/4v79+2L27NkCgBg0aJDYuXOnWLNmjahXr55wdXUVFy9e1NfRqVMngzqLDB8+XNStW7dC97I03bp1EyqVSiQnJ4vLly8LSZJEVFRUuc4tSVFc8+bNE/n5+SI/P18kJSWJFStWCDs7O/Hee++VWUd5v+NF37169eqJN954Q+zatUt88803wt3d3eB3gxCFn58kSWLSpEli9+7dYvHixaJWrVrCxcVFDB8+vNR4Xn31VQFAnDt3rkKfCVF5MNkkq5GYmCgAiIEDB5ZabsCAAQKAuHPnjhDin3+M58+fb1AuOjpa2NvbC51OJ4QQ4vDhwwKAWLRokUG5GzduCLVabZAglmTo0KGiXr16+uddu3YVr7zyinB3dxerV68WQgjx+++/CwBi9+7dJdah0+lEfn6+OHDggAAg/vrrL/1r06dPF0qlUv++hBBi06ZNAoA4cOBAqbEJIcSaNWsEALF8+XIhhBAZGRnCyclJPP744wbliv5BbdKkiT5hF0KIo0ePCgBiw4YNQgghtFqtCAgIEE2aNBFarVZfLiMjQ/j4+Ij27dvrj40fP16o1WqDRPXs2bMCgPjss8+MxlxQUCAyMzOFo6Oj+OSTT0p9f0VxBwQEiJycHP3x9PR04eHhIbp27ao/1qNHD1G7dm2RlpZmUMeYMWOEvb29SE5OFkIIERsbKwCImJiYYtfr2LGjeOqpp/TPQ0JCxKRJk4RMJtPfj6JkvCjhKu93LCsrS3h4eIjnnnvOoJxWqxXNmjUTjz32mP5Yeb/fJUlOThYqlUoMGDDA4HhRnCUlm0888YRB2ZSUFKFWq8UzzzxjcDw+Pl6oVCoxePBg/TFTk83y3Etj4uLihEwmM/h90alTJ+Ho6CjS09PLPL8kRXGV9IiKijL4/6W8jH3Hi5LN6Ohog/Lz588XAERCQoIQQohz584JAGLcuHEG5Yq+e2Ulmz179hQARG5ursmxE5UXu9HJ5gghAACSJBkc7927t8Hzpk2bIjc3F3fv3gUA/Oc//4EkSRg6dCgKCgr0Dz8/PzRr1gz79+8v9bpdunTB1atXce3aNeTm5uLgwYPo2bMnnnzySezZswdAYbeoSqVCx44d9eddvXoVgwcPhp+fH+RyORQKBTp16gQABt2Qr7/+OgDg66+/1h9bunQpmjRpgieeeKLMz2XFihVQq9UYOHAgAMDJyQkvvfQSfvvtN1y6dKlY+V69ekEulxt8XgD03X0XLlzA7du38fLLL0Mm++dXiZOTE1544QUcOXJE30U/cuRI5OTkYNOmTfpyMTExUKlUGDx4sP5YZmYm3n77bYSEhMDOzg52dnZwcnJCVlZWsS5ZY/r16wd7e3v9c2dnZzz33HP49ddfodVqkZubi59//hnPP/88HBwcDO71M888g9zc3BKHCzysS5cu+P3335GTk4Pr16/j8uXLGDhwIJo3b25wv+vUqYPQ0FAA5f+OHTp0CMnJyRg+fLhBOZ1Oh549eyI2NtZgmAVQ9ve7JEeOHIFGo0H//v0Njrdt29agW/tBDw4JAIDDhw8jJyen2KznwMBAPPXUUyZ1ez+srHtZmpiYGOh0OowcOVJ/bOTIkcjKyjL4HlbE2LFjERsbi9jYWOzbtw+zZ8/G5s2bMWjQoDLPNfU7XtJ9Bf75/3Dfvn0AgCFDhhiU69+/v8WOpaWah8kmWQ0vLy84ODjg2rVrpZaLi4uDg4MDPDw8DI57enoaPFepVACAnJwcAMCdO3cghICvry8UCoXB48iRI0hKSir1ul27dgVQmGAcPHgQ+fn5eOqpp9C1a1f9P7h79+5Fhw4doFarART+w/P444/jjz/+wIcffoj9+/cjNjYWW7duNYgNAHx9fTFgwAB8+eWX0Gq1+Pvvv/Hbb79hzJgxpcYFAJcvX8avv/6KXr16QQiB1NRUpKam4sUXXwTwzwx1Uz6v+/fvAwD8/f2LnRsQEACdToeUlBQAQKNGjdC6dWvExMQAKJyUsG7dOvTp08fgPg0ePBhLly7Fv//9b+zatQtHjx5FbGwsvL29DT6L0vj5+ZV4LC8vD5mZmbh//z4KCgrw2WefFbvPzzzzDACUea+Bwvut0Whw8OBB7NmzB15eXmjRogW6du2KvXv3AgB+/vln/fcCKP937M6dOwCAF198sVi5efPmQQiB5ORkg3jKul8lKbqHvr6+xV4r6RhQ/H6X9T0oer0iyrqXxuh0OqxatQoBAQFo1aqV/vvetWtXODo66scuV1Tt2rURGRmJyMhIdO7cGVOmTMHUqVPx3XffYdeuXaWea+p3vLz/Hz78WdnZ2RU7tyR16tQBgDJ/rxI9Cv7ZQ1ZDLpfjySefxE8//YSbN2+idu3axcrcvHkTx48fx9NPP23QKlceXl5ekCQJv/32m/4X+oNKOvag2rVro0GDBti7dy+CgoIQGRkJNzc3dOnSBdHR0fjjjz9w5MgRfPDBB/pzfvnlF9y+fRv79+/Xt2YCQGpqaonXGDt2LNauXYsffvgBP/30E9zc3Iq1aJRk5cqVEELg+++/x/fff1/s9dWrV+PDDz806TMr+oespLULb9++DZlMBnd3d/2xESNGIDo6GufOncPVq1eRkJCAESNG6F9PS0vDf/7zH0yfPh3vvPOO/rhGoymWWJUmMTGxxGNKpRJOTk5QKBSQy+V4+eWXMXr06BLrCA4OLvM6bdq0gZOTE/bu3Yu4uDh06dIFkiShS5cuWLRoEWJjYxEfH2+QbJb3O+bl5QWgcJmvB2c9P8hYMmiKontYlNw+KDExscTWzYd7DMr6HhS9FwCwt7cvcdKSseS+rHtpzN69e/UtfyUlXEeOHMHZs2fRsGFDo3WYqqjF8a+//kKPHj1KLFNZ3/EHFb2/xMRE1KpVS3+8oKCgXIl+jx498NVXX2H79u0GMRFVJrZsklWZMmUKhBCIjo4u1o2m1Wrx+uuvQwiBKVOmmFz3s88+CyEEbt26pW+1ePDRpEmTMuvo2rUrfvnlF+zZswfdunUDADRo0AB16tTBtGnTkJ+fb5B8FP3D/XDi8eWXX5ZYf6tWrdC+fXvMmzcP3377LaKiouDo6FhqTFqtFqtXr0b9+vWxb9++Yo8JEyYgISEB//vf/8p8fw8KCwtDrVq1sH79ev3QBQDIysrCli1b9DPUiwwaNAj29vZYtWoVVq1ahVq1aqF79+4Gn4UQothn8c0335i0WPbWrVuRm5urf56RkYEdO3bg8ccfh1wuh4ODA5588kmcOHECTZs2LfFeF/0DXlrroEKhwBNPPIE9e/bgl19+0d/vxx9/HHZ2dnj//ff1yWeR8n7HOnToADc3N5w9e7bEcpGRkVAqleX+TIxp06YNVCpVsW7lI0eOlHsFgHbt2kGtVmPdunUGx2/evIlffvnF4P0HBQXh4sWL0Gg0+mP379/HoUOHSqy7rHtpzIoVKyCTybB9+/Zi3/e1a9cCKLk1/1EUrcXq4+NjtExlfccfVDS7/9tvvzU4vnnzZhQUFJR5fp8+fdCkSRPMmTMHp0+fLrHMrl27iq1aQWQSs4wUJXoEn376qZDJZKJt27Zi3bp14tdffxXr1q0T7dq1EzKZTHz66acG5YsmUDw8m7loAP61a9f0x1599VXh4OAgJk2aJHbs2CF++eUX8e2334rXX3/dYEaxMVu2bNFPGHhw0s6IESMEAOHu7m4wmSYpKUm4u7uLZs2a6WccDxw4UISGhhqdmFI0KUiSJIOZvsbs2LFDP4O2JPfu3RMqlUr07dtXCPHPJIgFCxYUKwtATJ8+Xf+8aBLCM888I3744QexefNm0bp1a4PZ6A8aNGiQ8PHxEUqlUrz77rvFXn/iiSeEh4eH+Prrr8WePXvE+++/L/z9/YWbm1uZEx0ensG8detW8f3334vWrVsLOzs7cfDgQX3ZM2fOCHd3d/HYY4+JmJgYsW/fPvHjjz+KxYsXG8z0zcrKEmq1WnTo0EHs27dPxMbG6lcWEEKIRYsW6e93XFyc/viTTz4pAIimTZsWi7O837G1a9cKmUwmBgwYIL777jtx4MAB8f3334upU6eK1157TV/OlO93SYpmo48aNUr89NNP4ptvvhGBgYHC39/f4LMomiD03XffFaujaDb6yy+/LP773/+KtWvXipCQkGKz0Q8ePCgAiBdffFHs2rVLrF+/XjRv3lzUrVu31Nnopd3LhyUlJQmVSiWefvppo2VatmwpvL299asGFH1WJf3/9qCiuN544w396gR79+4Vs2bNEg4ODqJu3brFJp09rLzf8aKYYmNjDc4vug/79u3THxs6dKiQJElMnjxZPxs9ICCgXLPRhRDi8uXLol69esLJyUlMmjRJ/Pe//xUHDhwQa9asEb179xaSJBlM7iMyFZNNskqHDx8WL774ovD19RV2dnbCx8dH9OvXr8QlUUz9x3jlypWiTZs2wtHRUajValG/fn0xbNgwcezYsTLjSklJETKZzGD5GyH+Scr69etX7JxDhw6Jdu3aCQcHB+Ht7S3+/e9/iz///NPoP34ajUaoVCrRs2fPMuMRQoi+ffsKpVIp7t69a7TMwIEDhZ2dnUhMTDQp2RRCiO3bt4s2bdoIe3t74ejoKLp06SJ+//33Eq+ze/dufXJWUqJ88+ZN8cILLwh3d3fh7OwsevbsKU6fPi3q1q1b7mRz3rx54oMPPhC1a9cWSqVStGjRQuzatavE8iNHjhS1atUSCoVCeHt7i/bt24sPP/zQoNyGDRtEeHi4UCgUxd7/X3/9JQCI0NBQg3M++ugjAUCMHz++xFjL+x07cOCA6NWrl/Dw8BAKhULUqlVL9OrVyyDhe9RkU6fTiQ8//FD/eTVt2lT85z//Ec2aNRPPP/+8vlxpyaYQhUtpNW3aVCiVSuHq6ir69Okjzpw5U6zc6tWrRUREhLC3txcNGzYUmzZtMjobvbz38kFLliwRAMT27duNllm+fLkAILZs2SKEEOKzzz4TAMRPP/1Uat0lzUa3t7cXDRo0EG+99ZZ+hnhpyvsdNyXZ1Gg0YsKECcLHx0fY29uLtm3bisOHD5fr/5siqampYtasWaJly5bCyclJKBQKUadOHTF06FCj/z8TlZckxAP9X0Rk8Xbs2IHevXtj586d+gktRJXp2rVrCA8Px/Tp0/Huu+9W+/Xj4uIQHByMBQsWYOLEiVV+vf79++PatWsGi/QTUeXhBCEiK3H27Flcv34dEyZMQPPmzfH000+bOySyAX/99Rc2bNiA9u3bw8XFBRcuXMD8+fPh4uKCf/3rX+YOr8oJIbB///5iY06JqPIw2SSyEtHR0fj999/RsmVLrF69utisYKKKcHR0xLFjx7BixQqkpqbC1dUVnTt3xkcffVQpM94tnSRJpa5FSkSPjt3oRERERFRluPQREREREVUZJptEREREVGWYbBIRERFRlbG4CUI6nQ63b9+Gs7MzJ0AQERERWSAhBDIyMhAQEACZrPS2S4tLNm/fvo3AwEBzh0FEREREZbhx4wZq165dahmLSzadnZ0BFAbv4uJi5miIiIiI6GHp6ekIDAzU522lsbhks6jr3MXFhckmERERkQUrz5BHThAiIiIioirDZJOIiIiIqgyTTSIiIiKqMhY3ZpOIiIhqDq1Wi/z8fHOHQSVQKBSQy+WPXA+TTSIiIqp2QggkJiYiNTXV3KFQKdzc3ODn5/dIa58z2SQiIqJqV5Ro+vj4wMHBgRu5WBghBLKzs3H37l0AgL+/f4XrYrJJRERE1Uqr1eoTTU9PT3OHQ0ao1WoAwN27d+Hj41PhLnVOECIiIqJqVTRG08HBwcyRUFmK7tGjjKtlsklERERmwa5zy1cZ94jJJhERERFVGY7ZJCIiIsuRFQ9okqrnWiovwLFO9VyrBmOySURERJYhKx7YEQbocqvnejJ74LkLJiWciYmJmDNnDnbu3ImbN2/C1dUVoaGhGDp0KIYNG2bx41Bnz56NqVOn4qOPPsI777xTLddkNzoRERFZBk1S9SWaQOG1TGhFvXr1Klq0aIHdu3dj9uzZOHHiBPbu3Ytx48Zhx44d2Lt3r9FzLWXh+piYGEyePBkrV66stmsy2SQiIiIqh+joaNjZ2eHYsWPo378/IiIi0KRJE7zwwgvYuXMnnnvuOX1ZSZKwfPly9OnTB46Ojvjwww8BAMuWLUP9+vWhVCoRFhaGtWvX6s+Ji4uDJEk4efKk/lhqaiokScL+/fsBAPv374ckSdi5cyeaNWsGe3t7tGnTBqdOnSoz/gMHDiAnJwczZ85EVlYWfv3118r5YMrAZJOIiIioDPfv38fu3bsxevRoODo6lljm4Znb06dPR58+fXDq1CmMHDkS27Ztw9ixYzFhwgScPn0ao0aNwogRI7Bv3z6T45k0aRIWLlyI2NhY+Pj4oHfv3mW2nq5YsQKDBg2CQqHAoEGDsGLFCpOvWxFMNomIiIjKcPnyZQghEBYWZnDcy8sLTk5OcHJywttvv23w2uDBgzFy5EjUq1cPdevWxcKFCxEVFYXo6Gg0aNAA48ePR79+/bBw4UKT45k+fTq6deuGJk2aYPXq1bhz5w62bdtmtHx6ejq2bNmCoUOHAgCGDh2K77//Hunp6SZf21ScIERENVJ2XoG5Q6hyDkr+iieqbA+3Xh49ehQ6nQ5DhgyBRqMxeC0yMtLg+blz5/Dqq68aHOvQoQM++eQTk+No166d/mcPDw+EhYXh3LlzRsuvX78e9erVQ7NmzQAAzZs3R7169bBx48ZiMVU2/iYiohqp4bRd5g6hysXN7WXuEIhsRkhICCRJwvnz5w2O16tXD8A/Wzs+qKTu9oeTVSGE/phMJtMfK2LKxKLSFmBfuXIlzpw5Azu7f1I/nU6HFStWVHmyyW50IiIiojJ4enqiW7duWLp0KbKysipUR0REBA4ePGhw7NChQ4iIiAAAeHt7AwASEhL0rz84WehBR44c0f+ckpKCixcvIjw8vMSyp06dwrFjx7B//36cPHlS//j1118RGxuL06dPV+j9lBdbNomoRjo7s0el1VWQW4Br++KAB1ojiuRqdRgQGwcA2NQ6CPZyI3/jyyTU6xIMuUJeaXERUeX64osv0KFDB0RGRmLGjBlo2rQpZDIZYmNjcf78ebRq1arU8ydNmoT+/fujZcuW6NKlC3bs2IGtW7fql0xSq9Vo27Yt5s6di6CgICQlJeH9998vsa6ZM2fC09MTvr6+eO+99+Dl5YW+ffuWWHbFihV47LHH8MQTTxR7rV27dlixYgU+/vhj0z4MEzDZJKIaqTLHMybHp8NeJgEofQ9he7nMeLIJQJuUA+e6bpUWFxFVrvr16+PEiROYPXs2pkyZgps3b0KlUqFhw4aYOHEioqOjSz2/b9+++OSTT7BgwQK8+eabCA4ORkxMDDp37qwvs3LlSowcORKRkZEICwvD/Pnz0b1792J1zZ07F2PHjsWlS5fQrFkz/Pjjj1AqlcXK5eXlYd26dcUmLxV54YUXMGfOHMybN6/E8yuDJEQJf4qbUXp6OlxdXZGWlgYXFxdzh0NEVKZr+64hLzOvxNdytTr0OXIVAPBD23qlJpv2bvao+3jdKomRyJLk5ubi2rVrCA4Ohr29/T8vWMEOQua2f/9+PPnkk0hJSYGbm1uVX8/YvTIlX2PLJhHRI8hJyTGaaJoqNzUXmgwNVM6qSqmPyOo41ilM/rg3uk1hsklE9AjS4tMqvT6fRj6VWieRVXGswwTQxnA2OhFRBem0OmTczqjUOtNvpkPoLGp0ExFZkM6dO0MIUS1d6JWFySYRUQVl3M6ArkBXqXVq87TIuluxZVWIiCwRk00iogqq7C70qq6XiMgcmGwSEVVAXlYecpJzqqTurLtZKMi1/e00iahmYLJJRFQBVdn6KIRA2g22bhKRbWCySURkIqETSL+RXqXXSItPg4Utg0xEVCFMNomITJR5JxMFmqrt5s7Pzkd2UnaVXoOIqDpwnU0iIhOlXa+eLu6062lw9HaslmsRWYq0+LRq+0PLwcsBrnVcq+VaNRmTTSIiE+Rl5SHrXvUsTZSZmImC3ALY2fNXNdUMafFpWBq2tNomyNnZ22HMhTEmJZyJiYmYM2cOdu7ciZs3b8LV1RWhoaEYOnQohg0bBgcHhyqMuOKCgoJw/fp1AIBMJoOvry+efvppLFy4EO7u7lV6bXajExGZIDUutdquJYRA6vXqux6RuWUnZVfrSgwFuQUmtaJevXoVLVq0wO7duzF79mycOHECe/fuxbhx47Bjxw7s3bvX6Ln5+fmVEfIjmTlzJhISEhAfH49vv/0Wv/76K958880qvy6TTSKictIV6Kp9Dcy062ncUYjIQkRHR8POzg7Hjh1D//79ERERgSZNmuCFF17Azp078dxzz+nLSpKE5cuXo0+fPnB0dMSHH34IAFi2bBnq168PpVKJsLAwrF27Vn9OXFwcJEnCyZMn9cdSU1MhSRL2798PANi/fz8kScLOnTvRrFkz2Nvbo02bNjh16lSZ8Ts7O8PPzw+1atXCk08+iWHDhuHPP/+snA+nFEw2iYjKKS0+rdJ3DCpLgaYA6beqduY7EZXt/v372L17N0aPHg1Hx5LHUkuSZPB8+vTp6NOnD06dOoWRI0di27ZtGDt2LCZMmIDTp09j1KhRGDFiBPbt22dyPJMmTcLChQsRGxsLHx8f9O7d26TW01u3buE///kP2rRpY/K1TcVkk4ioHIROIOVqilmunXIlhcsgEZnZ5cuXIYRAWFiYwXEvLy84OTnByckJb7/9tsFrgwcPxsiRI1GvXj3UrVsXCxcuRFRUFKKjo9GgQQOMHz8e/fr1w8KFC02OZ/r06ejWrRuaNGmC1atX486dO9i2bVup57z99ttwcnKCWq1G7dq1IUkSFi9ebPK1TcVkk4ioHNJvpSM/xzxjrjQZGmTd4X7pRJbg4dbLo0eP4uTJk2jUqBE0Go3Ba5GRkQbPz507hw4dOhgc69ChA86dO2dyHO3atdP/7OHhgbCwsDLrmTRpEk6ePIm///4bP//8MwCgV69e0Gq1Jl/fFJziSERUBqETSL6UbNYYki4kwdHXsdg/dERUPUJCQiBJEs6fP29wvF69egAAtVpd7JySutsf/n9YCKE/JpPJ9MeKmNI1XtbvBy8vL4SEhAAAQkNDsWTJErRr1w779u1D165dy30dU7Flk4ioDOk305GXlWfWGDTpGmQmZJo1BqKazNPTE926dcPSpUuRlVWxnoaIiAgcPHjQ4NihQ4cQEREBAPD29gYAJCQk6F9/cLLQg44cOaL/OSUlBRcvXkR4eLhJ8cjlcgBATk6OSeeZii2bRESl0Gl1SLqQZO4wAABJ55Pg5OcEScbWTSJz+OKLL9ChQwdERkZixowZaNq0KWQyGWJjY3H+/Hm0atWq1PMnTZqE/v37o2XLlujSpQt27NiBrVu36pdMUqvVaNu2LebOnYugoCAkJSXh/fffL7GumTNnwtPTE76+vnjvvffg5eWFvn37lnr9jIwMJCYmQgiBGzduYPLkyfDy8kL79u0r9HmUF1s2iYhKkXIlpVrX/StNXlZeta7zSUSG6tevjxMnTqBr166YMmUKmjVrhsjISHz22WeYOHEiZs2aVer5ffv2xSeffIIFCxagUaNG+PLLLxETE4POnTvry6xcuRL5+fmIjIzE2LFj9UsmPWzu3LkYO3YsWrVqhYSEBPz4449QKpWlXn/atGnw9/dHQEAAnn32WTg6OmLPnj3w9PQ0+bMwBVs2iYiMyM/Ox/1L980dhoGkC0lwDnDmrkJkkxy8HGBnb1etOwg5eJm244+/vz8+++wzfPbZZ6WWM7aCxOuvv47XX3/d6HkRERE4fPhwmXV17NgRp0+fLkfEheLi4spdtrLxtxURkRF3Tt2xuAXVdQU63D1zFwGtAswdClGlc63jijEXxnBvdBvDZJOIqARpN9KQddcylxvKuJ2BzFqZcPJzMncoRJXOtY4rE0Abw2STiOgh+Tn5uHfmnrnDKNWdv+/A3t0edir+GieqSTp37mx1mzxwghAR0QOEEEj4MwHa/Kpd5PhRFWgKkHgy0er+0SGimofJJhHRA5LOJyEnuWrXnKssWXezkHzZvIvNExGVhckmEdH/y0zMtLrk7f6F+8i6Z5ljS4mIACabREQAgNy0XCT8mVB2QQsjhEDC8QTkZZp3hyMiImOYbBJRjVeQW4BbR29Bp9WZO5QK0eZrcevoLWjzLHucKRHVTEw2iahG0+ZrcfPITYvZJaii8rLycPOPm1abMBOR7eKaGURUY+m0Otw6eguaDI25Q6kUuam5uB17G7Ueq8X908lqJedkITMvt1qu5aS0h4fasVquVZMx2SSiGknoBG7H3raamefllXUvC7eP30ZAqwAmnGR1knOyMGPfdhToqqeF3k4mw4wn+5qUcCYmJmLOnDnYuXMnbt68CVdXV4SGhmLo0KEYNmwYHBxM2/6yOp04cQKzZ8/Gr7/+irS0NNSpUwedOnXCpEmT0KBBgyq7LrvRiajGETqBW7G3bHYWd2ZiJhL+TLC4rTaJypKZl1ttiSYAFOh0JrWiXr16FS1atMDu3bsxe/ZsnDhxAnv37sW4ceOwY8cO7N271+i5+fn5lRFyhf3nP/9B27ZtodFo8O233+LcuXNYu3YtXF1dMXXq1Cq9NpNNIqpRdFpdYaJpoVtRVpaMhAwmnESVLDo6GnZ2djh27Bj69++PiIgINGnSBC+88AJ27tyJ5557Tl9WkiQsX74cffr0gaOjIz788EMAwLJly1C/fn0olUqEhYVh7dq1+nPi4uIgSRJOnjypP5aamgpJkrB//34AwP79+yFJEnbu3IlmzZrB3t4ebdq0walTp4zGnZ2djREjRuCZZ57Bjz/+iK5duyI4OBht2rTBwoUL8eWXX1buB/UQJptEVGPoCgrHaNp6olkkIyEDt4/dZsJJVAnu37+P3bt3Y/To0XB0LLnbXZIMh65Mnz4dffr0walTpzBy5Ehs27YNY8eOxYQJE3D69GmMGjUKI0aMwL59+0yOZ9KkSVi4cCFiY2Ph4+OD3r17G2093bVrF5KSkjB58uQSX3dzczP5+qZgsklENULRrPPspGxzh1KtMu9kFs5SL+AsdaJHcfnyZQghEBYWZnDcy8sLTk5OcHJywttvv23w2uDBgzFy5EjUq1cPdevWxcKFCxEVFYXo6Gg0aNAA48ePR79+/bBw4UKT45k+fTq6deuGJk2aYPXq1bhz5w62bdtWYtlLly4BAMLDw02+TmVgsklENq8gtwA3fr+BnBTbmgxUXtlJ2bhx+AbX4SSqBA+3Xh49ehQnT55Eo0aNoNEYrmwRGRlp8PzcuXPo0KGDwbEOHTrg3LlzJsfRrl07/c8eHh4ICwszWo8Q5u3dYLJJRDYtLysP8b/H28zyRhWVm5qLG4duWP16okTmEhISAkmScP78eYPj9erVQ0hICNRqdbFzSupufzhZFULoj8lkMv2xIqZMLHq47iJFM80fjr26MNkkIpuVm5aLG7/fQH62eWeBWgpNhgbxB+O5tSVRBXh6eqJbt25YunQpsrIqNu47IiICBw8eNDh26NAhREREAAC8vb0BAAkJ/2yd++BkoQcdOXJE/3NKSgouXrxotJu8e/fu8PLywvz580t8PTU1tbxvoUK4ziYR2aSse1m4few2xyo+JD8nH/EH41GrTS2o3Yu3xBCRcV988QU6dOiAyMhIzJgxA02bNoVMJkNsbCzOnz+PVq1alXr+pEmT0L9/f7Rs2RJdunTBjh07sHXrVv2SSWq1Gm3btsXcuXMRFBSEpKQkvP/++yXWNXPmTHh6esLX1xfvvfcevLy80Ldv3xLLOjo64ptvvsFLL72E3r17480330RISAiSkpKwefNmxMfHY+PGjY/02ZSGLZtEZHMybmcU7nXORLNE2nwtbh6+icw7meYOhciq1K9fHydOnEDXrl0xZcoUNGvWDJGRkfjss88wceJEzJo1q9Tz+/bti08++QQLFixAo0aN8OWXXyImJgadO3fWl1m5ciXy8/MRGRmJsWPH6pdMetjcuXMxduxYtGrVCgkJCfjxxx+hVCqNXrtPnz44dOgQFAoFBg8ejPDwcAwaNAhpaWlGr1FZJGHuUaMPSU9Ph6urK9LS0uDi4mLucIjIyqRcS8Hd03fNHYZerlaHPkeuAgB+aFsP9nLL+RtfkiT4NvOFa6CruUOhGiY3NxfXrl1DcHAw7O3t9cetYQchc9u/fz+efPJJpKSkVPmSRYDxe2VKvsZudCKyGUnnk3D/0n1zh2E1hBBIPJkIrUYLjxAPc4dDBA+1I2Y82Zd7o9sYJptEZPWEELh76i5Sr6eaOxSrdO/cPWjztPBu6G3uUIjgoXZkAmhjmGwSkVUTOoGEEwnIuJ1h7lCsWvKVZGjztfBt6mt0+RQiMr/OnTubfd1MU1nO4CEiIhMJncDtY7eZaFaStPg07qdORJWOLZtEZJV0Wh1ux95G1r2asc95dcm4nQGhEwhoFQBJxhZOqlrW1kJXE1XGPWLLJhFZHSaaVSszMRO3j99mCydVGYVCAQDIzs42cyRUlqJ7VHTPKsKkls2CggLMmDED3377LRITE+Hv74+oqCi8//77BlssffDBB/jqq6+QkpKCNm3a4PPPP0ejRo0qHCQRUZGirnMmmlUrMzETCScS4N/Sn2M4qdLJ5XK4ubnh7t3CZcocHBz4PbMwQghkZ2fj7t27cHNzg1wur3BdJiWb8+bNw/Lly7F69Wo0atQIx44dw4gRI+Dq6oqxY8cCAObPn4/Fixdj1apVaNCgAT788EN069YNFy5cgLOzc4UDJSIqWqon6y4TzeqQcTsDcoUcvk19zR0K2SA/Pz8A0CecZJnc3Nz096qiTEo2Dx8+jD59+qBXr14AgKCgIGzYsAHHjh0DUPgPwZIlS/Dee++hX79+AIDVq1fD19cX69evx6hRox4pWCKq2ZLOJSH9Vrq5w6hRUq+nws7eDp4NPM0dCtkYSZLg7+8PHx8f5OfnmzscKoFCoXikFs0iJiWbHTt2xPLly3Hx4kU0aNAAf/31Fw4ePIglS5YAAK5du4bExER0795df45KpUKnTp1w6NChEpNNjUYDjUajf56ezn9IiKi41LhUJF9JNncYNVLShSQoHBVwqcVd3ajyyeXySkloyHKZlGy+/fbbSEtLQ3h4OORyObRaLT766CMMGjQIAJCYmAgA8PU17HLx9fXF9evXS6xzzpw5+OCDDyoSOxHVEDnJORa1BWVNlHgyEUonJexd7csuTET0AJNmo2/atAnr1q3D+vXr8eeff2L16tVYuHAhVq9ebVDu4UG+QgijA3+nTJmCtLQ0/ePGjRsmvgUismXaPG3hzGgukWJWRROztPlac4dCRFbGpJbNSZMm4Z133sHAgQMBAE2aNMH169cxZ84cDB8+XD+AtGimepG7d+8Wa+0solKpoFKpKho/Edm4xL8SUZBbYO4wCEB+dj7unbkHv+aPNlmAiGoWk1o2s7Oz9UscFZHL5dDpdACA4OBg+Pn5Yc+ePfrX8/LycODAAbRv374SwiWimiT9ZjoyEzPNHQY9IO1GGjLv8J4QUfmZ1LL53HPP4aOPPkKdOnXQqFEjnDhxAosXL8bIkSMBFHafv/XWW5g9ezZCQ0MRGhqK2bNnw8HBAYMHD66SN0BEtkmbr8XdMxynaYnunroLBy8HyOTcF4SIymZSsvnZZ59h6tSpiI6Oxt27dxEQEIBRo0Zh2rRp+jKTJ09GTk4OoqOj9Yu67969m2tsEpFJki8lQ5vH8YGWKD8nHylXUrgcEhGViyQsbNR9eno6XF1dkZaWBhcXLrNBVBMV5Bbg6s9XbWK7xFytDn2OXAUA/NC2HuxtpDVQZidDvS71IFdyyRqimsiUfM02fusRkU1JuZpiE4mmLdMV6JB6PdXcYRCRFWCySUQWRafVIS0+zdxhUDmkxqXyjwIiKhOTTSKyKJmJmVzL0UoU5BYgOynb3GEQkYVjsklEFiXjdoa5QyATcK96IioLk00ishhCJ5B9jy1l1iTrbhZ3dyKiUjHZJCKLkZOSA51WZ+4wyATaPC006Rpzh0FEFozJJhFZjJzkHHOHQBWQm5Jr7hCIyIIx2SQii8EWMuuUm8Zkk4iMY7JJRBYjLyPP3CFQBeRl8r4RkXFMNonIYuRn55s7BKoA3jciKg2TTSKyCNp8LScHWamC3AIu7k5ERjHZJCKLoNVwIXdrxoX4icgYJptEZBG0eUxWrBnvHxEZw2STiCyCroBd6NaM94+IjGGySUQWgeM1rRuTTSIyhskmEVkEoeUEE2vGCUJEZAyTTSKyCExWrBvvHxEZw2STiCwCkxXrxvtHRMYw2SQiiyAEkxWrxttHREYw2SQiy8BkxaqxZZOIjGGySUQWgcmKdbPFlunExER069YNjo6OcHNzM3c4RFaLySYRWQRbTFZqkqI/FqKioiBJEl577bViZaKjoyFJEqKioqo5uor5+OOPkZCQgJMnT+LixYtGy6Wnp2Pq1Klo1KgR1Go1PD090bp1a8yfPx8pKSnVGLFpOnfuDEmSIEkSZDIZfH198dJLL+H69esm1bNq1Sp9PQ8/7t69qy936tQpdOrUCWq1GrVq1cLMmTPL/P8+KCioWJ3vvPNOiTE0bdoU9vb28PPzw5gxY0x6D1S17MwdABERwJZNq/fA7QsMDMTGjRvx8ccfQ61WAwByc3OxYcMG1KlTx0wBmu7KlSto1aoVQkNDjZZJTk5Gx44dkZ6ejlmzZqFVq1ZQKpW4fPky1q9fj/Xr12P06NElnpuXlwelUllV4ZfLK6+8ok/6rl+/jrfeegtDhw7Fb7/9Vu46BgwYgJ49exoci4qKQm5uLnx8fAAUJuTdunXDk08+idjYWFy8eBFRUVFwdHTEhAkTSq1/5syZeOWVV/TPnZycDF5fvHgxFi1ahAULFqBNmzbIzc3F1atXyx0/VT22bBKRRWCyad0evH8tW7ZEnTp1sHXrVv2xrVu3IjAwEC1atDA8TwjMnz8f9erVg1qtRrNmzfD999/rX9dqtfjXv/6F4OBgqNVqhIWF4ZNPPjGoIyoqCn379sXChQvh7+8PT09PjB49Gvn5+aXGvGzZMtSvXx9KpRJhYWFYu3at/rWgoCBs2bIFa9asKbU19t1330V8fDz++OMPjBgxAk2bNkV4eDieffZZrF+/HtHR0QZ1fvjhh4iKioKrq6s+gdqyZQsaNWoElUqFoKAgLFq0yOAakiRh+/btBsfc3NywatUqAEBcXBwkScLGjRvRvn172Nvbo1GjRti/f3+p7x8AHBwc4OfnB39/f7Rt2xajR4/Gn3/+WeZ5D1Kr1fDz89M/5HI5fvnlF/zrX//Sl/n222+Rm5uLVatWoXHjxujXrx/effddLF68uMzWTWdnZ4P6H0w2U1JS8P7772PNmjUYPHgw6tevj0aNGuG5554z6T1Q1WKySUQWgcmmdXv4/o0YMQIxMTH65ytXrsTIkSOLnff+++8jJiYGy5Ytw5kzZzBu3DgMHToUBw4cAADodDrUrl0bmzdvxtmzZzFt2jS8++672Lx5s0E9+/btw5UrV7Bv3z6sXr0aq1at0idjJdm2bRvGjh2LCRMm4PTp0xg1ahRGjBiBffv2AQBiY2PRs2dP9O/fHwkJCcUS3KLYNm3ahKFDh6JWrVolXkeSJIPnCxYsQOPGjXH8+HFMnToVx48fR//+/TFw4ECcOnUKM2bMwNSpU0uN3ZhJkyZhwoQJOHHiBNq3b4/evXvj/v375T4/OTkZ3333Hdq0aWNwPCgoCDNmzCh3PWvWrIGDgwNefPFF/bHDhw+jU6dOUKlU+mM9evTA7du3ERcXV2p98+bNg6enJ5o3b46PPvoIeXl5+tf27NkDnU6HW7duISIiArVr10b//v1x48aNcsdLVY/JJhFZBCab1u3h+/fyyy/j4MGDiIuLw/Xr1/H7779j6NChBmWysrKwePFirFy5Ej169EC9evUQFRWFoUOH4ssvvwQAKBQKfPDBB2jdujWCg4MxZMgQREVFFUs23d3dsXTpUn2rYq9evfDzzz8bjXfhwoWIiopCdHQ0GjRogPHjx6Nfv35YuHAhAMDb2xsqlUrfaufq6lqsjnv37iE1NRVhYWEGx1u1agUnJyc4OTlh0KBBBq899dRTmDhxIkJCQhASEoLFixejS5cumDp1Kho0aICoqCiMGTMGCxYsKOMTL27MmDF44YUXEBERgWXLlsHV1RUrVqwo9ZwvvvgCTk5OcHR0hKenJy5cuICVK1calKlfvz68vLzKHcfKlSsxePBg/RAKoHCyla+vr0G5oueJiYlG6xo7diw2btyIffv2YcyYMViyZIlBa/HVq1eh0+kwe/ZsLFmyBN9//z2Sk5PRrVs3g6SUzItjNonIIjDZtG4P723v5eWFXr16YfXq1RBCoFevXsUSlrNnzyI3NxfdunUzOJ6Xl2fQ3b58+XJ88803uH79OnJycpCXl4fmzZsbnNOoUSPI5XL9c39/f5w6dcpovOfOncOrr75qcKxDhw4ltmCW5eHWy23btiEvLw9vv/02cnJyDF6LjIwsFkefPn2KxbFkyRJotVqD91SWdu3a6X+2s7NDZGQkzp07V+o5Q4YMwXvvvQcAuHPnDmbPno3u3bvj+PHjcHZ2BoBSk/aHHT58GGfPnsWaNWuKvfbw51TUff7w8QeNGzdO/3PTpk3h7u6OF198Ud/aqdPpkJ+fj08//RTdu3cHAGzYsAF+fn7Yt28fevToUe7Yqeow2SQii8C90a1bSfdv5MiR+lnBn3/+ebHXdbrCBHXnzp3FuqGLuls3b96McePGYdGiRWjXrh2cnZ2xYMEC/PHHHwblFQqFwXNJkvT1G1NS8lNa4vMwb29vuLm54fz58wbHiyZBOTs7IzU11eA1R0fHMq/58BhGSZKKHStrPOqD55bG1dUVISEhAICQkBCsWLEC/v7+2LRpE/7973+X6xoP+uabb9C8eXO0atXK4Lifn1+xFsyimeoPt3iWpm3btgCAy5cvw9PTE/7+/gCAhg0b6st4e3vDy8sL8fHxJsdPVYPd6ERkER5uGSPrUlLLdM+ePZGXl4e8vLwSW5gaNmwIlUqF+Ph4fbdy0SMwMBAA8Ntvv6F9+/aIjo5GixYtEBISgitXrjxyvBERETh48KDBsUOHDiEiIqLcdchkMvTv3x/r1q3DrVu3KhRHw4YNS4yjQYMG+lZNb29vJCQk6F+/dOkSsrOzi9V15MgR/c8FBQU4fvw4wsPDTYqn6JoPt8iWR2ZmJjZv3mwwMahIu3bt8Ouvvxp0be/evRsBAQEICgoq9zVOnDgBAPoks0OHDgCACxcu6MskJycjKSkJdevWNfk9UNVgsklEFoEtm9atpD8W5HI5zp07h3PnzpXYHezs7IyJEydi3LhxWL16Na5cuYITJ07g888/x+rVqwEUtrYdO3YMu3btwsWLFzF16lTExsY+cryTJk3CqlWrsHz5cly6dAmLFy/G1q1bMXHiRJPqmT17NmrVqoU2bdpg5cqV+Pvvv3HlyhVs27YNhw8fLrMbfMKECfj5558xa9YsXLx4EatXr8bSpUsN4njqqaewdOlS/Pnnnzh27Bhee+21Yi25QGHr8bZt23D+/HmMHj0aKSkpJU7KelB2djYSExORmJiIv/76C9HR0bC3t9d3SQNAly5dsHTp0jI/i02bNqGgoABDhgwp9trgwYOhUqkQFRWF06dPY9u2bZg9ezbGjx+vb309evQowsPD9Yn74cOH8fHHH+PkyZO4du0aNm/ejFGjRqF379761uMGDRqgT58+GDt2LA4dOoTTp09j+PDhCA8Px5NPPllmzFQ92I1ORBaBLZvWzdgfCy4uLqWeN2vWLPj4+GDOnDm4evUq3Nzc0LJlS7z77rsAgNdeew0nT57EgAEDIEkSBg0ahOjoaPzvf/97pHj79u2LTz75BAsWLMCbb76J4OBgxMTEoHPnzibV4+npiaNHj2LevHlYsGABrl27BplMhtDQUAwYMABvvfVWqee3bNkSmzdvxrRp0zBr1iz4+/tj5syZBkstLVq0CCNGjMATTzyBgIAAfPLJJzh+/HixuubOnYt58+bhxIkTqF+/Pn744YcyJ/Z8/fXX+PrrrwEUTrJq2rQp/vvf/xpMerpy5QqSkpLK/CxWrFiBfv36wd3dvdhrrq6u2LNnD0aPHo3IyEi4u7tj/PjxGD9+vL5MdnY2Lly4oB8ioFKpsGnTJnzwwQfQaDSoW7cuXnnlFUyePNmg7jVr1mDcuHHo1asXZDIZOnXqhJ9++qnEhJzMQxIWtm1Heno6XF1dkZaWVuYvKSKyHdd/u47c1Fxzh1HpcrU69DlSuMD0D23rwV5umx1KDl4OCGwXaO4waqS4uDgEBwfjxIkTxSZOEVUVU/I12/ytR0RWh93o1o2rCRCRMUw2icgiMFmxbrx/RGQMx2wSkUWwsBE9ZCImm+YTFBTE/3/IorFlk4gsApMVK8fbR0RGMNkkIiIioirDZJOIiIiIqgyTTSKyCKZsE0gWiLePiIzgBCEisgiSjNmKNeP9o4rIziswdwhVykHJNAtgsklEFkJmx44Wa8b7RxXRcNouc4dQpeLm9jJ3CBaBvx2IyCLIFPx1ZM2YbBKRMWzZJCKLIFfIzR0CPQK5kvePTHd2Zo8qv0ZOfj7O3E3EsC/PAgDWjGqIlgG1IeM48WrDZJOILIKdPX8dWTM7Fe8fma46xjTqoIX9Az0n9goZVHYyKOT8A6m6sN+DiCwCk03rZqfm/SPLVKDTlusYVR0mm0RkERSOCnOHQI9A4cD7R5ZJq9MVO1ZQwjGqOkw2icgiKB2V5g6BHoHSifePLFM+WzbNjskmEVkEpZOSC7tbKZmdDAo1WzbJMuVriyeWJR2jqsNkk4gsgiSToHRm65g1UrmozB0CkVF52uILx+exZbNaMdkkIoth72Zv7hCoAtTuanOHQGRUyS2btr1zkaVhsklEFsPB08HcIVAFqD2YbJJl0gkd8nTFE0tNAZPN6sRkk4gshtqTSYs14n0jS2UsqczTFZQ4S52qBpNNIrIYCrWCs5qtjNpdzd2fyGLlFOQbfS23lNeocjHZJCKL4uTrZO4QyASOPo7mDoHIqOz8PKOv5ZTyGlUuJptEZFGc/JlsWhPeL7JkpSWbWUw2qw2TTSKyKPZu9lyz0UqonFVQOXPZI7JMBTotcgtKSzY1EEJUY0Q1F5NNIrIokiTBpbaLucOgcuB9IkuWqdGU+nphMspxm9WBySYRWRyXQCYxlo5/FJClS8/LKbuMJrcaIiEmm0RkcZSOSjh4cc1NS+bo6wg7eztzh0FUIp3QIT237EQyNTe7GqIhJptEZJHcg93NHQKVwr0e7w9ZrnRNLnQoex1NjTafs9KrAZNNIrJIjr6OUDpyzU1LpHJRcbcnsmgpOVnlLptsQlmqGCabRGSRJEmCe322nlkiz1BPc4dAZFRuQT4y8so/FjM1N5u7CVUxJptEZLFcA105LtDCKB2VXFuTLFpSdqZJ5bVCZ1JLKJmOySYRWSxJJsGzAVvRLIlnmCckSTJ3GEQlytdqK5Q43s3OgI5rblYZJptEZNFcA105dtNCqFxUcA5wNncYREbdzUqHgOlJY4FOi+Qc01pEqfyYbBKRRZNkErzCvcwdBgHwbujNVk2yWJqC/Eea7HM3M4NjN6sIk00isnjOAc5Qe6jNHUaN5ujjCEdvR3OHQWRUQmZahVo1ixQILe5mpVdiRFSEySYRWQWfxj7mDqHGkmQSfBrx8yfLlaHJQbqm7B2DypKUncktLKsAk00isgr2rvZc6N1MPOp7QOnEcbNkmXRCh1sZqZVSl4DArfSUSqmL/mFysnnr1i0MHToUnp6ecHBwQPPmzXH8+HH960IIzJgxAwEBAVCr1ejcuTPOnDlTqUETUc3kGebJpZCqmcJBAY9QD3OHQWRUYmY68rQFlVZfVr4G901cPolKZ1KymZKSgg4dOkChUOB///sfzp49i0WLFsHNzU1fZv78+Vi8eDGWLl2K2NhY+Pn5oVu3bsjIyKjs2ImohpEr5PBt4mvuMGoUv2Z+kMnZCUaWKStPg6Tsys8vEjPTKjWBrelMaiKYN28eAgMDERMToz8WFBSk/1kIgSVLluC9995Dv379AACrV6+Gr68v1q9fj1GjRlVO1ERUYzn5OcE5wBkZt/kHbFVzreMKBy9uS0mWSavT4WZ6ctXULXS4kZaMeu5cgaEymPTn6o8//ojIyEi89NJL8PHxQYsWLfD111/rX7927RoSExPRvXt3/TGVSoVOnTrh0KFDJdap0WiQnp5u8CAiKo1vE1/YqdidXpUUagUnBZFFu52RCk0Vtj5m5WtwrwpaTWsik5LNq1evYtmyZQgNDcWuXbvw2muv4c0338SaNWsAAImJiQAAX1/Dbi5fX1/9aw+bM2cOXF1d9Y/AwMCKvA8iqkHkSjl8m7E7vSr5tfCDzI7d52SZUnOzkZJb9VtM3slMR3Z+XpVfx9aZ9JtEp9OhZcuWmD17Nlq0aIFRo0bhlVdewbJlywzKPdzkLIQw2gw9ZcoUpKWl6R83btww8S0QUU3k5OsEt7pu5g7DJnnU94CDJ7vPyTJpCvKrbca4gEB82n0u9v6ITEo2/f390bBhQ4NjERERiI+PBwD4+fkBQLFWzLt37xZr7SyiUqng4uJi8CAiKg/vRt5ckqeS2bvac8cmslg6IRCflgytqL7kL09bgBtVNDa0pjAp2ezQoQMuXLhgcOzixYuoW7cuACA4OBh+fn7Ys2eP/vW8vDwcOHAA7du3r4RwiYj+IZPLENAqAJKMA/grg8xOBv9W/vw8yWIlZKQip6D6u7XTNTlIyuL4zYoyKdkcN24cjhw5gtmzZ+Py5ctYv349vvrqK4wePRpAYff5W2+9hdmzZ2Pbtm04ffo0oqKi4ODggMGDB1fJGyCimk3louJElkri29QXSke2FJNlSs3Jxv0c861/mZCZhuw8jdmub81Mms7ZunVrbNu2DVOmTMHMmTMRHByMJUuWYMiQIfoykydPRk5ODqKjo5GSkoI2bdpg9+7dcHZ2rvTgiYgAwC3IDdn3s7kc0iNwreMKl1ocxkSWKbcgHzfNvLOPgMD1tPsI9fSFnUxu1lisjclrhzz77LN49tlnjb4uSRJmzJiBGTNmPEpcREQm8WvmB02aBnlZnDlqKpWLiovlk8XS6nS4nnofOph/kk6+Tov4tGQEu3lx/U0TcF0LIrIJMjsZAiIDuNuNieQKOQIiOe6VLNet9BRotPnmDkMvMy8Xd7K4Jrgp+FuZiGyGykUF36ZsoTOFX3M/jtMki5WUlYFUTba5wyjmblY60jU55g7DajDZJCKb4lLbBW5BbuYOwyp4hnrCyc/J3GEQlSg7T4OEzDRzh2HUjbRk7p9eTkw2icjm+DTygdpdbe4wLJqjtyM8wzzNHQZRiQp0WlxPuw8BYe5QjNIKHeJT70MnLDdGS8Fkk4hsjiSTEBAZwP3TjVCoFfBv6c8JDmSRhBC4kZaMfJ3W3KGUKbsgD4kZqeYOw+Ix2SQim2Rnb1e4QDkTKgOSTEJA6wDIlVy6hSzTvewMZOTlmjuMckvKyURaruWNK7UkTDaJyGY5eDrAu6G3ucOwKL5NfWHvam/uMIhKlJ2nwZ1M65vpfTM9heM3S8Fkk4hsmns9dy5W/v/cgtzgGuhq7jCISqTV6RCflmzR4zSN0YrC2Dl+s2RMNonI5vk284XKRWXuMMxK7aHmtp5k0W6mpyBPZ72tg9n5Gtzl+pslYrJJRDZPJpehVutakCtq5jhFO5UdAlpx4XayXMk5WUizwPU0TXU3Kx2Z3D+9GCabRFQjKBwKZ2DXNJL0/zPz7TkznyyTpiAft9NTzR1GpbmZlgytzvxba1oSJptEVGM4+jjCK9zL3GFUK5/GPlB7cM1Rsky6/1/myBL2Pa8seboC3EpPMXcYFoXJJhHVKB4hHjVm1xzupkSW7l5WOrIL8swdRqVL1WQjJSfL3GFYDCabRFSjSJJUI/YD5z7xZOmy8zS4m5Vh7jCqzO2MVC6H9P+YbBJRjSNXyBHQOgAyuW3+CpQr5KjVupbNvj+yflqdDvHp1rnMUXlphQ430pIhuBwSk00iqplUzir4NrPNlj//lv5QOCjMHQaRUQmZNaPVLytfg3vZttt6W15MNomoxnKp5QL3eu7mDqNSeTbwhKOPo7nDIDIqLTcHyTVoPOOdzHTk5NveuFRTMNkkohrNO8LbZmZrO/o4wrOBp7nDIDIqX6utcTO1Bf5/xr2wnRn3pmKySUQ1miSTENAqAHYq616HUqFWwL+FPySJC7eTZRJC4GZ6MgqE1tyhVLtcbT4SMtLMHYbZMNkkohrPzt4O/q2sN1GTZIULt8uVNXOHJLIO97MzkZGXa+4wzOZ+TibSNTnmDsMsmGwSEQFw8HSAV4R1Lvju28QX9m725g6DyKjs/DwkZNbclr0iN9NSkK+teS27TDaJiP6fR30POPs7mzsMk7gGusK1jqu5wyAySqvT4UbafZte5qi8CoQW8Wn3a9xySEw2q0Hnzp0hSRKioqLMHQoRlcG3ma/VLPiuclHBp4mPucMgKtWt9BRoasAyR+WVla/Bnax0c4dRrZhs1jCJiYkYMWIEfHx8oFKp0LBhQ3z66aflOvfSpUt44YUX4OHhAbVajZYtW2LDhg1VHDFR9ZIr5AiItPwF32V2MquIk2q2pOwMpGqyzR2GxbmblY4MTc0Zv2rd0y/JJJmZmXjiiSdw6dIlqNVq1K1bF+fOncPYsWNx584dfPTRR0bPvXXrFtq3b4+kpCS4uLjA398fJ06cwODBg5GZmYlXXnmlGt8JUdUqajFMPJlo7lCM8m/hbzUtsFQzZedpavQM7LLcSEtGiKcPlHLbT8Vs+k/ioKAgSJKEd955B9HR0fDw8ICrqyuio6Oh0WiMnpebmws3NzdIkoRPPvlEfzwuLg6SJEGSJOzatQtZWVno27cvgoOD4ejoCJVKhdDQUEybNg15ecYXcH2wnv379xeLd8aMGfpjt2/fxsiRIxEQEAClUol69eph1qxZKCj4p0ti1apV+vri4uKMXvfLL7/EpUuXIEkSjhw5gosXL2L8+PEAgPnz5yMx0fg/rHPnzkVSUhKcnZ1x7tw5XL16FS+88AIAYMqUKaW+XyJrZMljIT3qe8DJz8ncYRAZla/V4jrHaZaqQGhxPfU+dDVg/KZNJ5tFlixZgs2bN8PNzQ3p6elYtmwZpkyZYrS8vb09+vfvDwDYuHGj/njRzwEBAejatStycnLwww8/ICcnBw0aNICPjw8uX76MWbNm4b333nvkuJOSktC2bVvExMQgMzMTERERuHHjBqZNm4ZXX33V5Pp++uknAEBoaCiaNm0KAPqEsaCgAL/88kuZ57Zr1w4BAQEAgH79+gEA7t+/j2PHjpkcD5Gl82nsA5WLytxhGFB7qOEVbp2z5qlm0AmB+LT7yNfVvFnXpsopyKsRi9zXiGSzTp06uHbtGq5evYpBgwYBAD7//HOkpRlv3h8+fDgA4MiRI7h+/ToAYNOmTQCAl19+GXK5HC4uLjhz5gwSExNx4sQJ3LhxA0OHDgVgmKRW1Oeff44bN27A19cXV65cwV9//YXvv/8eQGFr5uXLlwEArq6uCAsLQ1hYGBQK4/sh37hxAwDg4/PPhAJf33/2ho6Pj6+Sc4mslUz+/+Mi7SzjV6VcKUdAqwBIMutcD5RqhoSMVGTlG+89JEMpuVlIsvH90y3jN2gVe/bZZ+HsXLicycCBAwEAeXl5uHjxInbu3Im2bdvqH88//zwAoEOHDggJCQFQmGRevHgRJ0+eBPBPIiqXy7Fu3To0aNAAKpUKkiRh3bp1AAq7vx/V0aNHAQB37tyBj48PJElC3759ARTuxPDHH38AAJ5//nmcP38e58+fR61atYzWV9JSCw8eM3VB60c5l8haKB2V8GvmZ+4wABSO07Szt/3xXWS9knOycD8n09xhWJ2EjDRk2vCC9zXit1ZpidC9e/f0SRsA1K1bV//zsGHDMG3aNGzatAm5uYVfgsceewwREREACscxzpkzR3+en58fbt68iVu3bkGnM74H6oPxaB9Y3PXhltaiZM7Z2RkNGzYsVo+Dg4PRa5SkTp06uHjxIu7cuaM/dvfuXf3PgYGBRs8NDAzE5cuXK3QukbVzDnCG2303pMalmi0Gz1BPOPo4mu36RGXJytPUiC7hqiAgcD31PkI8fKCyM95Daa1qRMvmjh07kJFR2ES9efNmAIBSqUSDBg0QFRUFIYT+8eAEm2HDhkGSJPz5559YtmwZgH9aNYHCLnYAaNCgAeLi4nDo0CE0a9aszHge7Iq+ePEiAGDv3r1ITU01KPfYY48BAOzs7LBx40YcOXIER44cwZ49exAdHa1vhd22bRvCw8MRHh6OW7duGb1uz549AQCXL1/Wt9J+9913+mt06dIFALB06VJ9fQ+fe+TIEf01irr0PT09ERkZWeb7JrJmPo3MN35T7aGGZ5inWa5NVB552gJcT+WEoEehFTrEpd6HtpTGKmtVI5LN27dvIzg4GPXr18e3334LAHj99dfh6lr6TNO6deuiU6dOAArXp1SpVPpueAD6STYXL15EcHAw6tSpo09AS6NWq9GuXTsAwMSJE/HUU0+hT58+kMkMb8fo0aNRq1YtpKSkICwsDM2bN0f9+vXh6elpkPSmpaXhwoULuHDhAvLz841ed9SoUQgNDYUQAu3bt0eDBg2wZMkSAMDkyZP1YzCTkpL09RV555134OXlhYyMDDRs2BDBwcHYtm0bAGDOnDlQKrkEC9k2SSYhoFX1r2spV8jh39J6920n26fVFSZJBYITgh6VRptvkzsM1Yhk880338SQIUOQkpICZ2dnjBo1CnPnzi3XuQ8mdc899xw8PDz0z999910MGzZMP8t94MCBiI6OLle9q1atwuOPPw4hBG7evIkvvviiWFe0t7c3jhw5ghEjRsDT0xNnzpxBTk4OHn/8cXz88cflus6DnJyccODAAQwfPhyOjo6Ii4tDeHg4lixZUuoamwBQq1Yt/P777+jXrx8kSUJCQgKaN2+Ob7/9lmtsklXKzisw+VGglMEpzBO5Wp1JjyKmnper1cG5oRfy5VKF4iWqakII3EhLRm4Bl7+rLBl5uTa3j7wkLCx9Tk9Ph6urK9LS0uDi4vJIdQUFBeH69euYPn26wdqVRERB7+w0dwhVLm5uL3OHQDYuISMN97Itf+vF3Hwd+i89DQDYPKYx7BWW39ZW28UDHmrLHadtSr5m+Z82ERERWZyUnCyrSDSt1a30FGTl2cYSUjViNjoR0cPOzuxh7hCIrFZ2ngY3OfO8SulnqNvAlpbWHX0ZStu6kYhqNgelTf/6I6oy3Iqy+hRtaVnfwxsyyXo7o603ciIiIqpWOiFwnVtRVqucgjyrb0VmsklERETlkpiRimxuRVntUnOzrXpLSyabREREVKbU3GwkcStKs0nISEO2lU4YYrJJREREpcrTFnArSjMTEIhPS7bKHYaYbBIREZFRQvx/kiOsL8mxNXm6AtzKsL6kn8lmFZsxYwYkSUJQUJC5QyEiIjLZvawMjtO0IKm52UjNzTZ3GCax6WSzc+fOkCSpxMf27dvNHV61i4uLQ1RUFOrWrQt7e3uEhYVh/vz50JXQJL9ixQq0bt0ajo6OcHJyQuPGjRETE2NQZv369WjZsiXUajU8PDzw4osv4tKlS2XGce/ePYwdOxb169eHvb09goKCMGXKFGg0/GVGRGRJcgvycSeLC7dbmtsZqVbVnV4jFppTKpVo0aKFwbEH9zivCe7du4fHHnsM9+7dg5OTE8LCwnDmzBm8/fbbuH37NpYsWaIv+8Ybb2Dp0qUAgDp16sDDwwO3b9/G77//jhEjRgAAvvrqK4waNQoAEBwcjPv372PLli349ddfcfLkSQQEBJQYh0ajweOPP44LFy5ApVIhPDwcFy5cwNy5c3H+/Hls27ataj8IIiIqt1vpKVxP0wIV6LRIyExFbRfryGVsumWziL+/P44cOWLweOKJJ4yW79GjByRJwvPPP29wPDg4GJIkYcqUKQCASZMmoVGjRnBzc4NCoUBAQACGDx+OhISEUuMJCgqCJEkG+7VHRUVBkiR07txZf0yj0WD69OkIDQ2FSqWCj48PRo4ciaSkJH2ZuLg4fWvtqlWrjF7zu+++w7179wAAhw8fxl9//YXly5cDAD777DPcuHFD/9rSpUshk8mwdetWXL9+HSdOnMCdO3fw8ccf6+N69913AQAvvPACrl69inPnzsHZ2Rn37t3DnDlzjMbx888/48KFCwCA77//HidPnsSOHTsAANu3b8ehQ4dK/eyIiKh6pOZmI4vd5xYrOScLOfl55g6jXGpEsmmq4cOHAwD+97//IT29sPvgyJEj+h2JHnz91q1bCAwMREhICBITE7FmzRr06dOnUuLo168fZs6ciWvXriE8PBwajQYxMTHo1KkTcnJyTKrrwa5ySZIM/qvT6bBv3z4AwObNmwEAtWrVwsqVK+Hq6oo6dergjTfegBCFf90eO3YM9+/fB1CYbAJAQEAA2rZtCwDYtWtXheIAgL1795r0voiIqPLphEBiZpq5w6Ay3M5INXcI5VIjks3r168XG7OZmppqtPzzzz8PFxcXaDQa/djOTZs2AQDatGmD8PBwAIVjFpOTk3Hq1CmcO3cOX331FQAgNjYWV65ceaSYDxw4gP/+978AgF9++QV//fUXzp8/D7VajbNnz2L9+vUAAIVCgbCwMISFhcHV1dVofb169YKTkxMAoF27dmjevDlee+01/eu3bt0CAH2r440bN/Dzzz8jMDAQN2/exNKlSzFkyBD9a0V8fHz0P/v6+gIA4uPjjcbRsWNH1KpVC0BhotqiRQs899xzxeIgIiLzScnJQp62wNxhUBmy8jXIzMs1dxhlqhHJplKpRJs2bQwednZ2SEhIQNu2bQ0eCQkJUKvVeOmllwAAGzduhBAC3333HYB/WjUB4K+//kLr1q3h5OQESZLwyiuv6F+7ffv2I8V89OhR/c+dOnWCJEkICAjQt2geOXIEQGEL5Pnz53H+/Pli3f4PCg4Oxt69e9GlSxfI5XLcunVL33UPFCatAFBQ8M8vl927d+P06dP44IMPAAD/+c9/EBcXp2/hfFjR8QdbKh/m5uaGvXv3ok+fPnByckJcXBz69u0LNzc3gziIiMg8hBC4Z8W71dQ097Is/17ViAlCRWM2H5aUlIQ//vjD4FjRjOjhw4djxYoV2Lt3L7Zv345bt25BpVJh4MCBAICDBw9i+PDhEELA09MTDRs2RGZmJs6dOwcA0GqN7xtblIw9WCYtzbC74sGErk2bNsXq8PPzK/U9l6RNmzYG3dSHDx/GN998AwAICwsDAH2rIwC0bt0aAPDYY4/pj8XFxaFOnTr653fu3NH/fPfuXQBAYGBgqXGEh4cbrAZw+/ZtbNiwwSAOIiIyj3RNLls1rUhGXi5yC/Jhb2e5jTU1omXTmKCgIAghDB5F62E+/vjjqFevHvLz8xEdHQ0A6N27N9zd3QEAf/zxhz4hPHXqFI4ePYphw4aV67pFXc8XL14EUJj07t+/36DMgwnelClT9BObDh48iBkzZuBf//oXgMJu5/DwcISHh5c5k/vgwYP6BDclJQUTJ04EAHh5eaFLly4AgK5du+rLHzt2zOC/kiQhJCQErVu3hqenJwBgy5Yt+jgOHz4MAOjZs6e+jqLYima3A4WtskVJfU5ODt544w0Aha2a/fr1K/U9EBFR1UrJyTJ3CGQiS79nNTrZLEtR8piYmAigcMZ4kaZNm+p/btKkCSIiIrBgwYJy1VuU2G3evBmPP/44mjRpop+IVKRz587o0aMHAKBv374IDw/Xz3x/+umn9ZOV8vPzceHCBVy4cKFY6+jDXnvtNXh5eaFp06aoXbs2Dh06BLlcjuXLl8PBwQEA0L9/f0RGRgIAunfvjiZNmmDq1KkAgBEjRqB27dpQKpWYPXs2AGDr1q2oV6+evmXXy8sL77zzjv6aRbE9OIP+ww8/1Mfh7++PrVu3AgAWLFhg0LJKRETVq0CnRYYVjAEkQym52UaHuFkCJpulGDZsmL7L28/PT5/8AUC3bt0wb948/TjK8PBwLFu2rFz1TpkyBUOHDoWbmxsuXryIYcOG6bvnH7R9+3ZMmzYNoaGhuHr1KhITExEREYH3338fjRs3Nvn9dO/eHS4uLrhw4QLs7OzQvXt3/PLLL/oZ5UBh6+Lu3bsxatQouLi44PLly2jUqBGWLFminwAFAK+++irWrVuH5s2b4/bt25AkCf369cOhQ4eMrrFZpFOnTvDz88OlS5dQUFCAjh07Ytu2bRg7dqzJ74mIiCpPpkbDdTWtUIFOi5yCfHOHYZQkLCwVTk9Ph6urK9LS0uDi4mLucIiIiGqMG2nJSMm17C7ZisjN16H/0tMAgM1jGsNeYXttbX6OrvBxqr68yZR8zfY+bSIiIqoQ7oFuvbIteIF3JptEREQErU4HDWehW62cAiabREREZMG43JF1y9dpoX1glz5LwmSTiIiIkK8zvj40WYcCC72HTDaJiIgIBRbaKkblZ6n3kMkmERERWfQ6jVQ+Ogu9h0w2iYiIiMmmTbDMe8hkk4iITJaYmIhu3brB0dERbm5u5g6HKkHRJiZkvSz1HjLZJCKqJlFRUZAkCa+99lqx16KjoyFJksG2uJbs448/RkJCAk6ePImLFy8aLZeeno6pU6eiUaNGUKvV8PT0ROvWrTF//nykpKRUY8Smu3z5sn6bXpVKheDgYAwaNAjHjh2rUH0ajQbNmzeHJEk4efKkwWvx8fF47rnn4OjoCC8vL7z55pvIyyt9KZtRo0ahfv36UKvV8Pb2Rp8+fXD+/HmDMh999BHat28PBweHMv8okEtMCaydpd5Dy4yKiMhGBQYGYuPGjcjJydEfy83NxYYNG1CnTh0zRmaaK1euoFWrVggNDYWPj0+JZZKTk9G2bVvExMRg4sSJ+OOPP/D7779j+vTpOHnyJNavX2+0/rISrap27NgxtGrVChcvXsSXX36Js2fPYtu2bQgPD8eECRMqVOfkyZNL3M5Xq9WiV69eyMrKwsGDB7Fx40Zs2bKlzOu0atUKMTExOHfuHHbt2gUhBLp37w6t9p8ZyXl5eXjppZfw+uuvlxmfXMaUwNpZ6j20zKiIiGxUy5YtUadOHWzdulV/bOvWrQgMDESLFi0MygohMH/+fNSrVw9qtRrNmjXD999/r39dq9XiX//6F4KDg6FWqxEWFoZPPvnEoI6oqCj07dsXCxcuhL+/Pzw9PTF69Gjk55e+j/KyZctQv359KJVKhIWFYe3atfrXgoKCsGXLFqxZs6bU1th3330X8fHx+OOPPzBixAg0bdoU4eHhePbZZ7F+/XpER0cb1Pnhhx8iKioKrq6ueOWVVwAAW7ZsQaNGjaBSqRAUFIRFixYZXEOSJGzfvt3gmJubG1atWgUAiIuLgyRJ2LhxI9q3bw97e3s0atQI+/fvN/rehRCIiopCaGgofvvtN/Tq1Qv169dH8+bNMX36dPzwww+lfnYl+d///ofdu3dj4cKFxV7bvXs3zp49i3Xr1qFFixbo2rUrFi1ahK+//hrp6elG63z11VfxxBNPICgoCC1btsSHH36IGzduIC4uTl/mgw8+wLhx49CkSZMyY1TI5Sa/L7IsdjLLvIdMNomIqtmIESMQExOjf75y5UqMHDmyWLn3338fMTExWLZsGc6cOYNx48Zh6NChOHDgAABAp9Ohdu3a2Lx5M86ePYtp06bh3XffxebNmw3q2bdvH65cuYJ9+/Zh9erVWLVqlT4ZK8m2bdswduxYTJgwAadPn8aoUaMwYsQI7Nu3DwAQGxuLnj17on///khISCiW4BbFtmnTJgwdOhS1atUq8ToPjy9bsGABGjdujOPHj2Pq1Kk4fvw4+vfvj4EDB+LUqVOYMWMGpk6dWmrsxkyaNAkTJkzAiRMn0L59e/Tu3Rv3798vsezJkydx5swZTJgwAbISWooe7I7u3LlzmUMf7ty5g1deeQVr166Fg4NDsdcPHz6Mxo0bG7R69ujRAxqNBsePHy/X+8vKykJMTAyCg4MRGBhYrnMepmSyadUUMjlkHLNJREQA8PLLL+PgwYOIi4vD9evX8fvvv2Po0KEGZbKysrB48WKsXLkSPXr0QL169RAVFYWhQ4fiyy+/BAAoFAp88MEHaN26NYKDgzFkyBBERUUVSzbd3d2xdOlSfatir1698PPPPxuNb+HChYiKikJ0dDQaNGiA8ePHo1+/fvpWOW9vb6hUKqjVavj5+cHV1bVYHffu3UNqairCwsIMjrdq1QpOTk5wcnLCoEGDDF576qmnMHHiRISEhCAkJASLFy9Gly5dMHXqVDRo0ABRUVEYM2YMFixYUP4P+/+NGTMGL7zwAiIiIrBs2TK4urpixYoVJZa9dOkSACA8PLzMeuvUqQN/f3+jrxe1kr722muIjIwssUxiYiJ8fX0Njrm7u0OpVCIxMbHU63/xxRf6z/Onn37Cnj17oFQqy4y7JDJJBqXMrkLnkvnZ2ynMHYJRTDaJiKqZl5cXevXqhdWrVyMmJga9evWCl5eXQZmzZ88iNzcX3bp10ycTTk5OWLNmDa5cuaIvt3z5ckRGRsLb2xtOTk74+uuvER8fb1BXo0aNIH+g1crf3x937941Gt+5c+fQoUMHg2MdOnTAuXPnTH6vD7debtu2DSdPnkSPHj0Mxq0CKJaMGYvj0qVLBuMSy6Ndu3b6n+3s7BAZGWn0/RQtAVSemb1r1qzBnDlzjL7+2WefIT09HVOmTCm1npKuJYQoM4YhQ4bgxIkTOHDgAEJDQ9G/f3/k5uaWGbcxlpywUOlUFnzv+CcMEZEZjBw5EmPGjAEAfP7558Ve1/3/TiA7d+4s1g2tUqkAAJs3b8a4ceOwaNEitGvXDs7OzliwYAH++OMPg/IKheE/QpIk6es35uEkpzyJz4O8vb3h5uZWbHZ00SQoZ2dnpKamGrzm6OhY5jUfXgtSkqRix8oaj/rguSVp0KABgMJkt3nz5uWqy5hffvkFR44c0d+zIpGRkRgyZAhWr14NPz+/YvcsJSUF+fn5xVo8H+bq6gpXV1eEhoaibdu2cHd3x7Zt24q1GpeXWqFAel5O2QXJ4jjYVaxFuzo8UsvmnDlzIEkS3nrrLf0xIQRmzJiBgIAAqNVqdO7cGWfOnHnUOImIbErPnj2Rl5eHvLw89OjRo9jrDRs2hEqlQnx8vL5buehRNCbvt99+Q/v27REdHY0WLVogJCTEoNWzoiIiInDw4EGDY4cOHUJERES565DJZOjfvz/WrVuHW7duVSiOhg0blhhHgwYN9C213t7eSEhI0L9+6dIlZGdnF6vryJEj+p8LCgpw/Phxo93kzZs3R8OGDbFo0aISk/KHk+TSfPrpp/jrr79w8uRJnDx5Ev/9738BAJs2bcJHH30EoLDV9fTp0wbvY/fu3VCpVGjVqlW5rwUU/hus0WhMOudBaoXlJixUOrXCBls2Y2Nj8dVXX6Fp06YGx+fPn4/Fixdj1apVaNCgAT788EN069YNFy5cgLOz8yMHTERkC+Ryub4bV17CxAxnZ2dMnDgR48aNg06nQ8eOHZGeno5Dhw7ByckJw4cPR0hICNasWYNdu3YhODgYa9euRWxsLIKDgx8ptkmTJqF///5o2bIlunTpgh07dmDr1q3Yu3evSfXMnj0b+/fvR5s2bTBz5kxERkbC0dERf//9t35STGkmTJiA1q1bY9asWRgwYAAOHz6MpUuX4osvvtCXeeqpp7B06VK0bdsWOp0Ob7/9drGWXKCw9Tg0NBQRERH4+OOPkZKSUuKkLKCwxTMmJgZdu3bFE088gXfffRfh4eHIzMzEjh07sHv3bv0krWHDhqFWrVpGu9IfXs7KyckJAFC/fn3Url0bANC9e3c0bNgQL7/8MhYsWIDk5GRMnDgRr7zyClxcXAAAt27dQpcuXbBmzRo89thjuHr1KjZt2oTu3bvD29sbt27dwrx586BWq/HMM8/orxcfH4/k5GTEx8dDq9Xq1/cMCQnRx/IgByabVslOklt0N3qFWjYzMzMxZMgQfP3113B3d9cfF0JgyZIleO+999CvXz80btwYq1evRnZ2dqnrqRER1UQuLi76ZKIks2bNwrRp0zBnzhxERESgR48e2LFjhz6ZfO2119CvXz8MGDAAbdq0wf379w2WE6qovn374pNPPsGCBQvQqFEjfPnll4iJiUHnzp1NqsfT0xNHjx7FsGHDsGDBAjz22GNo0qQJZsyYgQEDBuDrr78u9fyWLVti8+bN2LhxIxo3boxp06Zh5syZBrO/Fy1ahMDAQDzxxBMYPHgwJk6cWOKM77lz52LevHlo1qwZfvvtN/zwww/Fxsk+6LHHHsOxY8dQv359vPLKK4iIiEDv3r1x5swZLFmyRF8uPj7eoEWyIuRyOXbu3Al7e3t06NAB/fv31y9XVSQ/Px8XLlzQt9ra29vjt99+wzPPPIOQkBD0798fjo6OOHTokMG6p9OmTUOLFi0wffp0ZGZmokWLFmjRooXRhentZHLYyy03aaGSOSpVZRcyI0lUYDPU4cOHw8PDAx9//DE6d+6M5s2bY8mSJbh69Srq16+PP//802C9uD59+sDNzQ2rV68uVpdGozFo8k9PT0dgYCDS0tJK/SVMRERUlri4OAQHB+PEiROPPP6ypriVnoL7OZnmDqNS5ebr0H/paQDA5jGNYa+wrfnRAU5u8HKs3t7j9PR0uLq6litfM/nT3rhxI/78888SuwyKlmh4eECzr6+v0eUb5syZox/g7OrqWuH1wYiIiOjROVl4KxkV56SyN3cIpTIp2bxx4wbGjh2LdevWwd7e+BszZRbjlClTkJaWpn/cuHHDlJCIiIioEjkpLTtxIUN2MrnFL1ll0gSh48eP4+7duwaz47RaLX799VcsXboUFy5cAFDYwvngIrd37941unyDSqUqtiQEERFRZQgKCiq2NBKVTi6TwcFOiewC8+5PT+XjbAV/HJjUstmlSxecOnVKv4TDyZMn9WuFnTx5EvXq1YOfnx/27NmjPycvLw8HDhxA+/btKz14IiIiqnzOFt4tS/+whmEPJrVsOjs7F1uqwtHREZ6envrjb731FmbPno3Q0FCEhoZi9uzZcHBwwODBgysvaiIiIqoyTkp73MlKN3cYVA7WMOyh0ncQmjx5MnJychAdHY2UlBS0adMGu3fv5hqbREREVkKtUEIuyaAVpe80ReZlb6eEooR1ei3NIyeb+/fvN3guSRJmzJiBGTNmPGrVREREZAYySYKjUoV0DbeutGTWMF4TeMTtKomIiMg2WUsiU5NZw3hNgMkmERERlcDSd6Wp6SRIcFRax/aiTDaJiIioGHs7BRQyyx8PWFM5KJSQSdaRxllHlERERFTt2LppuaxhFnoRJptERERUIkcFk01LZU1/CDDZJCIiohJZU0JTk0iQ4KCw7C0qH8Rkk4iIiEqkkttBbiXjAmsStZ3CasZrAkw2iYiIyAhJkuCgsI4ZzzWJtd0TJptERERklLUlNjWBg5WNpWWySUREREbZ2zHZtDT2VjReE2CySURERKVgy6ZlkUsyqOSPvNt4tWKySUREREYp5HLYcXF3i2Fvp4AkSeYOwyRMNomIiKhUajvr6ra1ZdZ4L5hsEhERUak4btNy2FvhsAYmm0RERFQqa2xNs1XWeC+YbBIREVGprG32s62SIEHFZJOIiIhsDXcSsgyFOwdZ1+QggMkmERERlUGSJKitcKygrbHWe8Bkk4iIiMrkaKWJji1xtLKdg4ow2SQiIqIyOSqtM9GxJQ5K60z4rWsJehuSnVdg7hCqlIOSXy0iIlvioFBCggQBYe5QaiSV3A5KK9s5qIh1Rm0DGk7bZe4QqlTc3F7mDoGIiCqRTJLBSalCRl6uuUOpkZxVanOHUGHsRiciIqJycbHihMfauajszR1ChbFl00zOzuxRtRdIOgJoUpCdD0SuLPyb4thIHRwUAJQugHeHqr0+ERHZHFd7NW5npLIrvZopZHKrnRwEMNk0myod0ygEINKBh9Z9dVAUPoBMQCEDuGYaERGZwE4mh7PKHumaHHOHUqO42TtCssL1NYsw27BFBZmA0Bp/XeiA/PTqi4eIiGyGl4OTuUOoUSRI8HRwNHcYj4TJpi3KS62cMkRERA9xUtrD3s46l+CxRq4qtdXOQi/CZNMW5aWUXSY/tcrDICIi2+Tr6GzuEGoMbxv4rJls2qLyJJLlSUiJiIhK4GrvAAcrnrBiLdztHa12i8oHMdm0NTpt+cZj5mcCuvyqj4eIiGySv5OruUOwaTLI4OvkYu4wKgWTTVuTn1o4G708OG6TiIgqyFGpgoeak4Wqip+Ti9WP1SzCZNPWmNI9zq50IiJ6BP5OrlDI5OYOw+Y4KFTwtKFZ/0w2bY1JyWZy1cVBREQ2Ty6TIdDVExKsdw1ISyOXZAh0cbfqdTUfxmTTlggBaExIIPNSyt/lTkREVAInpQq+jrYxttAS1HJxh8pOUXZBK8Jk05YUZAG6vPKX1xVwcXciInpk3o7O3De9Eng5OMPN3sHcYVQ6Jpu2JO9+Bc5hVzoRET0aSZIQ6OLBxd4fgYtSbbMz/Jls2hJNBZLNipxDRET0ELlMhiA3T04YqgB7OyUCXT1sapzmg5hs2pIKJZtJHLdJRESVQim3Q7C7N+QS04vyUsntEOzmBbnMdj8z231nNU1+JqDNNf08XT5QkFH58RARUY1kb6dAsJsXZEwxyqSQyRHs7g2F3LZbg/lNsBWaexU/N/cRziUiInqIg1KFIHcmnKWxk8lRz93bZhZuLw2/BbbiURLGR0lUiYiISuCkVCHI3ZMJZwmKEk1bW+LIGH4DbIHQFY69rCjN/cJlkIiIiCqRk9KeCedDFP+faNrXkEQTYLJpGzRJgNBW/PxHTVaJiIiMcFLaI9jdi5OGUDMTTYDJpm3ISXz0OnIroQ4iIqISOCpVNX6WulJuh/oePjWm6/xBNfeu2wohKidRzEksbOEkIiKqAg4KJeq5e8NOsu2Z1yVRyRWo7+5TIyYDlYTJprXTJAFazaPXo8vnrHQiIqpSaoUS9Ty8a9TC7/Z2StT3sP3ljUrDZNPa5dyqxLpuVl5dREREJbC3U6C+R81o5XNQqFDf3Rt2NSi5LgmTTWumKwCyb1defTmJhS2cREREVUgpt0N9dx+o5LY7ftFJaW/zOwOVFz8Ba5Zz69FmoT9M6IDsG5VXHxERkREKedHMbKW5Q6l0zkp7BLl5MtH8f/wUrFnmtSqoM457pRMRUbUoTDi9oLahhNNFqUZdNy/IavDM+4fxk7BWufeA/CrY07wgC8i9W/n1EhERlaBoNx0HG0g4XVRq1HHzhEySzB2KRWGyaa0yr1Rh3Zerrm4iIqKHyGUyBLt7W3ULp4tSjTquTDRLwmTTGmmSq3aZIk0ykMsdhYiIqPoUJpxeVjmG01lpzxbNUjDZtEbpF6r+GhnVcA0iIqIH2MnkCHbzgsqKlkVyVKhQl4lmqZhsWpvcu9Wzj7kmuXK2wSQiIjKBQi5HsLt1LPxub6dEECcDlYmfjjURAkg7W33XSzvLLSyJiKjaKeV2CHLzsui91JUyO66jWU78hKxJ1rWqmYFuTEEWkHm1+q5HRET0/9QKJeq4ekCC5XVPyyUZ6rp51ugtKE3BZNNaaHOrZ6zmw9IvAgU51X9dIiKq8ZxVavg7uZo7jGICXT2gVljfRCZzYbJpLVJPFW5PWd2EFkj9u/qvS0REBMDL0RluKgdzh6Hn4+gCF5Xa3GFYFSab1iD7lnkn6+TeBbK4jSUREZlHLRd3i9hH3UlpD19HF3OHYXWYbFo6bW5hq6a5pZ1mdzoREZmFXCZDoJnHb8olGQJdPCBxiSOTMdm0ZEIAKScBXb65Iynswk85wX3TiYjILBwUSviYsVWxlos7JwRVEJNNS5Z1rWp3CjKV5j6Qwa0siYjIPLwdnWFvhu50F5UabvaWM27U2jDZtFR5qUDaOXNHUVzGhcIF34mIiKqZTJJQy8W9eq8JGQKc3ar1mraGyaYl0uUDycctc0F1IQpj02rMHQkREdVAjkpVtbYyejs6Q2lF22daIiablkYIIPlPoCDb3JEYp80tjJHjN4mIyAz8nFyrZbKQnUwOLwenKr+OrWOyaWkyLhYuNWTpNElA+nlzR0FERDWQUm4HD7VjlV/Hx9GZ21FWAn6CliQnsXDHHmuRcRnIvm3uKIiIqAbydnSu0tZNO0leLQltTWBSsjlnzhy0bt0azs7O8PHxQd++fXHhguEWikIIzJgxAwEBAVCr1ejcuTPOnDlTqUHbpPyMwqWFrE3KSSA/3dxREBFRDaOU28HVvup28vF0cIRMYptcZTDpUzxw4ABGjx6NI0eOYM+ePSgoKED37t2RlZWlLzN//nwsXrwYS5cuRWxsLPz8/NCtWzdkZGRUevA2Q5cP3I81z3aUj0pogftHOWGIiIiqnZe6asZTSpDgUUV110QmTa/66aefDJ7HxMTAx8cHx48fxxNPPAEhBJYsWYL33nsP/fr1AwCsXr0avr6+WL9+PUaNGlV5kdsKoQPuHwMKssoua6kKcoDkY4BXO4B/BRIRUTVxUKpgL1cgV1u5m5+4qNRcwL0SPVJmkJaWBgDw8PAAAFy7dg2JiYno3r27voxKpUKnTp1w6NChR7mU7Uo9XTjZxtppkoHUv80dBRER1TBVMa7SQ80F3CtThReOEkJg/Pjx6NixIxo3bgwASExMBAD4+voalPX19cX169dLrEej0UCj+acLNj29Bo3/y7wKZJX8uVilrBuAnRPgHGLuSIiIqIZwtXfA7czUSqtPLsngqLSvtProEVo2x4wZg7///hsbNmwo9trDm9QLIYxuXD9nzhy4urrqH4GBgRUNybrk3AHSzpo7isqXdg7ISTB3FEREVEMo5HI4KlSVVp+rvRoyIzkLVUyFks033ngDP/74I/bt24fatWvrj/v5+QH4p4WzyN27d4u1dhaZMmUK0tLS9I8bN25UJCTrkp8OpNjwoujJJwq32yQiIqoGrqrKm5XuUol1USGTkk0hBMaMGYOtW7fil19+QXBwsMHrwcHB8PPzw549e/TH8vLycODAAbRv377EOlUqFVxcXAweNk2bCyT9YZ0zz8uraIZ6QY65IyEiohrAWVU53d4yyOCkrLxWUipk0pjN0aNHY/369fjhhx/g7Oysb8F0dXWFWq2GJEl46623MHv2bISGhiI0NBSzZ8+Gg4MDBg8eXCVvwKroCv5/maBcc0dS9bQa4P4fgHcHQKYwdzRERGTDVHYKKOV2yNM+WkOOo1LJtTWrgEnJ5rJlywAAnTt3NjgeExODqKgoAMDkyZORk5OD6OhopKSkoE2bNti9ezecnZ0rJWCrVbTneV6auSOpPvkZQPJxwPMxLolERERVyklpj+SczEeqw5kTg6qEScmmKMcYQ0mSMGPGDMyYMaOiMdmmtDNA7h1zR1H9cu8BqacA92bmjoSIiGyYk1L1yMmmI7vQqwSbm6pD5lUg85q5ozCfrPjCfdSJiIiqyKPOSJdLMtjbcdhXVWCyWdVyEoFU7g2PtHNA9m1zR0FERDZKIZdDJa94suioUBldppEeDZPNqpSXWjhOkwqlnCjcaYiIiKgKOCqVFT7X4RHOpdIx2awqBdmFM8+F1tyRWA6hA+7HWvc+8EREZLEcHqErvTIXhidDTDargi7//5c40pRdtqbR5RWuM6rNM3ckRERkYxwUFWudlCBBreB4zarCZLOyCR1w/1jhsj9UsoIsIDm28LMiIiKqJCq5HeQVWGpPZafg+ppViJ9sZUv9G9AkmTsKy6dJBlJOmjsKIiKyIZIkVWhGuQNbNasUk83KlH4JyKoBe7tXluxbQPoFc0dBREQ2pCJd6Y8y1pPKxmSzsmTfBtLPmzsK65N+kQk6ERFVGrWd6cmmmutrVikmm5UhL6VwWR+qmNS/Ac19c0dBREQ2wNSJPhIkqJhsVikmm4+qILtwOR9Odqk4LolERESVRGniJCF7OwVkXMy9SjHZfBS6Ai5xVFmKlovS5Zs7EiIismKmThLikkdVj8lmRQlRuDsQlziqPPmZQPJxthITEdEjMWUMZkXGeJJpmGxWVPo5IPeOuaOwPbn3gDTuJU9ERBVnb8KM9IoslUSmYbJZEdk3gYwr5o7CdmXGAVnXzR0FERFZKVMSSCabVY/JpqnyUoGUv8wdhe1LPVW48DsREZGJ7O3sylVOKbODXMZUqKrxEzaFVsOZ59VFCCD5GKDNNXckRERkZWSSDCp52QknWzWrB5PN8hI6Jj/Vjck9ERFVUHnWzuT6mtWDyWZ5pZ1jt6455KUCqafNHQUREVmZ8rRalre7nR4Nk83yyEkAMq+aO4qaK+t64T7qRERE5WQvL0+yyZbN6sBksywF2ZwQZAlS/+YOQ0REVG6qcrRaKssxrpMeHZPN0hQt3M5dbcxPV8AF34mIqNzKSiQVMjlnolcTfsqlybgE5KWYOwoqkpcGpF8wdxRERGQF5DIZFDK50dc5Oaj6MNk0Ji8NyLho7ijoYZlX+AcAERGVS2mtm+xCrz5MNksiBJBysvC/ZFn094bd6UREVLrSxm2WZx1OqhxMNkuSdQ3ITzd3FGRMfia3CyUiojKV3rJpvIudKheTzYdpNRwXaA0yLnGBfSIiKhW70S0Dk82HpV8onPlMlk1ogfTz5o6CiIgsGJNNy8Bk80EFOUB2vLmjoPLKvmmza28mJiaiW7ducHR0hJubm7nDISKySsa6yuWSjMseVSN+0g/KvMJJQdZECCDjsv5pVFQUJEnCa6+9VqxodHQ0JElCVFRUNQZYcR9//DESEhJw8uRJXLxofFWE9PR0TJ06FY0aNYJarYanpydat26N+fPnIyXF8mftr1+/HnK5vMR7Vl5LlixBWFgY1Go1AgMDMW7cOOTmGh9iMWPGDEiSVOzh6OioL7N///4Sy5w/z9Z0ImtiJ5NDVkKqo2CrZrXip11EpwWyb5g7CjJV9i3AtSEgK1wvLTAwEBs3bsTHH38MtVoNAMjNzcWGDRtQp04dc0ZqkitXrqBVq1YIDQ01WiY5ORkdO3ZEeno6Zs2ahVatWkGpVOLy5ctYv3491q9fj9GjR5d4bl5eHpRKZVWFX24rV67E5MmTsWzZMixevBgODg4mnf/tt9/inXfewcqVK9G+fXtcvHhR/wfFxx9/XOI5EydOLJbcdunSBa1bty5W9sKFC3BxcdE/9/b2Nik+Iipddl7VD1vTaoHc/H9WMMnN10GrqJ5rOyiZZgFMNv+Rm8CxmtZIaAv3rncsTCRbtmyJq1evYuvWrRgyZAgAYOvWrQgMDES9evUMTxUCCxYswPLly5GQkIAGDRpg6tSpePHFFwEAWq0Wr776Kn755RckJiaiTp06iI6OxtixY/V1REVFITU1FR07dsSiRYuQl5eHgQMHYsmSJVAojC8YvGzZMixcuBA3btxAcHAw3n//fbz88ssAgKCgIFy/fh0AsGbNGgwfPhyrVq0qVse7776L+Ph4XLhwAbVq1dIfDw8Px7PPPgvxQCt9UFAQ/v3vf+Py5cvYtm0b+vbti9WrV2PLli2YNm0aLl++DH9/f7zxxhuYMGGC/jxJkvTli7i5uWHJkiWIiopCXFwcgoODsWHDBnz66af4888/Ub9+fXz++efo3LlzaXcOcXFxOHToELZs2YJ9+/bh+++/x7Bhw0o952GHDx9Ghw4dMHjwYP37HDRoEI4ePWr0HCcnJzg5Oemf//XXXzh79iyWL19erKyPjw+HMRBVoYbTdlX7NYd9ebbarhU3t1e1XcuSsRu9SE6iuSOginro3o0YMQIxMTH65ytXrsTIkSOLnfb+++8jJiYGy5Ytw5kzZzBu3DgMHToUBw4cAADodDrUrl0bmzdvxtmzZzFt2jS8++672Lx5s0E9+/btw5UrV7Bv3z6sXr0aq1atKjE5LLJt2zaMHTsWEyZMwOnTpzFq1CiMGDEC+/btAwDExsaiZ8+e6N+/PxISEvDJJ58Uq0On02HTpk0YOnSoQaL5IEmSDJ4vWLAAjRs3xvHjxzF16lQcP34c/fv3x8CBA3Hq1CnMmDEDU6dOLTV2YyZNmoQJEybgxIkTaN++PXr37o379++Xes7KlSvRq1cvuLq6YujQoVixYoXB60Vd2XFxcUbr6NixI44fP65PLq9evYr//ve/6NWr/L/gv/nmGzRo0ACPP/54sddatGgBf39/dOnSRX9/iIjINGzZLKJJMncEVFGaJIOxti+//DKmTJmCuLg4SJKE33//HRs3bsT+/fv1ZbKysrB48WL88ssvaNeuHQCgXr16OHjwIL788kt06tQJCoUCH3zwgf6c4OBgHDp0CJs3b0b//v31x93d3bF06VLI5XKEh4ejV69e+Pnnn/HKK6+UGO7ChQsRFRWF6OhoAMD48eNx5MgRLFy4EE8++SS8vb2hUqmgVqvh5+dXYh337t1DamoqwsLCDI63atUKFy4ULt313HPPYcOGDfrXnnrqKUycOFH/fMiQIejSpQumTp0KAGjQoAHOnj2LBQsWmDy2dcyYMXjhhRcAFLba/vTTT1ixYgUmT55cYnmdTodVq1bhs88+AwAMHDgQ48ePx+XLlxESEgIAcHBwQFhYWKktxAMHDsS9e/fQsWNHCCFQUFCA119/He+880654tZoNPqu+Af5+/vjq6++QqtWraDRaLB27Vp06dIF+/fvxxNPPFGuuomobGdn9jB3CFQNmGwCQEE2oMs3dxRUUUJrMCvdy8sLvXr1wurVqyGEQK9eveDl5WVwytmzZ5Gbm4tu3boZHM/Ly0OLFi30z5cvX45vvvkG169fR05ODvLy8tC8eXODcxo1agT5AzMe/f39cerUKaPhnjt3Dq+++qrBsQ4dOpTYglmWh1svt23bhry8PLz99tvIyckxeC0yMrJYHH369CkWx5IlS6DVag3eU1mKEnYAsLOzQ2RkJM6dO2e0/O7du5GVlYWnn34aQOE96969O1auXInZs2cDAB577LEyJ+Ts378fH330Eb744gu0adMGly9fxtixY+Hv769PokuzdetWZGRkFOu+DwsLM0jk27Vrhxs3bmDhwoVMNokqEcc01gy8y0BhsknWTWt4D0eOHIkxY8YAAD7//PNixXW6wsHiO3fuLNYNrVKpAACbN2/GuHHjsGjRIrRr1w7Ozs5YsGAB/vjjD4PyD7e8SZKkr9+Yh5NEIUSxY6Xx9vaGm5tbsWSsaBKUs7MzUlNTDV57cLa1sWuKh1ZjkCSp2LH8/PL9YVba+1m5ciWSk5MNJgTpdDqcOHECs2bNKneiO3XqVLz88sv497//DQBo0qQJsrKy8Oqrr+K9996DrIylTb755hs8++yzRluQH9S2bVusW7euXHEREdE/OGYTAARbNa2eLs/gac+ePZGXl4e8vDz06FG8m6Zhw4ZQqVSIj49HSEiIwSMwMBAA8Ntvv6F9+/aIjo5GixYtEBISgitXHn2bzIiICBw8eNDg2KFDhxAREVHuOmQyGfr3749169bh1q1bFYqjYcOGJcbRoEEDfbLn7e2NhIQE/euXLl1CdnbxP86OHDmi/7mgoADHjx9HeHh4ide9f/8+fvjhB2zcuBEnT540eGRmZuJ///tfud9DdnZ2sYRSLpdDCFEsSX7YtWvXsG/fPvzrX/8q17VOnDgBf3//csdGRESF2LIJACh/ixJZKsN7KJfL9d24JbWSOTs7Y+LEiRg3bhx0Op1+CaFDhw7ByckJw4cPR0hICNasWYNdu3YhODgYa9euRWxsLIKDgx8p0kmTJqF///5o2bIlunTpgh07dmDr1q3Yu3evSfXMnj0b+/fvR5s2bTBz5kxERkbC0dERf//9Nw4fPozGjRuXev6ECRPQunVrzJo1CwMGDMDhw4exdOlSfPHFF/oyTz31FJYuXYq2bdtCp9Ph7bffLnEM5eeff47Q0FBERETg448/RkpKSomTsgBg7dq18PT0xEsvvVQsUXz22WexYsUKPPvsszh69CiGDRuGn3/+2egkqOeeew6LFy9GixYt9N3oU6dORe/evfX3fenSpdi2bRt+/vlng3NXrlwJf39/fVf+g5YsWYKgoCA0atQIeXl5WLduHbZs2YItW7aU+pkSEVFxTDYBQOLHYPVKuIcPro9YklmzZsHHxwdz5szB1atX4ebmhpYtW+Ldd98FALz22ms4efIkBgwYAEmSMGjQIERHR5vU8laSvn374pNPPsGCBQvw5ptvIjg4GDExMWUuFfQwT09PHD16FPPmzcOCBQtw7do1yGQyhIaGYsCAAXjrrbdKPb9ly5bYvHkzpk2bhlmzZsHf3x8zZ840mBy0aNEijBgxAk888QQCAgLwySef4Pjx48Xqmjt3LubNm4cTJ06gfv36+OGHH4qNky2ycuVKPP/88yV2cb/wwgsYMGAA7ty5g+zsbFy4cKHUbvv3338fkiTh/fffx61bt+Dt7Y3nnnsOH330kb5MUlJSsRbpoglKUVFRJf4xkpeXh4kTJ+LWrVtQq9Vo1KgRdu7ciWeeecZoLEREVDJJlNXXVM3S09Ph6uqKtLS0MpOFSlOQAySa1qpkLbLzgYZfFv6jfnaUDg7GJ/ZaN7+nADvHsstRpSpaZ/PEiRPFJk4REZHtMiVf45hNALBTAzLz76ZCFSSzA+Sm7TxDRERE1YPJZhF7bkNntVRegAkzuYmIiKj6cLBiEXVA4T7bZH3UAeaOoMYKCgoqc9Y3ERHVbGzZLGLvA8hV5o6CTCVTAGouR0NERGSpmGwWkWSAU31zR0GmcqpXeO+IiIjIIvFf6Qc51mXrpjWRKQCnR1vzkoiIiKoWk80HyewAl5J3PSEL5BJemHASERGRxWKy+TCHQEDpbu4oqCwKl8KWaCIiIrJoTDYfJkmAezOOA7RkkgS4N+dyR0RERFaAGVVJFM6AS5i5oyBjnEMBpau5oyAiIqJyYLJpjFN9QOVp7ijoYUp3wLmBuaMgIiKicmKyaYwkAe4tOAHFksjsAI+W7D4nIiKyIkw2S2OnLkw4yTK4NQPsuAc6ERGRNWGyWRa1b+HC4WReTkGAA7elJCIisjZMNsvDNQJQupk7ippL4QK4NjJ3FERERFQBTDbLQ5IBHq04ftMcZHaAZySXoiIiIrJS/Be8vOwcCtffpOrl1gSwczR3FERERFRBTDZNofYHHOuYO4qaw6EW4FDb3FEQERHRI2CyaSrXRpwRXR3s1IWtmkRERGTVmGyaSmbH5ZCqg1tzjpElIiKyAUw2K0LlweWQqpJjXcDey9xREBERUSVgsllRLmGFXb1UueT2hUtNERERkU1gsllRMjvAtbG5o7A9ro3YfU5ERGRDmGw+CrUfYO9j7ihsh8qTuwQRERHZGCabj8q1ISBJ5o7CNnCXICIiIpvDZPNRKZwBh0BzR2H9HGoBSldzR0FERESVjMlmZXBuwO0UH4UkFU64IiIiIpvDDKky2KkLl+uhinEI5JaURERENorJZmVxDmHrZkVIEuAcau4oiIiIqIpUWXb0xRdfIDg4GPb29mjVqhV+++23qrqUZZDbc9/0inCoze0/iYiIbFiVJJubNm3CW2+9hffeew8nTpzA448/jqeffhrx8fFVcTnL4RTCmemmYKsmERGRzauSZHPx4sX417/+hX//+9+IiIjAkiVLEBgYiGXLllXF5SyHnZoz002hDuBYTSIiIhtX6clmXl4ejh8/ju7duxsc7969Ow4dOlTZl7M8zmzdLDe2ahIREdk8u8quMCkpCVqtFr6+vgbHfX19kZiYWKy8RqOBRqPRP09PT6/skKqXnSOgrgVk3zR3JJbNIaBwjVIiIiKyaVU2QUh6qHVPCFHsGADMmTMHrq6u+kdgoA10Q7s0YOtmaSSpcG1SIiIisnmVnmx6eXlBLpcXa8W8e/dusdZOAJgyZQrS0tL0jxs3blR2SNXPzhFw4Mx0o9S12KpJRERUQ1R6sqlUKtGqVSvs2bPH4PiePXvQvn37YuVVKhVcXFwMHjbBJQyQVfooBesnyQCXcHNHQURERNWkSrKh8ePH4+WXX0ZkZCTatWuHr776CvHx8Xjttdeq4nKWSa4qXAop/by5I7EsTvULZ+0TERFRjVAlyeaAAQNw//59zJw5EwkJCWjcuDH++9//om7dGralo3N9IPsGUJBl7kgsg50DZ6ATERHVMFXWzxsdHY3o6Oiqqt46SDLArSmQdNjckVgGtyaATG7uKIiIiKgacTPvqmbvBTjWsBbdkjjUBux9zB0FERERVTMmm9XBtWHN3v9bbg+4NTZ3FERERGQGTDarg8wO8GhZc9fe9GgJyBTmjoKIiIjMgMlmdVG618wlf1zCAJWnuaMgIiIiM2GyWZ2c6gP2xRe2t1n23px9TkREVMMx2axOkgR4tAAUTuaOpOrZOQAerWru0AEiIiICwGSz+skUgEdr2x7DKLMDPB+z7fdIRERE5cJk0xwUToBHpG22+klSYYsm9z4nIiIiMNk0H3uvwgXfbY1rI66nSURERHpMNs3JsY5tTaBxqgc4BZs7CiIiIrIgTDbNzTW8cHcda+cQULh4Pf1fe/f3EtWfx3H8NaPzI3+MX7MyXf32e6eiTSTj64AVJBh8v0T9AyF0U5EFdRHmxQZ7Y0EUQWBEbbddNBpBxCrkD4K6ECbsB1mQ2woZElQOxrZZn73wx6412mhz5pzjPB8wkONnzrzl3RtenDnnMwAA4P8QNp2gsEIKLLG7ivkLLJYKKxfmNagAAOCnEDadwOOViqokX8juSubOlzd+57mH/0oAAOB7JASn8PqkJb9J2YvsriR5WUGpqJotjgAAwIwIm06SFZSKfnNHeJvcS9NN4RgAAKQdYdNpfPnO34Nzci9Nf4HdlQAAAIcjbDqR0/fgLNjEXpoAACAphE2nyv1Vyl9jdxXfy1s5/gAAAEgCYdPJQhuk4FK7q/ifQNH4NwQBAAAkibDpZJPXRmbn2F3J+M1Li7ewxREAAJgTkoPTeX0TNwzZ2CqPZ3wf0KyAfTUAAABXImy6gb9AKthg3/uH1kv+QvveHwAAuBZh0y3yVttzB3hgiZTnwBuVAACAKxA23aSwIr0bvnuzx9/TyXt+AgAARyNsuklWML13g4c2OOPmJAAA4FqETbfJLR/fgshq/kIpd4X17wMAABY0wqYb/bLJ+o+2f/kLH58DAICfRth0I19IyvnVuuPnlvO95wAAICUIm24V+rPkyUr9cT1eKT+c+uMCAICMRNh0q6ygNd9RnrtCyl6U+uMCAICMRNh0s7w1qf1mIY9Xyl+buuMBAICMR9h0s6yAlJvCazdz/jR+xhQAACBFCJtul7famccCAAAQYdP9snNT8zWWgaLxu9wBAABSiLC5EOSudMYxAAAAvkHYXAiCy37uWkuvX1q0PHX1AAAATMi2u4BM9fE/Y6k9YHap9O+X37/P58T/nia3VPr8VdLXlJWT4+e/FgAAIGzaZuNf/2HBUWc/UV3195l+/6+JR+r88/QfKT0eAABwJz5GBwAAgGU4s2mTp3/bZXcJAAAAliNs2oRrGgEAQCbgY3QAAABYhrAJAAAAyxA2AQAAYBnCJgAAACxD2AQAAIBlCJsAAACwDGETAAAAliFsAgAAwDKETQAAAFiGsAkAAADLEDYBAABgGcImAAAALEPYBAAAgGUImwAAALAMYRMAAACWIWwCAADAMoRNAAAAWCbb7gK+ZYyRJI2MjNhcCQAAABKZzGmTuW02jgub8XhcklReXm5zJQAAAJhNPB5XQUHBrGs8JplImkZfv37V69evlZ+fL4/HY3c5C8LIyIjKy8s1ODioUChkdzmYB3robvTP/eih+9HD1DLGKB6Pq7S0VF7v7FdlOu7MptfrVVlZmd1lLEihUIgBczl66G70z/3oofvRw9T50RnNSdwgBAAAAMsQNgEAAGAZwmYGCAQCOnXqlAKBgN2lYJ7oobvRP/ejh+5HD+3juBuEAAAAsHBwZhMAAACWIWwCAADAMoRNAAAAWIawCQAAAMsQNheAnp4e7d69W6WlpfJ4PLp58+YPX9Pd3a0tW7YoGAxq9erVunTpkvWFIqG59q+rq0sej+e7x7Nnz9JTMKZpbm7W1q1blZ+fr2XLlmnv3r3q7+//4euYQeeYTw+ZQ2dpaWnR5s2bpzZsj0QiunPnzqyvYQbTh7C5AIyOjqqiokIXL15Mav3AwIB+//13bdu2TbFYTE1NTTp69Kii0ajFlSKRufZvUn9/v4aGhqYe69ats6hCzKa7u1uHDx/WgwcP1NHRobGxMdXV1Wl0dHTG1zCDzjKfHk5iDp2hrKxMp0+fVm9vr3p7e7Vz507t2bNHT548SbieGUwzgwVFkmlra5t1zYkTJ8z69eunPXfgwAFTXV1tYWVIRjL96+zsNJLMu3fv0lIT5mZ4eNhIMt3d3TOuYQadLZkeMofOV1hYaK5cuZLwd8xgenFmMwPdv39fdXV1057btWuXent79fnzZ5uqwlxVVlaqpKREtbW16uzstLscTPjw4YMkafHixTOuYQadLZkeTmIOnefLly+6fv26RkdHFYlEEq5hBtOLsJmB3rx5o+Li4mnPFRcXa2xsTG/fvrWpKiSrpKREly9fVjQaVWtrq8LhsGpra9XT02N3aRnPGKPjx4+rpqZGmzZtmnEdM+hcyfaQOXSeR48eKS8vT4FAQAcPHlRbW5s2btyYcC0zmF7ZdhcAe3g8nmk/m4kvkvr2eThPOBxWOBye+jkSiWhwcFBnz57V9u3bbawMDQ0N6uvr07179364lhl0pmR7yBw6Tzgc1sOHD/X+/XtFo1HV19eru7t7xsDJDKYPZzYz0PLly/XmzZtpzw0PDys7O1tFRUU2VYWfUV1drRcvXthdRkY7cuSIbt26pc7OTpWVlc26lhl0prn0MBHm0F5+v19r165VVVWVmpubVVFRoQsXLiRcywymF2EzA0UiEXV0dEx7rr29XVVVVfL5fDZVhZ8Ri8VUUlJidxkZyRijhoYGtba26u7du1q1atUPX8MMOst8epgIc+gsxhh9+vQp4e+YwTSz794kpEo8HjexWMzEYjEjyZw7d87EYjHz6tUrY4wxjY2NZt++fVPrX758aXJycsyxY8fM06dPzdWrV43P5zM3btyw60/IaHPt3/nz501bW5t5/vy5efz4sWlsbDSSTDQatetPyGiHDh0yBQUFpqurywwNDU09Pn78OLWGGXS2+fSQOXSWkydPmp6eHjMwMGD6+vpMU1OT8Xq9pr293RjDDNqNsLkATG7B8e2jvr7eGGNMfX292bFjx7TXdHV1mcrKSuP3+83KlStNS0tL+guHMWbu/Ttz5oxZs2aNCQaDprCw0NTU1Jjbt2/bUzwS9k6SuXbt2tQaZtDZ5tND5tBZ9u/fb1asWGH8fr9ZunSpqa2tnQqaxjCDdvMYM3FFLAAAAJBiXLMJAAAAyxA2AQAAYBnCJgAAACxD2AQAAIBlCJsAAACwDGETAAAAliFsAgAAwDKETQAAAFiGsAkAAADLEDYBAABgGcImAAAALEPYBAAAgGX+C8qHiG837OpJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Group our dataset with our 'Group' variable\n", + "grouped = df.groupby('category')['value']\n", + "\n", + "# Init a figure and axes\n", + "fig, ax = plt.subplots(figsize=(8, 6))\n", + "\n", + "# Create the plot with different colors for each group\n", + "violins = ax.violinplot([group.values for name, group in grouped],\n", + " #labels=grouped.groups.keys()\n", + " ) \n", + "\n", + "# Define colors for each group\n", + "colors = ['orange', 'purple', '#69b3a2']\n", + "\n", + "# Assign colors to each box in the boxplot\n", + "for violin, color in zip(violins['bodies'], colors):\n", + " violin.set_facecolor(color)\n", + " \n", + "# Add the p value and the t\n", + "p_value_text = f'p-value: {p_value}'\n", + "ax.text(0.7, 50, p_value_text, weight='bold')\n", + "F_value_text = f'F-value: {F_statistic}'\n", + "ax.text(0.7, 45, F_value_text, weight='bold')\n", + "\n", + "# Add the mean for each group\n", + "ax.text(1.25, mean_groupA, f'Mean of Group A: {mean_groupA}', fontsize=10)\n", + "ax.text(2.25, mean_groupB, f'Mean of Group B: {mean_groupB}', fontsize=10)\n", + "ax.text(2, mean_groupC, f'Mean of Group C: {mean_groupC}', fontsize=10)\n", + "\n", + "# Add a title and axis label\n", + "ax.set_title('One way Anova between group A, B and C')\n", + "\n", + "# Add a legend\n", + "legend_labels = ['Group A', 'Group B', 'Group C']\n", + "legend_handles = [plt.Rectangle((0,0),1,1, color=color) for color in colors]\n", + "ax.legend(legend_handles, legend_labels)\n", + "\n", + "# Display it\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Customized violin plot with statistics" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAIHCAYAAAAPeO1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6+UlEQVR4nO3dd3gUdf4H8Pdsz6Z3CAkpICFAIECQqsFDiqeC4AGnFBE99bBQRLCgcHoCIgdW8FSKeigqwingeQo/sCESEkIChCIBAiEB0nvZ3fn9sWYuS7Kpu5nd7Pv1PHkuOzvlszsI7/vOtwiiKIogIiIiIpehkLsAIiIiImpfDIBERERELoYBkIiIiMjFMAASERERuRgGQCIiIiIXwwBIRERE5GIYAImIiIhcDAMgERERkYthACQiIiJyMQyARC4iIyMDc+fORe/eveHp6QmdToeIiAjce++9+PHHH+Uuz6mNGjUKgiBIPx988IHcJRERNUrgUnBEHd+nn36K+++/HxUVFVb3WbBgAf7xj3+0Y1UdQ2ZmJiIjI2EymaRtI0eOxL59+2SsioiocWwBJOrgkpOTMWPGDCn8PfPMM7hy5QpKS0vx4Ycfws3NDQCwZs0avP3223KW6pQ++OADKfwJggAA+P7773H+/HkZqyIiahwDIFEH99JLL6GmpgYAcMcdd2D58uUICgqCu7s7ZsyYgaVLl0r7/u1vf4PBYAAAbN68WXqkuXTpUrz++uuIjo6Gm5sbevfujS1bttS71rlz5/Dwww8jKioKWq0WXl5euPnmm/H55583WeepU6ek602ePFnavmTJEmn78ePHAQDl5eXQaDQQBAEDBw6U9p03bx5uvPFGBAcHQ6vVQq/XIzo6GvPmzUNubi4A4MMPP5TOt3jxYosatm/fLr03f/78Zn2/H374ofT7ww8/DAAQRbHBx8ARERHS+U+fPo2JEyfC29sbgYGBmDp1Kq5evWqxvyiKeP/99zF8+HB4e3tDo9EgPDwcs2fPxm+//Sbtt2DBAum8H3/8scU5Xn75Zem9t956CwCwY8cO3HbbbQgPD4enpyfUajU6deqE8ePH44cffmjW5yYiJycSUYdlMBhEd3d3EYAIQNyxY0e9ffLy8qT3AYi//vqrKIqiuGnTJmmbr6+vxT61Pz///LN0nkOHDomenp4N7gdAfPrpp5usNywsTAQgBgUFSdtGjBghneOtt94SRVEUv/vuO2nbokWLpH29vb2tXr93795idXW1WF1dLYaGhooARD8/P7GiokI6fuLEidL+6enpTdb7ww8/SPsPGTJEPHv2rPQ6MjJSNJlMFvuHh4c3+p2OGTNG2tdkMomTJ0+2+nk8PDzEgwcPiqIoiunp6dL2cePGWVyzZ8+eIgDRzc1NLCgoEEVRFOfOnWv1vEqlUvzhhx+a/OxE5NzYAkjUgeXl5aGsrEx6HRUVVW8fPz8/+Pj4SK8vXLhQb5/i4mJ88sknKCoqwqJFi6TtdVu/Zs+ejZKSEvj4+GDPnj2orKxEZmYmbrrpJgDAK6+8gmPHjjVa76hRowAAV69eRXp6OioqKnDo0CEoFOa/qvbv32/xvwBw6623Sr+vX78eJ0+eRGFhIWpqanDp0iWMGzcOAHD8+HF88803UKvVmDt3LgAgPz9fajErLCzE119/DcDch69nz56N1gqYW0lrTZ06FVFRUVKL5Llz5xptTevXrx8uXryIkydPIigoCADw7bffIicnBwCwbds2qeU0PDwcSUlJKCwslFotS0tL8cADDwAAevbsKX3P3333nXSOxMREnDx5EgAwZcoU6T7/6U9/ws8//4wrV66guroaRUVFWL9+PQDAaDTitddea/KzE5FzYwAk6sDEZo7xamq/8ePH489//jO8vLwwY8YMaXttP7fffvtNCneFhYW49dZbodPp0LVrV2mEsSiK+O9//9vodeqGue+//x4HDx5EdXU17rzzTmi1Wnz//fcA/hcAtVotRowYIR3j5uaGxx57DN27d4dOp0NoaCi++eYb6f0TJ04AAB566CF4eXkBgNTv8fPPP0dVVRUA4JFHHmm0TsD8GLo2oNV9bD116lRpn7oB8Xqvv/46QkNDER0dLYU34H/f6ZdffiltW7BgAQYMGABvb2/8/e9/h7+/PwBzqD179qz0mQBzgKsNtXUDeu37ABAaGoqNGzdi6NCh8PT0hLe3N/76179K79d+T0TUcTEAEnVgAQEBcHd3l15nZGTU2yc/Px9FRUXS6/Dw8Hr7xMTESL/XPV9lZSUA4MqVK82qp7YfnjXXB8DawDdu3DgMHjwY165dw+HDh5GYmAgAGD58uDSIZdu2bZg4cSL27NmD3NxcGI3GeuevHQjj5eUlBaLk5GQcOHBA6tMYFBSESZMmNflZvvjiC5SUlAAAevXqhWvXriElJQU9evSQ9tm2bZtFC2xdLflO694TlUqF0NBQ6XXtfn/605/g6+sLAPjoo49QU1ODrVu3AgD69OmDYcOGAQBKSkowbNgwbNiwARkZGVLoraux0eJE1DEwABJ1YEqlEqNHj5Zeb9y4sd4+GzZskH4PDAzEgAED6u2jVqul32tHutYVHBws/d6zZ0+Iotjgz/LlyxutNzg4GH369AFgDoC1LX0JCQlISEgAYB7UUF1dDcAyMNYdlPLUU0+huLgYoihiwYIFDV5r3rx50ud67rnnpMe1DzzwgMXntaZu697x48fRv39/9O/fH3fddZe0vbS0FNu2bWvw+JZ8p3UfyxuNRly6dKnefjqdTmqdTUlJwauvvioF7rqtf//3f/+H7OxsAEDv3r2RkZEBk8mE1NTUJj8zEXUcDIBEHdySJUuksLFz5048//zzyM3NRXl5ObZs2YJly5ZJ+77wwgtQqVQtvkb37t2l4Hby5EksXLgQ2dnZqKmpQUZGBtatW4e+ffs22L/werWhLjs7Gz/++COCgoIQExMjBcC6j0brBsC6dev1eqjVavz4449WJ2Xu0qUL7rnnHgDmR8qiKEKhUFiEJWsyMzMt+iE2prHHwI0ZP3689PvatWuRkpKC4uJiPP/888jLywNgbnns1q2btF/d2mtHd7u5uVk8tq/7PalUKri7uyMnJwfPPvtsq+okIicl0+ATImpHW7duFd3c3KyO/AQgzp8/3+KYuqOAly5dKm0/d+6ctD0hIUHafujQIdHLy6vRa5w7d67JWnft2mVxzOTJk0VRFMXy8nJRo9FYjKI1Go0Wn7Gha/bo0aPBzyGKopiammqx72233das7/PFF1+Ujpk4cWK99wsKCkSdTicCEAVBkD533VHAdd13333S9n379omiaB4FPGnSJKvfpV6vtxiFXWvYsGEW+82cObNebZ06dWr0ewoPD2/W90BEzostgEQuYOrUqUhLS8MTTzyBmJgY6PV6aDQahIWF4c9//jO+//57rFmzpk3XGDRoEFJTUzFnzhx0794dWq0WHh4euOGGGzB58mRs3rwZISEhTZ4nISHB4vFobcufm5sbBg0aJG2/5ZZbpNHBtZ/xnXfeQY8ePaDVahEdHY333ntPauVrSGxsLMaOHSu9bs7gD6D+6Ofr+fj4SP0IRStzAjZFEAR8/vnneOeddzBkyBB4enpCpVIhLCwM9913H44cOSL166vr+hbM61/7+Pjgv//9L0aNGgVPT0/4+/vjgQcewKefftriGonIeXEpOCJyWdXV1RgxYgQSExMRGRmJM2fOQKlUyl0WEZHdtbyzDxGRk8vKysKoUaNw5coVFBYWAjCvmMLwR0SuggGQiFxOTU0NTp06BYVCgcjISMybNw/Tpk2TuywionbDR8BERERELoaDQIiIiIhcDAMgkRWzZs2CIAgQBKHZc761xLJly7Bs2TKuu+qCRo0aJf3ZEgShVaOEG7J582aL8wqCAKVSCR8fHwwaNAgvv/yytNKII4qIiJDqbq6ysjK8/vrruOWWWxAYGAiNRoOQkBAMHz4cK1eubHL1GSJXxT6ARDL529/+BsC8zNe8efPkLYbaTUOTSG/evBn33XefXa5nMplQVFSEw4cP4/Dhwzh69Cg+++wzu1yrvaWlpWHChAk4d+6cxfbs7GxkZ2fjwIED6Nmzp8XqLERkxhZAInJa5eXlcpfQYh988AFMJhOA/y0B9/333+P8+fM2vU5CQgJEUUR1dTXWr18vba+7hrEzy8vLw9ixY6Xwd+ONN+KHH35ARUUFioqK8N1332HSpEktak0kciUMgETNUF5ejieffBKdO3eGTqfDkCFDGnwsfPToUUybNg2hoaHQaDTw8/PDuHHjsHfvXmmfZcuWWfyjdOHCBemxV0REBEpLS6HRaCAIgsXEx++//7603+7du6XtoaGhEAQBgYGBqDum68svv8TYsWPh7+8PtVqNLl26YObMmThz5ky9us+dO4eHH34YUVFR0Gq18PLyws0334zPP//cYr/9+/dLNcyaNQtbtmxBv3794ObmhhtuuAFr165Fc8eVbdiwAT179oRWq0VMTAzef/996bsRBMFiCbW6jwbT09Nxxx13wMvLC71795b2+e233/DAAw8gIiICGo0GXl5eGDZsGN577z2Lmq7/DHXVvQ+16j5WXbZsGV5//XVpsukePXpg3bp1zfq8tepOIv3www8DaP1k0c2hVqstWhdNJhOqqqqaPG7evHm48cYbERwcDK1WC71ej+joaMybN6/eY9W69+f06dOYOHEivL29ERgYiKlTp+Lq1asW++fn5+OBBx6Av78/3N3dMXr06BavRbxmzRppTePg4GB89913uOmmm6DT6eDl5YVbb70VX3zxBW6//fYWnZfIZci1BAmRo6u7PFeXLl3qLZ2lVqvFH3/8Udr/yy+/FNVqdYPLdgmCIK5fv14URVFcunSp1eW9apfgGjFihAhAVCqVYlFRkSiKojh9+nRpv4ULF4qiKIpnzpyRtk2ZMkWqZfHixVav4eHhISYmJkr7Hjp0SPT09LS6/9NPPy3tu2/fPoul2Bra/+OPP27yu33ttdcaPDYsLEz6fdOmTdL+dZdQCwgIqPd9/fLLL6KHh4fVzzB58mTRZDLV+wz33XefRV3Xn1cULZfECwwMbPD8r7zySpOfWRRF8YcffpCOGTJkiHj27FnpdWRkpFRja9WttXaZvpqaGvHdd9+Vto8cObJZ5/L29rb6ffbu3Vusrq6W9q17fxr6czFmzBhp36qqKnHgwIH19vHy8rK4h03p3bu3tO+LL77Ysi+KiEQGQCIr6gbAbt26iampqWJ+fr7417/+1eIfcVE0r1NbGw4iIiLExMREsaqqSjx16pQYHR0tAhDd3NzEa9euSedvKGzUWrZsmfT+119/LYqiKIaFhYkKhUIEIMbHx4uiKIrvvfeetN+7774riqIoJiYmStvGjRsnnj9/XqyqqhL37t0rraVbe7woimKfPn1EAKKPj4+4Z88esbKyUszMzBRvuukmKbympaWJomgZngCIa9asEYuKisQ333xT2jZ27NhGv9fi4mKLf+jXrVsnFhcXi19++aXFWr/WAmBsbKx45MgRsby8XExNTRVFURR79eolvf/MM8+IhYWFYlJSkkWg/Oyzz+p9hpYGQK1WK+7cuVMsKSkRN2/eLG13c3MT8/PzG/3coiiKs2fPlo5Zu3atKIqiRRjav39/k+doTN1aG/oJDw8XL1261Kxzffzxx+LJkyfFwsJCsaamRrx06ZI4btw46VxfffWVtG/d+zNy5Ejx4sWL4smTJ8WgoCBpe3Z2tiiKorhx40ZpW1RUVIP/XTUnAOr1emnfL774onVfGJELYwAksqJuAPznP/8pbS8tLRVVKpUUjgoLC8Xvvvuu0X94a3+2bdsmnaexAPjTTz9J7y9evFjMyMgQAYiDBw8Ww8PDpZbBadOmSftlZGSIoiiKzz33XLNquXbtmkULYmM/q1evFkXRMjz1799fqrekpETaHh0d3ej3+s033zR4DlEUxalTpzYZAH/44QeLY+p+hoCAANFgMEjvrV27Vnpv+vTp9T5DSwPgPffcY7H/0KFDGwxEDSkrK5NaWgVBkILYqlWrpHPMmjWr0XM0pakACJhb72pblRuzY8cO8dZbbxUDAgJEpVJZ7zwrV66U9q17f44ePSptv/vuu6Xtv/zyiyiKovjnP/9Z2vbmm29K+9b976qlAXD79u0t+ZqISBRF9gEkaobw8HDpd3d3dwQEBAAARFFEbm4urly50qzzNHdKisGDB8PT0xOAeYDA999/DwAYOXIkEhISYDQa8eOPP0rbo6KiEBkZCQDNriUvL69NdcfExEi/u7u7S783Nc1I3XPV/V4BWPS9s2bgwIEWr+t+htDQUIvl3Oqer6HPKtbpG2gwGJq89vX11n19fT+369UdfNGrVy9cu3YNKSkp6NGjh7TPtm3bUFZW1mQdzVE7CMRoNOLEiROIjo4GABw/fhybNm1q9Nht27Zh4sSJ2LNnD3Jzc2E0GuvtU1FR0eCxTf25qHv/w8LCLPat/e+qOaKioqTfjx8/3uzjiMiMAZCoGS5cuCD9XlZWJv0jJggCAgICEBwcLL0/duxYiObWdYsfk8kkdfpvikqlQkJCAgDg8OHD2LVrFwDzP+q1299//31cunQJAHDrrbdKx9atZcWKFVZriY6Otti3Z8+eDe4riiKWL19er0a1Wi393pKRloGBgdLvFy9etHjv+uk8GqLX6y1e1/0Mly5dsggrdUfW1u6n0+mkbXVHEf/2229NXrvun4PrXwcFBTV6bN1BLcePH0f//v3Rv39/iylKSktLsW3btibraAmFQoGYmBjccccd0raTJ082esyWLVuk35966ikUFxdDFEUsWLCgyes19eeibsire//r/nfVHBMmTJB+f+utt6yObG5OsCdyRQyARM2wevVqHD9+HIWFhXjqqaekf1QGDx4Mb29vDB8+XAo23377LVavXo28vDxUVVXh5MmTeOWVV9C9e3eLc/r7+wMwt4hkZWXVu2ZtqDMYDNixYweUSiVGjBghBcAvv/yy3r4ALALFqlWrsGvXLpSVlaG0tBQHDx7E3LlzMWnSJABA9+7d0adPHwDmULBw4UJkZ2ejpqYGGRkZWLduHfr27Vsv+LTF0KFD4eHhAQBISkrCpk2bUFpaiq+++go7duxo8fm6d+8utTrl5uZi6dKlKCoqQkpKCtauXSvtN378eACWrYK//PKLdJ+ee+65Jq+1fft27N69G6Wlpfjggw/wyy+/AADc3NwwYsQIq8c1NPefNXWDYmMjlpvLZDIhPT0dO3fulLZ17ty50WNUqv9NEavX66FWq/Hjjz/aZKTymDFjpN/Xrl2LtLS0ev9dNceCBQukz3HlyhWMHTsWP//8M6qqqlBcXIw9e/bg7rvvthgxT0R1tO8TZyLn0dJRwF999ZXFIIaGfuq68847671ft0/asWPHLN4bNGiQ9F5oaKi0XRAEMTc31+LczzzzTKN11I4QFUXzKGAvL69G9z937pwoii3vP2eNtVHAdb/nzZs3S/vX7WPWkJ9//tmiT9j1P5MmTbIYYTt69GjpPY1GI2q1WovjrfUBbOjPAa7rD9eQF198Udp34sSJ9d4vKCgQdTqddD+b8303pDl9AP38/MSLFy82ep6tW7c2eGyPHj2k35cuXSrtb+3+1P1vaN++faIoWh8FrNfrLe5Bc6SmpoqRkZGNft4dO3Y061xEroYtgETN8O6772L+/Pno1KkTtFotbrzxRvz3v/+1aPW58847kZSUhJkzZ6Jr165Qq9Xw9vZGTEwMZs6ciU8//dTinG+++SbuvPNOqSXwer1790ZISIj0urbl7/rf+/fvX+8cy5cvx65du/DHP/4RgYGBUKlUCAwMxIABAzB//nysWLFC2nfQoEFITU3FnDlz0L17d2i1Wnh4eOCGG27A5MmTsXnzZos6bGHu3Ll477330KNHD2g0GvTo0QPr16+3eKzXkv5gw4YNw5EjRzBr1iyEhYVBrVbDw8MDgwcPxvr16/H5559bPI7817/+halTpyIgIAAajQajR4/Gr7/+2uR1HnzwQaxfv16qu3v37nj77bexePHiRo+rO/ff7Nmz673v4+MjtcqKdeYEvHbtmrRPfHx8k/VZo9Vq0a1bNzz44INITExEaGhoo/tPnToV77zzjjTfYXR0NN577z3cc889ra6hlkajwbfffovZs2fD19cXbm5uuOWWW/D9999bdA9ojtjYWKSmpuK1115DQkKCNOdlp06dMGzYMCxfvrzRllkiVyaIYjNnbSUispHLly/jwoULGDx4MBQK8/8PPXDgAG6//XYUFhbC3d0dly5dgo+Pj7yFwvxI9v777wcALF26FMuWLWu3a99///3YvHkzxowZg2+++YarWhCRzXAtYCJqd6dPn8Ytt9wCrVaLwMBAlJaWorCwEIB50MKbb77pEOFPTqIo4j//+Q8CAgLwwQcfMPwRkU0xABJRuwsPD8ef/vQnJCYm4urVqzAajQgPD8fw4cMxd+5c3HjjjXKXKDtBEJCTkyN3GUTUQfERMBEREZGL4SAQIiIiIhfDAEhERETkYhgAiYiIiFwMAyARERGRi2EAJCIiInIxDIBERERELoYBkIiIiMjFMAASERERuRgGQCIiIiIXwwBIRERE5GJsuhaw0WhETU2NLU9JNqLRaKBQMO8TERGRjQKgKIrIyclBYWGhLU5HdqBQKBAZGQmNRiN3KURERCQzQRRFsa0nyc7ORmFhIYKCgqDX6yEIgi1qIxsxmUy4fPky1Go1unbtyvtDRETk4trcAmg0GqXw5+/vb4uayA4CAwNx+fJlGAwGqNVqucshIiIiGbW5U1htnz+9Xt/mYsh+ah/9Go1GmSshIiIiudlsVAAfKzo23h8iIiKqxWGhRERERC7GptPA1FNdBBjL7XoJiVIPaLzb51pERERETsx+AbC6CDj2ElCVa7dLWNAGAH2eb1EIzMnJwYoVK7B7925cunQJ3t7euOGGGzB9+nTMnDnT4fs1Ll++HM8//zxefvllPP3003KXQ0RERE7CfgHQWG4Of0o3c+ucPdVey1gOoHkBMCMjA8OHD4ePjw+WL1+O2NhYGAwGnD59Ghs3bkRISAjGjx/f4LE1NTUOMZJ206ZNWLRoETZu3MgASERERM1m/z6ASj2g9rTvTysC5pw5c6BSqXD48GFMmTIFMTExiI2Nxd13343du3fjzjvvlPYVBAHvvPMOJkyYAHd3d/z9738HAKxfvx7dunWDRqNBdHQ0PvroI+mY8+fPQxAEpKSkSNsKCwshCAL2798PANi/fz8EQcDu3bvRr18/6HQ6DB48GGlpaU3W//3336OiogIvvvgiysrK8MMPP7T4OyAiIiLX5JKDQPLy8vDtt9/i0Ucfhbu7e4P7XD9qdunSpZgwYQLS0tIwe/Zs7NixA3PnzsWTTz6JY8eO4eGHH8b999+Pffv2tbiep556CqtXr0ZiYiKCgoIwfvz4JpfU27BhA+655x6o1Wrcc8892LBhQ4uvS0RERK7JJQPgb7/9BlEUER0dbbE9ICAAHh4e8PDwwOLFiy3eu/feezF79mxERUUhPDwcq1evxqxZszBnzhz06NEDCxYswKRJk7B69eoW17N06VKMHj0asbGx+OCDD3DlyhXs2LHD6v7FxcX44osvMH36dADA9OnTsW3bNhQXF7f42kREROR67DsK2MFd38p36NAhmEwmTJs2DVVVVRbvxcfHW7xOT0/HQw89ZLFt+PDheP3111tcx9ChQ6Xf/fz8EB0djfT0dKv7f/zxx4iKikK/fv0AAHFxcYiKisLWrVvr1UTkTMqrDXKXYFd6jUv/lUtEDsQl/zbq3r07BEHAyZMnLbZHRUUBANzc3Ood09Cj4usDpCiK0jaFQiFtq9XUY93Gzl3Xxo0bcfz4cahU/7t9JpMJGzZsYAAkp9brhf/KXYJdnV95u9wlEBEBcNFHwP7+/hg9ejTeeustlJWVteocMTEx+Omnnyy2HThwADExMQDMa+8CQHZ2tvR+3QEhdR08eFD6vaCgAKdPn0bPnj0b3DctLQ2HDx/G/v37kZKSIv388MMPSExMxLFjx1r1eYiIiMh1uGQLIACsW7cOw4cPR3x8PJYtW4a+fftCoVAgMTERJ0+exMCBAxs9/qmnnsKUKVMwYMAAjBo1Cjt37sT27duxZ88eAOZWxCFDhmDlypWIiIhAbm4ulixZ0uC5XnzxRfj7+yM4OBjPPfccAgICcNdddzW474YNG3DjjTfi5ptvrvfe0KFDsWHDBqxdu7ZlXwaRgzjx4libnSv7SDZKs0sbfK/SaMLUxPMAgE8HRUCnbPj/C3t09kDn/p1tVhMRkaOwfwBsj5VAWnGNbt264ciRI1i+fDmeeeYZXLp0CVqtFr169cLChQsxZ86cRo+/66678Prrr+PVV1/FE088gcjISGzatAkjR46U9tm4cSNmz56N+Ph4REdHY9WqVRgzZky9c61cuRJz587FmTNn0K9fP3z11VfQaDT19quursa//vWvegNUat19991YsWIFXnnllQaPJ3J0tuojZ6wxwphbYTXY1aVTKqzuZ8ytgFYQoFQrbVIXEZGjEMS6ndRaobKyEufOnUNkZCR0Ot3/3nCClUDktn//ftxyyy0oKCiAj4+PXa9l9T4RdUAF5wpw9dhVq+9XGk2YcDADAPDlkKhGg2JwbDB8InxsXSIRkazs1wKo8TYHMq4FTETtrPii7aZEKsosYgAkog7Hvo+ANd5o7tJsRES2UFVchcqiSpudr7KoElXFVdB6aW12TiIiubnkKGBHMXLkSIiiaPfHv0SupCizyPbnvGj7cxIRyYkBkIg6DNEkoviS7VfEKb5UDNHUpu7SREQOhQGQiDqM0pxSGGuMNj+vsdqI0pyGp5QhInJGDIBE1GHY4/Fve5ybiKi9MQASUYdQU1GDsmutW9mnOcqulaGmovnLORIROTIGQCLqENqjhY6tgETUUTAAEpHTE0Wx3QJgG+fOJyJyCHadB7CyqBI15e3zyEStV0PnzRUuiFxR2ZUyGCoNdr+OodKAsitl8OjkYfdrERHZk90CYGVRJX546QeU57bPSiD6AD1ufv7mFoXAnJwcrFixArt378alS5fg7e2NG264AdOnT8fMmTOh1+vtWHHrRURE4MKFCwAAhUKB4OBg3HbbbVi9ejV8fX1lro6o/RWeL2zXazEAEpGzs1sArCmvQXluOVRuKqj1antdxuJaNeU1zQ6AGRkZGD58OHx8fLB8+XLExsbCYDDg9OnT2LhxI0JCQjB+/PiGr1dTA7Xavp+pKS+++CL+8pe/wGg04vTp03jooYfwxBNP4KOPPpK1LqL2Vl1abdfBH9cru1aG6tJqaDw07XZNIiJbs3sfQLVeDa2n1q4/rQmYc+bMgUqlwuHDhzFlyhTExMQgNjYWd999N3bv3o0777xT2lcQBLzzzjuYMGEC3N3d8fe//x0AsH79enTr1g0ajQbR0dEW4ev8+fMQBAEpKSnStsLCQgiCgP379wMA9u/fD0EQsHv3bvTr1w86nQ6DBw9GWlpak/V7enqiU6dO6NKlC2655RbMnDkTycnJLf4eiJxdwbkCl7gmEZEtueQgkLy8PHz77bd49NFH4e7u3uA+giBYvF66dCkmTJiAtLQ0zJ49Gzt27MDcuXPx5JNP4tixY3j44Ydx//33Y9++fS2u56mnnsLq1auRmJiIoKAgjB8/HjU1ze87mZWVhV27dmHw4MEtvjaRMzNWG1F80fYrfzSl+GIxjNW2n3CaiKi9uGQA/O233yCKIqKjoy22BwQEwMPDAx4eHli8eLHFe/feey9mz56NqKgohIeHY/Xq1Zg1axbmzJmDHj16YMGCBZg0aRJWr17d4nqWLl2K0aNHIzY2Fh988AGuXLmCHTt2NHrM4sWL4eHhATc3N4SGhkIQBKxZs6bF1yZyZgXnCmAymtr9uiajqV37HRIR2ZpLBsBa17fyHTp0CCkpKejduzeqqqos3ouPj7d4nZ6ejuHDh1tsGz58ONLT01tcx9ChQ6Xf/fz8EB0d3eR5nnrqKaSkpCA1NRV79+4FANx+++0wGtkqQa7BZDCh8FyhbNcvyCiAydD+4ZOIyBbsOg2Mo+revTsEQcDJkycttkdFRQEA3Nzc6h3T0KPi6wOkKIrSNoVCIW2r1ZLHutef+3oBAQHo3r07AOCGG27Aa6+9hqFDh2Lfvn249dZbm30dImdVkFFgl3V/m8tYY0TBuQL43+AvWw1ERK3lki2A/v7+GD16NN566y2UlbVu9GBMTAx++ukni20HDhxATEwMACAwMBAAkJ2dLb1fd0BIXQcPHpR+LygowOnTp9GzZ88W1aNUKgEAFRUVLTqOyBkZq40oyJB/IEbBWXlDKBFRa9m9BbA9JoJuzTXWrVuH4cOHIz4+HsuWLUPfvn2hUCiQmJiIkydPYuDAgY0e/9RTT2HKlCkYMGAARo0ahZ07d2L79u3Ys2cPAHMr4pAhQ7By5UpEREQgNzcXS5YsafBcL774Ivz9/REcHIznnnsOAQEBuOuuuxq9fklJCXJyciCKIi5evIhFixYhICAAw4YNa/F3QeRs8s7kOUTwMtYYkXc6D0G9g+QuhYioRewWANV6NfQBepTnlsNQYf8Z+vUB+hZNB9OtWzccOXIEy5cvxzPPPINLly5Bq9WiV69eWLhwIebMmdPo8XfddRdef/11vPrqq3jiiScQGRmJTZs2YeTIkdI+GzduxOzZsxEfH4/o6GisWrUKY8aMqXeulStXYu7cuThz5gz69euHr776ChpN43OMvfDCC3jhhRcAmFsbBw0ahO+++w7+/nwcRR1bdWm1Qw3AKDxfCJ9wH84LSERORRDbuLBlZWUlzp07h8jISOh0lpMwcym4xu3fvx+33HILCgoK4OPjY9drNXafiJzJxV8utnmFoUqjCRMOZgAAvhwSBZ2ybb1h3APdEToktE3nICJqT3Z9BKzz1jldKCMix1V8qbjdlpdsibJrZSi+VAyvUC+5SyEiahaXHARCRM7HUGnA1WNX5S7DqqvHrsJQaf/uLkREtsAAKKORI0dCFEW7P/4lcnaiKCInJcchBn5YY6wxIiclB23sVUNE1C4YAInI4RVkFKDsWuumbGpPZdfKHGJ6GiKipjAAEpFDq8ivQG56rtxlNFtuei4q8jkfJxE5NgZAInJYhkoDLh++7FSPVUVRxOXDl9kfkIgcGgMgETkkk9GErENZMFQ5X5AyVBmQdSgLJiPXCiYix8QASEQORxRFZCdlo7KoUu5SWq2yqBLZydlO1XpJRK6DAZCIHM6V1CsovVIqdxltVppTiiupV+Qug4ioHrtOBF1RU41qY/s8vtEoVXBTcykmImd37cQ1FGUWyV2GzRRlFkGpViKwV6DcpRARSewWACtqqvH1mTSUVrXPIxwPrQ5/vCG2RSEwJycHK1aswO7du3Hp0iV4e3vjhhtuwPTp0zFz5kzo9Xo7Vtw2tesY//DDDygqKkLXrl2RkJCAp556Cj169JC7PKJWyT2Vi/yz+XKXYXP5Z/OhUCng34NrdRORY7BbAKw2GlBaVQm1UgmN0q4NjdK1qo2GZgfAjIwMDB8+HD4+Pli+fDliY2NhMBhw+vRpbNy4ESEhIRg/fnyDx9bU1ECtVtvyI7TIrl27cPfdd2Ps2LHYsmULunXrhqtXr+Lzzz/H888/j08//VS22ohaK+90HvJO58ldht3knjJPZcMQSESOwO59ADVKFXQqtV1/WhMw58yZA5VKhcOHD2PKlCmIiYlBbGws7r77buzevRt33nmntK8gCHjnnXcwYcIEuLu74+9//zsAYP369ejWrRs0Gg2io6Px0UcfScecP38egiAgJSVF2lZYWAhBELB//34AwP79+yEIAnbv3o1+/fpBp9Nh8ODBSEtLs1p3eXk57r//fvzxj3/EV199hVtvvRWRkZEYPHgwVq9ejX/+858t/i6I5JZ7KlcKSB2Zq3xOInJ8LjkIJC8vD99++y0effRRuLu7N7iPIAgWr5cuXYoJEyYgLS0Ns2fPxo4dOzB37lw8+eSTOHbsGB5++GHcf//92LdvX4vreeqpp7B69WokJiYiKCgI48ePR01NTYP7/ve//0Vubi4WLVrU4PtcVo6czdXjVzt0y9/18k7n4dqJa3KXQUQuziUD4G+//QZRFBEdHW2xPSAgAB4eHvDw8MDixYst3rv33nsxe/ZsREVFITw8HKtXr8asWbMwZ84c9OjRAwsWLMCkSZOwevXqFtezdOlSjB49GrGxsfjggw9w5coV7Nixo8F9z5w5AwDo2bNni69D5EhEUcSV1CsuuXRa/tl8XEm9wiliiEg2LhkAa13fynfo0CGkpKSgd+/eqKqqsngvPj7e4nV6ejqGDx9usW348OFIT09vcR1Dhw6Vfvfz80N0dLTV8/AfDOoIRJOI7ORsFF4olLsU2RReKDTPE2jif9NE1P5cMgB2794dgiDg5MmTFtujoqLQvXt3uLm51TumoUfF1wdIURSlbQqFQtpWy9pj3YZcf+5atSN8r6+dyFmYDOYVPkoul8hdiuxKLpeYVwwxcMUQImpfLhkA/f39MXr0aLz11lsoKytr1TliYmLw008/WWw7cOAAYmJiAACBgeY5v7Kzs6X36w4IqevgwYPS7wUFBTh9+rTVR7xjxoxBQEAAVq1a1eD7hYWFzf0IRO3OUGXAxQMXUXatdf/ddURl18pw8cBFp1zyjoicl33nZwHaZSLo1lxj3bp1GD58OOLj47Fs2TL07dsXCoUCiYmJOHnyJAYOHNjo8U899RSmTJmCAQMGYNSoUdi5cye2b9+OPXv2AADc3NwwZMgQrFy5EhEREcjNzcWSJUsaPNeLL74If39/BAcH47nnnkNAQADuuuuuBvd1d3fH+++/j8mTJ2P8+PF44okn0L17d+Tm5uKzzz5DZmYmtm7d2uLvg8jeqsuqkfVrFqrLquUuxeFUFlXi4s8XETokFGq9fFNMEZHrsFsA1ChV8NDqUFpViRqj0V6XkXhodS2aDqZbt27SZMrPPPMMLl26BK1Wi169emHhwoWYM2dOo8ffddddeP311/Hqq6/iiSeeQGRkJDZt2oSRI0dK+2zcuBGzZ89GfHw8oqOjsWrVKowZM6beuVauXIm5c+fizJkz6NevH7766itoNNbnM5wwYQIOHDiAFStW4N5770VxcTHCwsLwhz/8QZqihsiRVBZVIuvXLLZyNaK6rBqZP2Wiy+Au0Hnr5C6HiDo4QWzjqILKykqcO3cOkZGR0Oks/9LiUnCN279/P2655RYUFBTYffqWxu4TkT2V55YjK9Gx+rlVGk2YcDADAPDlkCjolI7TG0ahUqDLoC7QBzjuSkRE5Pzs+gjYTa1xulBGRLZTkl3Cka4tZDKYcOnXS+g8oDM8O3vKXQ4RdVCO8397iahDKcosQnYSw19riCYR2UnZKMoskrsUIuqg7D4IhKwbOXIk5/WjDin/bD5Xu2gjURSRczQHxhoj/Lr5yV0OEXUwbAEkIpviUme2de3ENZdaKo+I2ofNAiBbshwb7w+1h9yTucg9lSt3GR1O7qlc5J7k90pEttPmAKhWm+esKi8vb3MxZD/V1ea515RKpcyVUEeVeyoXeWfYUmUveWfyGK6JyGba3AdQqVTCx8cHV69eBQDo9Xqry5iRPEwmE65duwa9Xg+Vit0+yfbyf8vnY8p2kHc6DwqVgn0CiajNbJIGOnXqBABSCCTHo1Ao0LVrV4ZzsrmizCJcS2efv/Zy7cQ1KNVKeHf1lrsUInJiNgmAgiCgc+fOCAoKQk1NjS1OSTam0WigUHDMD9lW2dUyXEm9IncZLudK6hWo3FRwD3SXuxQiclI2fR6oVCrZx4zIRVSVVOFy0mUOMJKBKIq4fPgyuo7oCq2nVu5yiMgJsUmIiFrMZDDhcuJlh1rezdWYDCZcPsx7QEStwwBIRC2WczQH1WXVcpfh8qpLq/kInohahQGQiFqkOKsYJZdL5C6DflecVYzirGK5yyAiJ8MASETNZqw24moaR/s7mqtpV2GsNspdBhE5EQZAImq2ayeuwVjDoOFojDVGTsVDRC3CAEhEzVJVXIWii0Vyl0FWFGUWoaqkSu4yiMhJMAASUbNwGTLHx/WCiai5GACJqEnVZdUozSmVuwxqQmlOKUdnE1GzMAASUZMKzxfKXQI1E+8VETUHAyARNUoURZRkcdoXZ1GSVcLVWYioSQyARNSoivwKGKoMcpdBzWSoMqAiv0LuMojIwTEAElGjyq6UyV0CtVDZVd4zImocAyARNao8r1zuEqiFKvLYAkhEjWMAJCKrRJOIqmLOLedsKosqIZrYD5CIrGMAJCKrqkurGSSckGgSUV3K6WCIyDoGQCKyiiHCefHeEVFjGACJyKqa8hq5S6BWqqngvSMi6xgAicgqQyWnf3FWhgreOyKyjgGQiKwyVhvlLoFaifeOiBrDAEhEVhlrGCKcFe8dETWGAZCIrDIZTHKXQK3Ee0dEjWEAJCKrGCKcl2jk9D1EZB0DIBFZxTkAnZfJyPBORNYxABKRVQyAzov3jogawwBIRFYxRDgx3joiagQDIBFZxxDhtBjeiagxDIBEZJUoMkQ4K947ImoMAyARWcVWJCfGW0dEjWAAJCLrGCKcFsM7ETWGAZCIrGKIcF68d0TUGAZAImqQKIrsR+bEeP+IqDEMgETUILYgdQCtuIUHDhyAIAh46KGHLLZPnDgRgiDgyJEjNiquaXv37sWtt96KQYMGIT4+HiNGjMCWLVva7frXMxqN0Ov16NevH/r164eIiAg8+OCDMJmannT7tddeQ1xcnPQTHByM4OBg1NTUAAAOHz6MoUOHok+fPhg9ejSuXbvW4HnOnz8PvV5vca6kpCTp/fT0dNx5553o06cPoqKi8N5779nmw1OHo5K7ACJyTAyAzs9kNEGpULbomOTkZAwcOBBpaWnStj179iAzMxNarRZ9+vSxdZkNeu+997B27Vp89tln0jVTU1Px1VdfNbi/0WiEUtmyz9pS6enp8PHxwdGjRwEARUVF8PPzw6JFi9CjR49Gj503bx7mzZsHAKiqqkKfPn3wwgsvQK1W49KlS5g4cSK2b9+OQYMGYcGCBXjllVewevXqeudJTU3FqFGjsHPnznrvnTt3DnfccQf+9a9/YejQoTAajcjLy2v7B6cOiS2ARNQgBkDn15p7mJSUhKlTp+L8+fMQRREGgwELFy7EjBkzEBsbC7VaDQD49ddfMWbMGAwaNAixsbH4z3/+I53jsccek7YPGzYMFy5cAAB8/fXXSEhIwJw5c9CnTx90794dx48fr1dDRkYG5s+fj+3bt1sEzr59+2LJkiUAgNOnTyMiIgKLFi3CwIEDsWnTJuTm5mLatGno0aMHevbsiddee006NiQkBJcvX5ZeDxgwAMnJyQCAm266CdOnT8fgwYPRtWtXPProo1a/mxtvvFF6vXfvXkRGRiI8PLxF3/HKlSsRFhaGGTNmAADWrFmD2bNnY9CgQQCAIUOGIDU1tcFjjx49il69ejX43jPPPIOHH34YQ4cOBQAolUoEBQW1qDZyHQyARNQg0cgA6Oxacw+Tk5MRHx+PiIgInDt3DuvWrUNCQgIqKysxcOBAAOaWsMWLF+Nf//oXEhMTsX37djzyyCPSOV544QUkJiYiLS0N48aNw7vvviud+9KlS3j22Wdx7NgxTJgwAZ9++mm9GjZt2oSxY8eiZ8+ejdaZm5uLyZMnIykpCQ8++CAmTJiAYcOG4fTp00hMTMSqVatw+vRpZGdnw2QyISQkBIC5Be7MmTPo06cPTCYTUlJS0KlTJxw8eBBpaWnYtm2b1Mp3/TUPHTqEuLg4hIaGYu7cufj222+h1WoBAP/4xz+wYsWKRr/fs2fPYu3atVi3bh0AwGQyYdOmTbj33nulfYqLi6VzXu/o0aP44osv0KtXL9x+++04ffo0AKCsrAw7duxASUkJEhISEBsbK33vRA1hACSiBpmMTfdrIsfW0ntYWVmJ9PR09O/fH3Fxcdi3bx/eeustLFu2DElJSVIAXLFiBTIzMzFmzBjExcVh8uTJ8PT0BABkZWXhueeew4ABA9CvXz+8/fbb0Ol0AMwB6umnn0ZoaCgAwGAwIDAwsF4dKSkpGDBggPR6w4YNiIuLQ9euXbF161YA5ta4OXPmSK1me/fuhclkklrvPD09ER4ejitXriApKcnifKmpqYiOjoZGo0F6ejr0ej2WL18OQRDg7e2NyMjIBh+dJiUlYePGjUhJScHFixdxxx134OWXX5bef/LJJ/HMM880+h0//vjjePzxx6Vwe+7cOVRXV1s8Qk5OTkb//v0bPH7NmjX47bffkJaWhu7du+Ovf/0rACAtLQ3V1dXw8/PD/v37sXXrVjz66KPIyspqtB5yXQyARNQgtgA6v5Y+Ak5NTUVYWBh8fHwQFxeHBQsW4Mknn4Svr6/UNxAAjhw5gl27diElJUX6OXbsGABgwoQJGD58OBITE3H06FFERERIYSY5ORk333yzdL26obIud3d3i9cPPPAAUlJSYDAYEBsbKx07evRoaZ+0tDSLkFdRUYGMjAz07t27XgD8+eefpdeHDx9G//79odFoAAClpaU4c+YM+vXrZ1GDyWTC0aNHpesLgoABAwa0KGB98cUXOHXqFJ599llpW2VlJTw8PCAIAgBz6+RXX32F+++/v8FzdO3aFYD58W5CQgIKCgqkuiMjIzF//nwIgoBevXpBo9Ggurq62fWRa2EAJKIGsQ+g82tpiK8blMaNG4elS5fiL3/5CwoKCpCVlSX1xwsNDcW///1v6biMjAwUFhZKIem2226DUqnE+vXrcejQIcTHxyM/Px+FhYVSS5fJZEJaWlq9oAUAkyZNwqZNmyzCVWJiIsrKyhATEwPA3EpYNzyGhYXh+PHjMJlMMBqNmD9/PiZPngw/Pz9cu3YNfn5+AIDc3Fy8+eab0rGHDx9GRkYGqqqqYDKZsHDhQtx3333w9/e3qOnUqVNQq9Xo0qULAKCkpAQffvgh7rjjjmZ9t2VlZZg/fz7efvttuLm5SdsjIyNRVVWFc+fOAQAWL16M0aNHIzIyst45srOzpd+zsrLw8ssv47HHHgMAxMTEoLy8HMXFxQCA1atXY8CAAQ2ehwjgKGAisoKPgJ1fS+9hcnKyFADDw8OxYMECaXvv3r2lVrI1a9bgoYcewkcffQSNRoOQkBBs27YNCoUCy5YtQ79+/RAbG4uxY8ciJCQEnTp1wt69ezFgwACppevkyZMIDQ2t19oHAFOmTEFubi5uu+02CIIANzc3BAQEYNOmTVAoFDh79ix8fX2lUAeYp6n59ttvpX5948ePlx7PzpgxA/fddx8OHjyI8PBw6HQ6ixbA2bNnY+TIkSgsLLQ47vrvpqKiAnFxcdJo43vuuUd65PzZZ59h3759WL9+fYPf7d/+9jcMGTIE48aNs9iu1+uxbt063HbbbQCAUaNGSf0DAXOL6oIFC5CQkID58+cjOTkZ7u7u0Gg0ePLJJ6W+g126dMHf//53DBs2DAqFArGxsdixY4f1m00uTxA5UygRNaA0pxRZiR2z/1Cl0YQJBzMAAF8OiYJO2TEfhnS5sQs8gj3kLsNhGQwG+Pn5IScnB3q9Xu5yiNpVx/xbj4jajI+AnR/vYeNOnDiBiIgIhj9ySQyARNQgPhxwfgyAjevbt6/V+faIOjoGQCJqGLOD8+M9JCIrGACJiIiIXAwDIBFRRyXIXQAROSoGQCJqkKBgenB2tVOuEBFdj/MAElGDGACdn6DkPaSWKa82yF2C3ek1jD4AAyARWaFQ8QGBs1N00PkNyX56vfBfuUuwu/Mrb5e7BIfAvx2IqEEKNf96cHZKjVLuEojIQbEFkIgaxPDg/HgPqaVOvDi2Xa5z+to13PVmMgDgw4d7oYunJzp7+bTLtcmMAZCIGqTS8q8HZ8cASC3VXv3j1Kr/9U/VqRVQqwX2zWtnfMZDRA0SFAJUOv6F7KxUOhUH8pDDMhiNFq+NJpNMlbguBkAiskqtV8tdArUS7x05MqNoGfhqrguEZH8MgERklcZDI3cJ1Eq8d+SoTKIIw/UB0MQA2N4YAInIKq2XVu4SqJV478hRGRoIe0bRBJPIx8DtiQGQiKzSeevkLoFaifeOHFW1seHJpqv5GLhdMQASkVVaby2XE3NCgkKA1pstgOSYrAU9a8GQ7IMBkIisUigV0PmyJcnZ6Hx0XAWEHFaVocbKdgbA9sS/IYioUXp/vdwlUAvxnpEjq7QSAK1tJ/tgACSiRrkHuctdArUQ7xk5sgorQc/adrIPBkAiapTOV8cVJZyIUqPkY3tyWNVGQ4OjgAHzo2FOCN1+GACJqFGCIMCjk4fcZVAzeXTy4MAdcljl1dVW3xMhosJg/X2yLQZAImqSVxcvuUugZuK9IkdWUl3Z6Pul1VXtVAkxABJRk9z83aB249Jijk7tpoabv5vcZRBZVdpEACypavx9sh0GQCJqkiAI8Apjy5Kj8+7qzce/5LDKa6qbXPKtwlDN+QDbCQMgETWLT7gPw4UDEwQB3l295S6DyKrCyvJm7VdUWWHnSghgACSiZlLpVPDozMEgjsqjswdUOpXcZRA1SBRFFDUzABY0cz9qGwZAImo23yhfuUsgK/y6+cldApFVxVUVTT7+rVVpqEYZB4PYHQMgETWbm68b9AFcZcLR6AP00Plw7j9yXHkVZS3cv9ROlVAtBkAiahH/Hv5yl0DX4T0hR1ZeU93k6N/rFVVWcDCInblMAFy2bBni4uLkLoPI6en99WwFdCDuge5c+5cc2tWy4hYfI0LE1bISO1RDtVwmAMopLS0NCQkJcHNzQ5cuXfDiiy9CFMVGjykoKMCMGTPg7e0Nb29vzJgxA4WFhe1TMFETAmMC5S6BfhfQM0DuEoisKq+pRnFV60b1FlSUsRXQjhgA7ay4uBijR49GSEgIEhMT8eabb2L16tVYs2ZNo8fde++9SElJwTfffINvvvkGKSkpmDFjRjtVTdQ4nY+OK044AK8uXuz7Rw4tu6Sw1ceKEJFTUmS7YshCuwfAkSNH4rHHHsNjjz0GHx8f+Pv7Y8mSJVZbxIqKiuDm5oZvvvnGYvv27dvh7u6O0lJzR9HFixejR48e0Ov1iIqKwvPPP4+amppG65g3b57FtrvuuguzZs2SXldXV2PRokXo0qUL3N3dMXjwYOzfv79Fn3fLli2orKzE5s2b0adPH0yaNAnPPvss1qxZY/Uzp6en45tvvsH777+PoUOHYujQoXjvvfewa9cunDp1qkXXJ7KXgJgACArOCygXhVKBgBi2/pHjKqosR1lN20bzFlaVc0SwncjSAvjBBx9ApVLh119/xRtvvIG1a9fi/fffb3Bfb29v3H777diyZYvF9o8//hgTJkyAh4d5XjJPT09s3rwZJ06cwOuvv4733nsPa9eubVOd999/P37++Wds3boVqampmDx5MsaNG4czZ85I+wiCgM2bN1s9xy+//IKEhARotVpp29ixY3H58mWcP3/e6jHe3t4YPHiwtG3IkCHw9vbGgQMH2vSZiGxF7aaG/w0cfCAXv+5+XJ6PHJbRZMLlNrT+1ZVVUghTE92mqOVkCYBhYWFYu3YtoqOjMW3aNDz++OONhrVp06bh3//+N8rLzZNDFhcXY/fu3Zg+fbq0z5IlSzBs2DBERETgzjvvxJNPPonPPvus1TWePXsWn3zyCT7//HPcdNNN6NatGxYuXIgRI0Zg06ZN0n7R0dHw9rY++35OTg6Cg4MtttW+zsnJsXpMUFBQve1BQUFWjyGSg193P2jcNXKX4XI07hr4dee8f+S4rpQVN3vev6ZUGqqRW84BIbYmSwAcMmSIxZJSQ4cOxZkzZ2A0GrF8+XJ4eHhIP5mZmbj99tuhUqnw1VdfAQC++OILeHp6YsyYMdI5tm3bhhEjRqBTp07w8PDA888/j8zMzFbXmJycDFEU0aNHD4t6vv/+e5w9e1ba7+TJk5g4cWKj57p++azaR7+NLavV0HuiKHIpLnIogkJAcN/gpnckmwruG8zH7+SwyqurkFdu23n8rpQWo9JgvVsXtZzDrRv0yCOPYMqUKdLrkJAQqFQq/OlPf8LHH3+MP//5z/j4448xdepUqFTm8g8ePIg///nP+Nvf/oaxY8fC29sbW7duxT/+8Q+r11EoFPX64NXtM2gymaBUKpGUlASlUmmxX+1j5+bo1KlTvVa7q1evAkC9lsG6x1y5cqXe9mvXrlk9hkgu+gA9vLt6oyiTnbXbg3dXb07DQw7LJJpwsTgfImz7yFaEiEvFBejmG8iGEBuRJQAePHiw3usbbrgBSqUSfn5+8POr/2hj2rRpGDNmDI4fP459+/bhpZdekt77+eefER4ejueee07aduHChUZrCAwMRHZ2tvTaaDTi2LFjuOWWWwAA/fv3h9FoxNWrV3HTTTe16nMC5tbNZ599FtXV1dBozI/Kvv32W4SEhCAiIsLqMUVFRTh06BBuvPFGAMCvv/6KoqIiDBs2rNW1ENlLYK9AlF0tg6GSUzbYk9pNjcBenIKHHFdOSRGq7DR1S3lNFa6VlSDIgzMQ2IIsj4AvXryIBQsW4NSpU/jkk0/w5ptvYu7cuY0ek5CQgODgYEybNg0REREYMmSI9F737t2RmZmJrVu34uzZs3jjjTewY8eORs/3hz/8Abt378bu3btx8uRJzJkzx2KevR49emDatGmYOXMmtm/fjnPnziExMRGvvPIKvv76a2m/nj17Nnqte++9F1qtFrNmzcKxY8ewY8cOLF++HAsWLJD+X8yhQ4fQs2dPZGVlAQBiYmIwbtw4/OUvf8HBgwdx8OBB/OUvf8Edd9yB6OjoRj8XkRyUaiU6xXWSu4wOL7hfMJRqZdM7EsmguKoCuXZewu1KWTHKOSrYJmQJgDNnzkRFRQVuvPFGPProo3j88cfx0EMPNXqMIAi45557cPToUUybNs3ivQkTJmD+/Pl47LHHEBcXhwMHDuD5559v9HyzZ8/Gfffdh5kzZyIhIQGRkZFS61+tTZs2YebMmXjyyScRHR2N8ePH49dff0VYWJi0z6lTp1BUZP3Rl7e3N7777jtcunQJ8fHxmDNnDhYsWIAFCxZI+5SXl+PUqVMWj6C3bNmC2NhYjBkzBmPGjEHfvn3x0UcfNfqZiOTkHugO30hfucvosHwjfeEe6C53GUQNqjEacamowO7XESEiszgfRpPJ7tfq6ASxqSUpbGzkyJGIi4vDa6+91p6XJaJ2YDKacOGHC6gurZa7lEZVGk2YcDADAPDlkCjolI49J77GQ4Pwm8OhcPA6yTWJooiMgmstmvOvssaEKW8dAwB89lgf6NQt+7Pto9Wjqw+noWoL/m1CRDajUCoQMjCEI1RtSFAICBkYwvBHDutqWXGbJ3xuqcKqcpuPNHY1/BuFiGxK66XlQAUbCuodBK2XtukdiWRQUlWBK2XFslz7ckkhymsc+2mDI2v3UcAtXUqNiJyPb6QvKvIqUJLNyVvbwrOzJ3wifOQug6hB1UYDMovyZbu+CBGZhXno7h8ElYKDo1qKLYBEZBfB/YKh1nOpstZS69UI7sd5P8kxmURz+DKK8g7GqDYZcLEov968vtQ0BkAisgulWomQePYHbA1BISAkPoRTvpDDyi4pRLnBMR6/llRX4loZnza0FAMgEdmNzluH4Fi2YrVUcGwwdN46ucsgalBhRTny7DzfX0vllBWhpKpS7jKcCgMgEdmVd1dveId5y12G0/AO84Z3V35f5JgqDTW4VGz/+f5a42JRPmqMRrnLcBoMgERkd0GxQWzRagadtw5BsUFyl0HUIKPJhAuFeTDBMSdhNohGXCjKg4n9AZvFJQLg5s2b4ePjI3cZRC5LoVSwT1sTavtMcr4/clRZJQWoMtY0vaOMymuqkFNqfXUu+p92/5tm1qxZEASh3s9vv/3W3qW0i71792LYsGHw9PRE586dsXjxYhgMlgtli6KI1atXo0ePHtBqtQgLC8Py5cst9vn+++8xcOBA6HQ6REVF4Z133rHJtYnai1qvRueBneUuw2F1HtiZo6bJYeWVl6KwslzuMpolt7wERZUVcpfh8GT5v5rjxo1Ddna2xU9kZKQcpdhVamoq/vjHP2LcuHE4cuQItm7diq+++gpPP/20xX5z587F+++/j9WrV+PkyZPYuXMnbrzxRun9c+fO4Y9//CNuuukmHDlyBM8++yyeeOIJfPHFF22+NlF7cg90R0DPALnLcDgBPQO4zi85rIqaalwuKZS7jBa5VJyPaiMbPBojSwDUarXo1KmTxY9SWf/RkMlkQmhoaL3WruTkZAiCgIwM81qea9asQWxsLNzd3REWFoY5c+agtNT6CKVZs2bhrrvustg2b948jBw5UnotiiJWrVqFqKgouLm5oV+/fti2bVuLPufWrVvRt29fvPDCC+jevTsSEhKwYsUKvP322ygpMQ9ZT09Px/r16/Hll19i/PjxiIyMRFxcHG699VbpPO+88w66du2K1157DTExMXjwwQcxe/ZsrF69uk3XJpKDX3c/eHTykLsMh+HRyQP+N3BNU3JMJtGEzKJ8iHCufnVG0YSLRfnsD9gIh+5solAo8Oc//xlbtmyx2P7xxx9j6NChiIqKkvZ74403cOzYMXzwwQf4v//7PyxatKhN116yZAk2bdqE9evX4/jx45g/fz6mT5+O77//XtonIiICy5Yts3qOqqoq6HSWHd/d3NxQWVmJpKQkAMDOnTsRFRWFXbt2ITIyEhEREXjwwQeRn/+/2dV/+eUXjBkzxuI8Y8eOxeHDh1FT03B/jOZcm0gOgiCgc//O0Hho5C5FdhoPDTr352NxclxZxYUO3+/PmrKaKlyVaZk6ZyBLANy1axc8PDykn8mTJ1vdd9q0afj5559x4cIFAOZWwa1bt2L69OnSPvPmzcMtt9yCyMhI/OEPf8BLL72Ezz77rNX1lZWVYc2aNdi4cSPGjh2LqKgozJo1C9OnT8c///lPab9u3bohIMD646yxY8fiwIED+OSTT2A0GpGVlYW///3vAIDs7GwAQEZGBi5cuIDPP/8cH374ITZv3oykpCT86U9/ks6Tk5OD4GDLudSCg4NhMBiQm5vb6msTyUWhUqDLoC5QqBz6/4PaFb8DcnSFleUoqCyTu4w2uVpWjNJqzg/YEFn+5rnllluQkpIi/bzxxhsAgC1btlgEwx9//BH9+/dHz5498cknnwAwD4a4evUqpkyZIp1v3759GD16NLp06QJPT0/MnDkTeXl5KCtr3R/cEydOoLKyEqNHj7ao58MPP8TZs2el/fbu3YvHHnvM6nnGjBmDV199FY888gi0Wi169OiB22+/HQCkR94mkwlVVVX48MMPcdNNN2HkyJHYsGED9u3bh1OnTknnEgTL1RRql725fntLrk0kJ1dv/WIrKDmyaqMBWQ46319LXSzKh8HE+QGvJ0sAdHd3R/fu3aWfzp3N/wiMHz/eIhjGx8cDMLcCfvzxxwDMj3/Hjh0rtbxduHABf/zjH9GnTx988cUXSEpKwttvvw0AVh+PKhSKeusG1t3XZDLPcbR7926Lek6cONHifoALFixAYWEhMjMzkZubiwkTJgCANOilc+fOUKlU6NGjh3RMTEwMACAzMxMA0KlTJ+Tk5Fic9+rVq1CpVPD3t953qKlrE8nNVfu/+d/gz36Q5LBEUcTFonzZ1/m1lRqTEVnFhXKX4XBUchdQl6enJzw9Pettv/fee7FkyRIkJSVh27ZtWL9+vfTe4cOHYTAY8I9//AMKhTnPNvX4NzAwEMeOHbPYlpKSArXaPAVDr169oNVqkZmZiYSEhLZ+LAiCgJCQEADAJ598grCwMAwYMAAAMHz4cBgMBpw9exbdunUDAJw+fRoAEB4eDgAYOnQodu7caXHOb7/9FvHx8VLNrbk2kSPwj/ZHZWElyq4596Om5nIPdId/tOuFXnIe18pKUFZTJXcZNlVUVY78Ch383DjavpZTdD6JjIzEsGHD8MADD8BgMEgtWYC5H57BYMCbb76JjIwMfPTRR03OkfeHP/wBhw8fxocffogzZ85g6dKlFoHQ09MTCxcuxPz58/HBBx/g7NmzOHLkCN5++2188MEH0n6jRo3CW2+91ei1Xn31VaSlpeH48eN46aWXsHLlSrzxxhvSY9hbb70VAwYMwOzZs3HkyBEkJSXh4YcfxujRo6VWwUceeQQXLlzAggULkJ6ejo0bN2LDhg1YuHChdJ0dO3agZ8+eLbo2kSMQBAGdB7jGHHi1cyFa67pBJLeKmmpc6aADJ7JLCjk1TB1OEQAB82Pgo0ePYtKkSXBzc5O2x8XFYc2aNXjllVfQp08fbNmyBStWrGj0XGPHjsXzzz+PRYsWYdCgQSgpKcHMmTMt9nnppZfwwgsvYMWKFYiJicHYsWOxc+dOi8enZ8+etToIo9Z//vMf3HTTTYiPj8fu3bvx5ZdfWkxBo1AosHPnTgQEBODmm2/G7bffjpiYGGzdulXaJzIyEl9//TX279+PuLg4vPTSS3jjjTdw9913S/sUFRVZ9BlszrWJHIVSY14FQ1B03GAkKASuhkIOzVmnfGmu2qlhru8C5qoEkd8EETmIootFyEnJaXrHNqo0mjDhoHke0S+HREHXDsuvdYrrBO8wb7tfh6i1LhcXILfC+hy6tlRZY8KUt8xP3j57rA906vZrj+rk7o0gD692u56jcpoWQCLq+LzDvOET7iN3GTbnE+7D8EcOraSqot3Cn9yulBWjvKZa7jJkxwBIRA4lqE8QdD66pnd0EjofHYL6BMldBpFVBpMRFzvIlC/NIULExaI8mDrIKOfWYgAkIoci9ZXTOH9fOVfo20jO71JxgcvNk1dlNOBySZHcZciKAZCIHI7aTY3OA5x/kujOAzpD7dbxRzeT88orL0VxVYXcZcgiv6IURZWu+dkBBkAiclDuge4I6Gl9qUVHF9AzAO6BnHOMHFeloQbZLt4Kdqk4HzVG12r9rMUASEQOy6+7HzyCnW/FDI9gD/h195O7DCKrTKIJmYV5MMG1+8EZRRMyi/JccmoYBkAicliCIKBT/05ONUm0Wq9Gp/6dONkzObTLJUWoNDa8XKqrKaupwtUOOvl1YxgAicihKdXOM5CCkz2TMyisKEe+i0z50lxXyopRUlUpdxntigGQiByezts5plIJ6hMEnXfHmcKGOp5KQw0uudCULy1x0cX6AzIAEpFT8An3gVeo487e7xXq1SEnsaaOw2gy4QL7/VllMBmRWZQHk4v0B2QAJCKnEdw3GFpPrdxl1KP11CK4b7DcZRA1Kqu4AFXs99eospoq5JQUyl1Gu2AAJCKnoVAqEBIfAoXKcf7qUqh+r6kd1hMmaq2rZcUorCqXuwynkFtRioKKMrnLsDv+jUVETkXjoXGo1rbgvsHQeGjkLoPIqpKqCuSUuvZ8fy11qbigw68XzABIRE7Hq4tj9LfzCfeBVxfH7ZdIVGmoQWZRvtxlOB0RIi4U5nboQSEMgETklAJ7B0LrJV9/QK2X1ilGJpPrMg/6yIVR5KCP1qgxGXGhMBemDvr9MQASkVNSKBUIGShP37vaazvD3ITkmkRRRGZRHqqMBrlLcWrlhuoOO20OAyAROS2NhwZBse3fChcUG8R+f+TQsksKUVLtWhMb20thZTmulna8lUJUchdARFSrvLrlrRXqYHeogvQozW7+ygaVRlODvzeHZ4gn1MHurapVr+FfuWR/eeWlyOVKHzaVU1YErUoFb51e7lJshn8bEZHD6PXCf9v9mlMTz7f8oO1HW3Wt8ytvb9VxRM1VWl2Jyy4yj117u1hUAI1SBTd1x2j95yNgIiKiDqDKUIMLhXkQ4RorWbQ3E8wrqXSUkcFsASQih3HixbFyl0DklGqXeeOIX/uqNhmQWZSHSN9AKATnHgTGAEhEDoN95IhaThRFXCzORyWXeWsXZTVVuFxSiFAvX7lLaRM+AiYiInJiV8tKUFxVIXcZLiW/ohT5Tr5cHAMgERGRkyqpqsSVMi7zJoes4gJUOPFycQyARERETqjGaMRFLvMmGxEiLhTlwWhyzn6XDIBEREROprbfn0HsGCNSnVW10YAsJ10phAGQiIjIyeSWl6KUK304hMKqchQ4YX9ABkAiIiInUmmoQU4p+/05ksslhU43PyADIBERkZMQRRFZxQWc7NnBGEUTskqc61EwAyAREZGTyK8oQ1lNldxlUAOKqypQVOk80/EwABIRETkBo8mEK6XFcpdBjcgpLYRJdI7WWQZAIiIiJ3CtvISjfh1cldGA/IpSuctoFgZAIiIiB2c0mZBX7hzBwtVdKytxilZABkAiIiIHl1deCqPonBMOu5oakxGFleVyl9EkBkAiIiIHJooi8pzksSKZOUNrLQMgERGRAyutrkKNiX3/nEmFoRqVhhq5y2gUAyAREZEDc4bHiVRfQYVj3zcGQCIiIgfGJd+cU4mD3zcGQCIiIgdVaajh418nVWmodujl4RgAiYiIHFR5TbXcJVAbVBoc9/4xABIRETkoRx9IQI2rcOD7xwBIRETkoKoNBrlLoDaoNjru/WMAJCIiclDs/+fcDEbHnbybAZCIiMhBGU2OGyCoaQYHXr2FAZCIiMhBiXD8NWXJOtGB1wRmACQiInJQjhsfqDkc+f4xABIRETkohSDIXQK1gdKB7x8DIBERkYNSCPxn2pk5coDnnywiIiIHpVbwn2lnplIo5S7BKv7JIiJyMgcOHIAgCHjooYcstk+cOBGCIODIkSPtVsvevXtx6623YtCgQYiPj8eIESOwZcuWdrt+Q3Jzc/HYY4+hT58+6NOnD2JiYrB8+fIWnWP9+vVQKBTYuXOntO3s2bMYPXo0evXqhaFDh+K3335r8NhDhw4hPj4eAwYMQFRUFGbOnInKSvO6sFVVVbjzzjvRtWtXqFQqVFRUNFqHWqlqUd3kWDRKBkAiIrKR5ORkDBw4EGlpadK2PXv2IDMzE1qtFn369GmXOt577z08/vjjeO2115CYmIjDhw9j3bp1OHfuXIP7G9thXdT8/HyMGDECoaGhSE5OxrFjx3DgwAHodLpmn+Pf//43kpKSoFarER8fDwAoLS3FmDFjMG/ePJw4cQL33HMPnn766QaPj46Oxi+//ILk5GScPHkSP//8M/bs2QMAMBgMWLZsGdavX4+ePXvCzc2t0VocOUBQ0xw5wDMAEhE5maSkJEydOhXnz5+HKIowGAxYuHAhZsyYgdjYWKjVagDAr7/+ijFjxmDQoEGIjY3Ff/7zH+kcjz32mLR92LBhuHDhAgDg66+/RkJCAubMmYM+ffqge/fuOH78eL0aMjIyMH/+fGzfvt0icPbt2xdLliwBAJw+fRoRERFYtGgRBg4ciE2bNiE3NxfTpk1Djx490LNnT7z22mvSsSEhIbh8+bL0esCAAUhOTgYA3HTTTZg+fToGDx6Mrl274tFHH23wu5k/fz5GjBiBp59+GhqNBgDg6+uLBQsWNOu7/eWXX/DRRx/hwQcfREBAADp37gwA2LhxI0aMGIHbb78dADBkyBCkpqY2eA5vb2/pHhw7dgyiKEpB0t3dHQMHDsTx48cxYMCAJuvRqdTNqpsckyPfPwZAIiInk5ycjPj4eERERODcuXNYt24dEhISUFlZiYEDBwIA0tPTsXjxYvzrX/9CYmIitm/fjkceeUQ6xwsvvIDExESkpaVh3LhxePfdd6VzX7p0Cc8++yyOHTuGCRMm4NNPP61Xw6ZNmzB27Fj07Nmz0Tpzc3MxefJkJCUl4cEHH8SECRMwbNgwnD59GomJiVi1ahVOnz6N7OxsmEwmhISEADA/Kj1z5gz69OkDk8mElJQUdOrUCQcPHkRaWhq2bduGo0ePWlyvsLAQW7ZswVNPPWW1pk8++QSPP/54g++dOnUKS5YswebNm3H06FEptAHA+++/j3vvvVd6XVxcDK1Wa/U6M2fORFhYGO644w7s3LkTnTp1qvfdMAB2fDoVWwCJiMgGKisrkZ6ejv79+yMuLg779u3DW2+9hWXLliEpKUkKgCtWrEBmZibGjBmDuLg4TJ48GZ6engCArKwsPPfccxgwYAD69euHt99+W3pEmpycjKeffhqhoaEAzI8sAwMD69WRkpJiEWA2bNiAuLg4dO3aFVu3bgVgbqmcM2cOBg0aBMDcX9BkMkmtd56enggPD8eVK1eQlJRkcb7U1FRER0dDo9EgPT0der0ey5cvhyAI8Pb2RmRkJPLy8ixqSktLg7u7O6Kjo61+f/fccw/efPPNetuvXLmCBx98EB9++CE8PT1x+PBhKQDW1NTg+PHj6N+/v7R/cnKyxevrffjhh7hw4QKmTp2Kv/3tb/Xeb24A1ChVUAl8DOyMdEq1Q4/idtzKiIiontTUVISFhcHHxwdxcXFYsGABnnzySfj6+kp9AwHgyJEj2LVrF1JSUqSfY8eOAQAmTJiA4cOHIzExEUePHkVERIQUZpKTk3HzzTdL16sbKutyd3e3eP3AAw8gJSUFBoMBsbGx0rGjR4+W9klLS7MIPRUVFcjIyEDv3r3rBcCff/5Zen348GH0799feqRbWlqKM2fOoF+/fhY1eHp6tnrlhc8++wxnzpzB8OHDERERgQ8//BBvvfUWNm7ciOrqaphMJilAA8DWrVvxwAMPNHpOhUKBfv36IScnx2J7SUkJMjIyGg2Qdbmp2QrojPS//3l1VAyAREROpG5QGjduHJYuXYq//OUvKCgoQFZWltQfLzQ0FP/+97+l4zIyMlBYWAiTyYSjR4/itttug1KpxPr166VRq/n5+SgsLESPHj0AACaTCWlpafWCFgBMmjQJmzZtQlZWlrQtMTERZWVliImJAWBuJawbHsPCwnD8+HGYTCYYjUbMnz8fkydPhp+fH65duwY/Pz8A5lG8b775pnTs4cOHkZGRgaqqKphMJixcuBD33Xcf/P39LWrq3bs3unTpgjfeeEPalpubKz3ebszjjz+OnJwcnD9/HmfOnAFgDqyzZ8+Gu7s7IiMjkZiYCABYu3YtvL29kZCQUO88R44ckUJoZmYmVq1ahZkzZ9bbJyoqyiJQNsZdbf1RMzkuvYPfN8d9OE1ERPXUfXQYHh4uDW5ITk5G7969pVayNWvW4KGHHsJHH30EjUaDkJAQbNu2DQqFAsuWLUO/fv0QGxuLsWPHIiQkBJ06dcLevXsxYMAACL9PXnvy5EmEhobWa+0DgClTpiA3Nxe33XYbBEGAm5sbAgICsGnTJigUCpw9exa+vr5SqAPM09R8++23Ur++8ePH4+WXXwYAzJgxA/fddx8OHjyI8PBw6HQ6ixbA2bNnY+TIkSgsLLQ4ri61Wo3du3djwYIFePfddyGKIjQaDebMmQMA+Omnn/Dqq6/iyy+/bPQ7PnnyJLy9vREUFCRte++99zBnzhwYjUbExcXhiy++kN7761//iptvvhn33HMPnn/+eZw4cUIaCLJo0SLMmjULgHlQzt13342KigqUlZUhNDQUL730Eu6///5G63HXaIGyRnchB+SuduwWQEF05JWKiYjIpRkMBvj5+SEnJwd6vV7ucmRhEkWcuHoZJpjkLsVmKmtMmPKWuUvCZ4/1gU7dsR5IqhVKxASGyF1GozrWN05ERB3KiRMnEBER4bLhDzAvJ+bu4P3JyJKHpvnzTsqFAZCIiBxW3759rc6350qcIVDQ/3hoHLv/H8AASERE5PCcIVDQ/zhDYGcAJCIicnBuag1UCs4H6Ax0Kg3UTrCEHwMgERGRE/B0glYlAjydpLWWAZCIiMgJMAA6B0+tc9wnBkAiIiIn4O4kLUuuTAGFw08AXYsBkIiIyAmolUroVJwOxpG5azRQ/D6RuqNjACQiInISHA3s2Jxh9G8tBkAiIiInwQDo2JzpMT0DIBERkZNwV2shwDkeMboapaCAm0otdxnNxgBIRETkJJQKBXROFDJciV6tgeAk/f8ABkAiIiKn4q7mQBBH5O4ko39rMQASERE5EWeZZsTV6J2o/x/AAEhERORU9Bq2ADoaAYJT9f8DGACJiIicikapgkpw/LVmXYlWqYJS4VyRyrmqJSIiIripnau1qaNzc8J+mQyARERETsYZA0dH5oyBnAGQiIjIyXAqGMfi5oRL9DEAEhERORlnG3DQ0TljIGcAJCIicjIapQpKgf+EOwJnHAACMAASERE5HUEQnLLVqSPSOeHjX4ABkIiIyCnxMbBjcNb7wABIRETkhDgS2DE468TcDIBEREROSM8A6BCccQQwwABIRETklLQqNVQKrggiJ51K45QDQABAJXcBjqK82iB3CXan1/B2ExF1JO5qLYqqyuUuw2V5OHErLBPB73q98F+5S7C78ytvl7sEIiKyIU+tjgFQRh5andwltJpztlsSERERPDXOG0CcnQABHhqt3GW0GlsAf3fixbH2vYCxGsjZCwAorwHiN5qz9+HZJujVAIJGAGpP+9ZAREQdilqphF6tRXlNldyluBxPrQ4KJ56MmwHwd3bvH1eZDzQwVZBebf4BSgCNr31rICKiDsdXp2cAlIGvTi93CW3ivNHV2VQXNv5+TVG7lEFERB2Lt84NAgS5y3ApSkEBT62b3GW0CQNge2kqADb1PhERUQNUCiV83Zy7NcrZ+Os9oBCcO3QzALaXmsIm3i8GRFO7lEJERB1LgJ59yNuLAAH+bh5yl9FmDIDtwVABGJvonyGazCGQiIiohXQqNXycvE+as/DXe0CtdP4JuBkA20N1gW33IyIiuk4nD2/2BbQzpaBAkHvHaG1lAGwPDIBERGRnGqWKj4LtLNjdq8Msv8cA2B4YAImIqB0Ee3hCq+QMb/agV2vhr3f+vn+1GADtTTQ1f4oXQ3nTfQWJiIisUAgKhHr58VGwjQkQEOrlC8HJR/7WxQBob9WFLRvdW51vt1KIiKjjc9doEeTuJXcZHUqIpw90qgZWc3BiDID21tJAV8UASEREbRPk7sl1gm3ER6fvUI9+azEA2ltLAx1bAImIqI0EQUCYtx807A/YJm4qDUK9OuYyrQyA9iSKLQ90NUWAyWCfeoiIyGWoFEpE+ARAKfCf+tZQ//79KTro99cxP5WjMJQAppqWHSOKHA1MREQ2oVOpEe7jz0EhLaQUFIjwCegQEz5bwwBoT1W57XscERHRdTw0OnT15sjg5hIgINwnAG5qjdyl2BUDoD1VMgASEZH8vHV6dOmgfdlsSYCArt7+8NBo5S7F7hgA7UU0AdV5rTu2pqjlj46JiIga4efmji6eDIHWmMOfH7x1bnKX0i4YAO2luqD1gzlEEai8Ztt6iIjI5fnrPRgCGyDAPGraW6eXu5R2wwBoL5VX2nZ81VXb1EFERFQHQ6Cl2pY/HxcKfwADoP20NQBWXDG3BBIREdmYv94DoV5+cpchO/OAD3+XavmrxQBoDzWl5p+2MFVzUmgiIrIbPzd3dPVy3SliFDBP9eKldY0+f9djALSHimzHOg8REVEDfNz06OrteiFQKSgQ6RsAT63rLpfHAGgPFZdsdJ7LfAxMRER25a1zM6944SKRwBz+AuHuAlO9NMY17nZ7qi5q++PfWsYqoIqjgYmIyL48tTpE+nb8ZeNUCiW6+QVB38EneW6Ojn2n5VCeadvzldn4fERERA1w12gR5RvYYUOgRqFCN99A6FRquUtxCB3zLsvFZADKbfT4t1ZlDmCstO05iYiIGuCm1iDKNxAqoWOtgatRqhDlFwgtw5+EAdCWyi+1fvJna0QRKLtg23MSERFZ4abWIMovECpFxwiBWqUKUb6B0ChVcpfiUBgAbUUUgdIM+5y79DxgMtrn3ERERNfRqdTmlkAnD4Hm8BfE8NcABkBbqcgGDGX2Obep2vZ9C4mIiBrh7CFQ83v4Uyuds357YwC0BVEESk7b9xolvwGiyb7XICIiqqM2BDrbwBCNwvzYl+HPOue6o46q4jJQU2LfaxgrgbLz9r0GERHRdXQqNSJ9A51mnkCVoESEbwAf+zbBOe6mIxNNQHF6+1yr+DRgqmmfaxEREf1Or9Yg3MfxVwypXeGDU700jQGwrUrOAoaK9rmWqQYoPtU+1yIiIqrDU6tDqJev3GVYJUBAV28/uHGS52ZhAGwLQwVQcqZ9r1l2Hqgpbt9rEhERAfB1c0eQu5fcZTQoxNMHnlo3uctwGgyAbVGYBojtPD2LKAIFqVwjmIiIZBHs7gUvBwtafm7u8Nd7yF2GU2EAbK3yy0DlFXmuXV3AASFERCQLQRAQ5uUHrYMMsnBTaRDi6biPph0VA2BrGKvMrX9yKkq337yDREREjVAqFOjqLf+gEKWgQLiPPxSCYw9OcUQMgK1RmGqenFlOohEoSOGjYCIikoWbWoNgD3n7A4Z4+nC6l1ZiAGypskygIkfuKsyq8s0TRBMREckgUO8Jd7VWlmt7ad3g6+Yuy7U7AgbAlqgpAQqPyV2FpZJT5iBIRETUzgRBQBcv33Z/FKwUFOjCfn9twgDYXCYjkJ/U/qN+myKKQEEyYJT5kTQREbkknUqNAL1nu14z2N2Ly7y1EQNgcxWm2n+5t9YyVAAFR9gfkIiIZBHk7gmV0D6BTKtUwY9TvrQZA2BzlF0Ayi/JXUXjKq+2/6TUREREMI8KDvJon1bAYA9vjvq1AQbAplQXOF6/P2uKT5mDIBERUTvzc/OAWmHfVkCdSgNvB5uE2lkxADbGWAnkHQZEk9yVNF9+MucHJCKidqcQBLv3BQzSe0Jg659NMABaI5rM4c9YKXclLWOqAfIOmf+XiIioHfm5uUMp2CdaaBQqeOnY+mcrDIDWFBw1P/51RjWl5pZADgohIqJ2pFQo4KPT2+Xcvm7u7PtnQwyADSn5zfEHfTSl8ipQnC53FURE5GL87DA5swDBLud1ZQyA16vIMa+z2xGUnDWvXEJERNRO3NQa6FQam57TQ6PlvH82xgBYV02x+dFpR1KYClTmyl0FERG5EB8bj9T1ttNjZVfGAFjLWAnk/up4K320lSgC+YfN/QKJiIjagbcNB2sIEDj1ix0wAALmZd7yDjnfiN/mqh0ZzOXiiIioHWhVauiUapucy12jhVLBuGJr/EZr19KtLpK7EvsylAH5ic41pyERETktTxu12nlpdDY5D1liACw6YR744Qqq8oGCFLmrICIiF+Cp1drkPB5aBkB7cO0AWHoOKM2Qu4r2VZ5lXjKOiIjIjvRqLRRtjBlqhRI6lW0eJZMl1w2AFVeAouNyVyGP4tNA2UW5qyAiog5MIQjQa9o2HYy7xjatiFSfawbA6iIgP8m1V8ooPMrpYYiIyK7c1W0LcG09nqxzvQBoqDCPiO1o0720lDQ9TInclRARUQfV1hY8tgDaj2sFQJOhY0/30lKmGiDvV8BYJXclRETUAenVagho3fq9SkEBrVJl44qolusEQNH0e4tXsdyVOJbaFlGTi7eIEhGRzSkERasHcejVGghC68IjNc11AmBhGlB5Te4qHFN1oXkuRFfuE0lERHahV7duIIie/f/syjUCYMlvQFmm3FU4tooc85yIRERENuTW6gDYthHE1LiOHwDLLwNF6XJX4RxKM4DS83JXQUREHUhrg5ybmvP/2VPHDoDVBUDBEbmrcC5Fx4DKq3JXQUREHYRWqWrxhNAapQoqhdJOFRHQkQOgoRzIPcS1b1tKFM1zJHKwDBER2YAgCC1uzXNT8fGvvXXMAGiq+X1ka7XclTgnTpdDREQ21NJ+gHz8a38dLwBKLVic4LhNDBVAXiKnhyEiojZza+FUMGwBtL+OFwCLjnG6F1upLjT3oeT0MERE1AYtnQuwtXMHUvN1rABYep6jWG2tIhsoOS13FURE5MS0quavCKJWKKFWcgCIvXWcAFiZa279I9srPm2eToeIiKgVFIIAbTNb9dj61z46RgA0lJmXeeOjSvspSAGqi+SugoiInFRz+wHq2P+vXTh/ADQZfh+sUCN3JR2baATyEwFjldyVEBGRE2puy15LB4xQ6zh/ACxI4Yjf9mKoMI+w5tyKRETUQs0NgFqVys6VEODsAbDkN/MgBWo/VXlcWo+IiFqsOQFQQPP7ClLbOG8ArMwFik/KXYVrKs3goBAiImoRtVIJpdB47NAolVAIzRstTG3jnAHQWAUUJHPQh5wKj5oH3xARETVTU617bP1rP84XAEURyE/mYAS5mQzsD0hERC2iVTbev0+rZABsL84XAEvPAlW5cldBgHlaGD6GJyKiZmoyAHIASLtxrgBYUwwUn5K7Cqqr5Ky5PyYREVETmgp4TQVEsh3nCYCiCcg/wkeOjqjwqPmRMBERUSM0TQS8pt4n23GeAFhy1twCSI7HUM6WWSIialJjLYBKQcE1gNuRcwRAQzlQclruKqgxZee4VBwRETVKISigUjQc8tRs/WtXzhEAi9P56NfRiSJQdFzuKoiIyMFZ6+enYetfu3L8AFhdwEmHnUVVHlBxRe4qiIjIgVl7zMv+f+3L8QNg8Rm5K6CW4KN6IiJqhLWgxxbA9uXYcbumBKhki5JTqS40TwujC5C7EiIiaqHyavvP6GAwAJU1/+vWVft7jUFol+vrNY4dfdqLY38LZRfkroBaozyTAZCIyAn1euG/7X7Nmf880a7XO7/y9na9nqNy3EfAogiUZ8ldBbVGRTZgMrb4sAMHDkAQBDz00EMW2ydOnAhBEHDkyBFbVdikvXv34tZbb8WgQYMQHx+PESNGYMuWLe12fWtKS0sREhKCyZMnt+i4Tz/9FIMGDUL//v0RFxeHPXv2NLjfokWLEBcXJ/34+vqif//+0vsRERHo27ev9P4///nPNn0eIiKSh+O2ANYUAqZquaug1hBNQNU1wK1Tiw5LTk7GwIEDkZaWJm3bs2cPMjMzodVq0adPH1tX2qD33nsPa9euxWeffSZdMzU1FV999VWD+xuNRijbqe/Kiy++iOjo6BaF4dOnT+PRRx/FkSNHEBYWhr1792LWrFm4ePFivX1XrVqFVatWAQCuXbuGnj174vXXXwcAFBUVoaCgAOfPn7fJZyEix3PixbFyl0DtxHFbAKvy5a6A2qK65fcvKSkJU6dOxfnz5yGKIgwGAxYuXIgZM2YgNjYWarV5kfBff/0VY8aMwaBBgxAbG4v//Oc/0jkee+wxafuwYcNw4YK5G8HXX3+NhIQEzJkzB3369EH37t1x/Hj9aWsyMjIwf/58bN++3SJw9u3bF0uWLAFgDlQRERFYtGgRBg4ciE2bNiE3NxfTpk1Djx490LNnT7z22mvSsSEhIbh8+X8j2QcMGIDk5GQAwE033YTp06dj8ODB6Nq1Kx599FGr38+ZM2ewdetWfPLJJ7hw4QKKi5s3MXpVVRW0Wi3c3NwgiiIOHTqEyMjIJo9btGgRxo8fj5tvvhmAOQT37NmzWdckIuek16g6/A+ZOW4ArOGkwk6tFZNCJycnIz4+HhERETh37hzWrVuHhIQEVFZWYuDAgQCA9PR0LF68GP/617+QmJiI7du345FHHpHO8cILLyAxMRFpaWkYN24c3n33Xencly5dwrPPPotjx45hwoQJ+PTTT+vVsGnTJowdO7bRoJOcnIzc3FxMnjwZSUlJePDBBzFhwgQMGzYMp0+fRmJiIlatWoXTp08jOzsbJpMJISEhAMxh7MyZM+jTpw9MJhNSUlLQqVMnHDx4EGlpadi2bRuOHj3a4HXnzZuHv/3tb+jUqROioqIs9vv+++9x9913N3jcDTfcgFGjRuGGG26Aj48PfvrpJ3z22WeN3ouff/4Zu3btwquvviptO3r0KM6dO4d+/fphyJAhFsGbiIici+MGQGOl3BVQW5hadv8qKyuRnp4u9VHbt28f3nrrLSxbtgxJSUlSAFyxYgUyMzMxZswYxMXFYfLkyfD09AQAZGVl4bnnnsOAAQPQr18/vP3229DpdADMoe3pp59GaGgoAMBgMCAwMLBeHSkpKRgwYID0esOGDYiLi0PXrl2xdetWAOaWyjlz5mDQoEEAzP0FTSaT1Hrn6emJ8PBwXLlyBUlJSRbnS01NRXR0NDQaDdLT06HX67F8+XIIggBvb29ERkYiLy+vXl27d+/GtWvXMGvWLABAv379kJKSIr2fkJCAL774ot5xoijitttuw/Dhw5Gfn4/U1FScO3cORqP1PpoGgwF//etfsXLlSgQE/G8wz913342srCwcPXoUTz75JP70pz+hqqrK6nmIiMhxOW4AFO0/FJzsyNSy+5eamoqwsDD4+PggLi4OCxYswJNPPglfX1+pbyAAHDlyBLt27UJKSor0c+zYMQDAhAkTMHz4cCQmJuLo0aOIiIiQBjAkJydLjzIBWITKutzd3S1eP/DAA0hJSYHBYEBsbKx07OjRo6V90tLSLEJeRUUFMjIy0Lt373oB8Oeff5ZeHz58GP3794dGowFgHuBx5swZ9OvXz6KG6upqLFiwABcvXkRkZCQiIiLw3XffNasfYFpaGs6fP4+HH34YgiAgPDwcnTt3xo8//mj1mNdffx1eXl6YPXu2xfbOnTtLj+FHjRqFiooKVFRUNFkDERE5HscNgI5cGjVNaNn9qxuUxo0bh6VLl+Ivf/kLCgoKkJWVJfXHCw0Nxb///W/puIyMDBQWFsJkMuHo0aO47bbboFQqsX79ehw6dAjx8fHIz89HYWEhevToAQAwmUxIS0urF7QAYNKkSdi0aROysv43Aj0xMRFlZWWIiYkBYG4lrBsew8LCcPz4cZhMJhiNRsyfPx+TJ0+Gn58frl27Bj8/PwBAbm4u3nzzTenYw4cPIyMjA1VVVTCZTFi4cCHuu+8++Pv7W9S0Zs0aDBo0CNnZ2Th//jzOnz+PDz/80KIF0BpfX1/k5+dLAz6SkpJw5MgRqfXyellZWXj55Zexfv16CIIgbb969arUalhRUYGFCxdi+vTp8PHxabIGIiJyPI7bG1KhkbsCaosW3r/k5GQpAIaHh2PBggXS9t69e0utZGvWrMFDDz2Ejz76CBqNBiEhIdi2bRsUCgWWLVuGfv36ITY2FmPHjkVISAg6deqEvXv3YsCAAVKgOXnyJEJDQ+u19gHAlClTkJubi9tuuw2CIMDNzQ0BAQHYtGkTFAoFzp49C19fXynUAeZpar799lupX9/48ePx8ssvAwBmzJiB++67DwcPHkR4eDh0Op1FC+Ds2bMxcuRIFBYWWhxXKzs7G//4xz+QlJRksT0mJgbHjx9HTU0NLl68iOnTp+OHH36ASmX5n3RYWBjWrFmDMWPGSANBPv30U3Tr1g0A8Ne//hU333wz7rnnHgDA/Pnz8eCDD0qtnbW2bNmCt99+W/rOJk6ciGeffbZZ95aIiByPIIqiKHcRDSo6AZSclbsKuyivAXr909xCduJhE/RqmQuyB30o4Ne/6f1clMFggJ+fH3JycqDX6+Uuh4iIXIzjPmfV+MpdAbWF1q/pfVzYiRMnEBERwfBHRESycNwAqA0A6vRBIiejrT/Clv6nb9++SE1NlbsMIiJyUY4bABVqQNeylSTIQWj9ABVbtoiIiByV4wZAAHAPl7sCag3eNyIiIofm2AFQFwhofOSuglpCpQfcQuSugoiIiBrh2AEQALy49qhT8Ypu8RyARERE1L4c/19qXSCgC5a7CmoOjS/g1kXuKoiIiKgJjh8AAcCnDyAo5a6CGiMIgE8sR24TERE5AecIgCo94B0jdxXUGI/ugMZb7iqIiIioGZwjAAKAe4R5bkByPGovwKuH3FUQERFRMzlPABQE89Jiio64bpoTE5SA3wAO/CAiInIizvWvtlIH+MbJXQXV5dMHUHvKXQURERG1gHMFQABw6wR4RMpdBQGAPgRw7yp3FURERNRCzhcAAcC7FwccyE3lDvj0k7sKIiIiagXnDICCAvCLBxQquStxTYIC8BvI75+IiMhJOWcABMxTw7AFSh5sgSUiInJqzhsAAfZBkwP7YBIRETk95w6AAODdB1B7yF2Fa1Dq2OpKRETUATh/AFQoAd/+XIKsPfjGAUqN3FUQERFRGzl/AAQAjQ/geYPcVXRs7uGALlDuKoiIiMgGOkYABMwBkBMS24dSZx74QURERB1CxwmAggLw6St3FR2TTyynfCEiIupAOk4ABACtH0cF25ou2Dzyl4iIiDqMjhUAAcCrJ1urbEUQAJ/ecldBRERENtbxAqBSC3h0l7uKjsE90rzkGxEREXUoHS8AAoBHlHngArWeQsWR1URERB1UxwyACiXDS1t5RHHOPyIiog6qYwZAwDwYROUmdxXOSaE2B0AiIiLqkDpuABQU7AvYWh6R5hBIREREHVLHDYCAuRWQfQFbRqFi6x8REVEH17EDoKAAPLvJXYVzcY9g6x8REVEH17EDIADowwEFBzM0i6AEPBiYiYiIOrqOHwAVSrYCNpdHBEf+EhERuYCOHwCB3x9rMtg0iq1/RERELsM1AqBCBXhxXsBGeUSaV1EhIiKiDs81AiBgbgXkvIANU6gBT06ZQ0RE5CpcJwAKCsCrp9xVOCavHhz5S0RE5EJcJwACgFsXQOMrdxWOReVubh0lIiIil+FaAVAQAJ9Y8/+SmU+suXWUiIiIXIbr/cuv8eZKF7X0oYAuUO4qiIiIqJ25XgAEAM9o86NPV6bUAt695a6CiIiIZOCaAVChBPwGuPajYN84TvpMRETkolwzAAKAxsfcEuiKPCIBXZDcVRAREZFMXDcAAua571ytD5zGB/DuJXcVREREJCPXDoCCAPgOcJ0JohUawC+eo36JiIhcHJOAUgP4DTKvhduRCQLgN9B1wi4RERFZxQAImKeG8Y2Tuwr78u4D6ALkroKIiIgcAANgLX1Ix10qziMS8IiQuwoiIiJyEAyAdXndALiHyV2FbemCOd8fERERWWAAvJ5P344zMljjbe7358rzHRIREVE9DIDXExTm0KT2kruStlHpAf/B5kmviYiIiOpgAGyIQg0EDHbeEbMKDRAwxLzcGxEREdF1GACtUep+b0FTy11JywgKIOBGrnVMREREVjEANkbtCfgPcq6Jk/0GAhpfuasgIiIiB+ZEyUYmWn/nmSPQpw/g1knuKoiIiMjBMQA2h76L488R6BFlnu+PiIiIqAkMgM3lyHME6oIB715yV0FEREROggGwJXz6Alo/uauwpPYE/AZwrj8iIiJqNgbAlhAUgF+8eYSwI1CozYNUFCq5KyEiIiInwgDYUkot4B/vGCODfftzuhciIiJqMQdIMU5I4yt/nzvPGwC3YHlrICIiIqfEANhaHpHmwRdy0PgCXj3kuTYRERE5PQbAtvCNMy+71p4E5e+DPnjriIiIqHWYItpCqQF8+7XvNX16Ayp9+16TiIiIOhQGwLZy6wS4dW6fa2n9AH3X9rkWERERdVgMgLbg08f8aNaeBME8DyHn+yMiIqI2YgC0BaXOPCrXntwjzZM+ExEREbURA6CteHYDVG72ObdCzVG/REREZDMMgLYiKADPaPuc27O7OQQSERER2QADoC3pQ22/ModCY378S0RERGQjDIC2JAjm1jpb8ogCFHYeYEJEREQuhQHQ1vSh5vWCbUFQAh4RtjkXERER0e8YAG1NUADuEbY5l3sY+/4RERGRzTEA2oN7uG3m62PfPyIiIrIDBkB7UGrbvjqI1h9Qe9imHiIiIqI6GADtpa1LtrlzyTciIiKyD5XcBTiK8mqDbU8o+AAmLWCsqn+tmoZ/lyiUgCIQsHFNeg1vNxEREQGCKIqi3EU4goind8tdgt2dX3m73CUQERGRA+AjYCIiIiIXwxbA39n8EbAD4iNgIiIiAhgAiYiIiFwOHwETERERuRgGQCIiIiIXwwBIRERE5GIYAImIiIhcDAMgERERkYthACQiIiJyMQyARERERC6GAZCIiIjIxTAAEhEREbkYBkAiIiIiF8MASERERORiGACJiIiIXAwDIBEREZGLYQAkIiIicjEMgEREREQuhgGQiIiIyMUwABIRERG5GAZAIiIiIhfDAEhERETkYhgAiYiIiFwMAyARERGRi2EAJCIiInIxDIBERERELoYBkIiIiMjFMAASERERuRgGQCIiIiIXwwBIRERE5GIYAImIiIhczP8Dyw+DaYgrk7oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Group our dataset with our 'Group' variable\n", + "grouped = df.groupby('category')['value']\n", + "\n", + "# Init a figure and axes\n", + "fig, ax = plt.subplots(figsize=(8, 6))\n", + "\n", + "# Create the plot with different colors for each group\n", + "violins = ax.violinplot([group.values for name, group in grouped],\n", + " #labels=grouped.groups.keys()\n", + " ) \n", + "\n", + "# Define colors for each group\n", + "colors = ['orange', 'purple', '#69b3a2']\n", + "\n", + "# Assign colors to each box in the boxplot\n", + "for violin, color in zip(violins['bodies'], colors):\n", + " violin.set_facecolor(color)\n", + " \n", + "# Add the p value and the t\n", + "p_value_text = f'p-value: {p_value}'\n", + "ax.text(0.7, 60, p_value_text)\n", + "F_value_text = f'F-value: {F_statistic}'\n", + "ax.text(0.7, 55, F_value_text)\n", + "\n", + "# Add the mean for each group\n", + "ax.text(1.3, mean_groupA, f'Mean Group A: {mean_groupA}',\n", + " style='italic', fontsize=8)\n", + "ax.text(2.3, mean_groupB, f'Mean Group B: {mean_groupB}',\n", + " style='italic', fontsize=8)\n", + "ax.text(2.2, mean_groupC, f'Mean Group C: {mean_groupC}',\n", + " style='italic', fontsize=8)\n", + "\n", + "# Remove axis labels\n", + "ax.set_xticks([])\n", + "ax.set_yticks([])\n", + "\n", + "# Removes spines\n", + "ax.spines[['right', 'top', 'left', 'bottom']].set_visible(False)\n", + "\n", + "# Add a title and axis label\n", + "ax.set_title('One way Anova\\nbetween group A, B and C', weight='bold')\n", + "\n", + "# Add a legend\n", + "legend_labels = ['Group A', 'Group B', 'Group C']\n", + "legend_handles = [plt.Rectangle((0,0),1,1, color=color, alpha=0.5) for color in colors]\n", + "ax.legend(legend_handles, legend_labels, loc='upper left')\n", + "\n", + "# Display it\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Going further\n", + "\n", + "This post explains how to represent the **results of an Anova** in a [violin plot](https://python-graph-gallery.com/violin-plot/) and a [boxplot](https://python-graph-gallery.com/boxplot/).\n", + "\n", + "For more examples of **charts with statistics**, see the [statistics section](https://python-graph-gallery.com/statistics/). You may also be interested in how to [represent Student t-test results](https://python-graph-gallery.com/551-student-t-test-visualization)." + ] + } + ], + "metadata": { + "chartType": "violin", + "description": "The Analysis of Variance (ANOVA) is employed to compare the means of multiple normally distributed variables. Utilizing matplotlib, you can readily generate a plot featuring violin plots or boxplots for these variables on the same chart, enabling a clear depiction of the differences among them.
Furthermore, by employing annotation techniques provided by matplotlib, you can directly incorporate the results of ANOVA into your chart. This enhancement will render the chart more informative and pertinent when comparing distributions among different groups or variables.", + "family": "distribution", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "keywords": "anova, violin, boxplot, matplotlib, statistics", + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "seoDescription": "How to represent the results of an Anova on a matplotlib plot", + "slug": "557-anova-visualization-with-matplotlib", + "title": "Representation of Anova on violin plots" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/src/pages/boxplot.js b/src/pages/boxplot.js index e364a5e3f6..cbc26d71b0 100644 --- a/src/pages/boxplot.js +++ b/src/pages/boxplot.js @@ -222,6 +222,11 @@ export default function Boxplot() { caption="Beeswarm and boxplot combination" linkTo="/509-introduction-to-swarm-plot-in-matplotlib" /> + diff --git a/src/pages/statistics.js b/src/pages/statistics.js index a8c2c93967..e33d73258f 100644 --- a/src/pages/statistics.js +++ b/src/pages/statistics.js @@ -92,6 +92,21 @@ export default function ViolinPlot() { caption="Use a scatterplot to check how samples are clusterized" linkTo="/515-intro-pca-graph-python" /> + + + diff --git a/src/pages/violin-plot.js b/src/pages/violin-plot.js index 97c572e9f2..31446ee99b 100644 --- a/src/pages/violin-plot.js +++ b/src/pages/violin-plot.js @@ -135,6 +135,31 @@ export default function ViolinPlot() { + +

+ + Violin charts with Matplotlib +

+

+ Matplotlib is a python library well adapted to make + density charts. +

+ + + + +
+ + +
diff --git a/static/graph/557-anova-visualization-with-matplotlib-1.png b/static/graph/557-anova-visualization-with-matplotlib-1.png new file mode 100644 index 0000000000000000000000000000000000000000..7bd23a842774f6f7348e7421da50a23c8345c78e GIT binary patch literal 30458 zcmeFZX*kvG`!^~{5>cdORtd?JB*~D>GAALKLXu3G$0&qwBZLq#C4^+klq4i1nTL{) zDIqh@XWjR)_x``w$3FI}=hd_BG+R69F7yk8~c>yWOUs6W(Hl|m>ZL% zw+44HRNW)#Ini@mn?5mnDBDt5xA3U`>jPKwRanlA{Ss_Cc6RvK@Q0aoGpx`5~+&dCh_i>u)QxP9I zj@k3U9%W%1b9m@;QnO}S)C5m$86_=3E=d?e@D z+gUaSy*96liiFDzt4-=iQ#IZ0@$1LlwzbWF{@hGImV=^D@5$rGk0T=wGlbfWZoMik zrP;Ud=h&EE?3J-thEX zpB=2!ND{Xw?tP(q>&~4!YHDiQ+MloaL=0XWNxc1QZEbDHZIs%dBiVOrb!BDcJcp)% z!P=*Db4nSXS9&I;=dMFm7?U12~k}aO*|eF z^5DVwHhjj6i>I92yJzCvD=Tj9?&W%XY|PA+Zu4m!R_`31WZsN!dRN5f@l=!N;lqb= zrws#5`50OzCV1+FCU_|P39PIcJiHPTERuM4S(i064UM8}SVTlIU#<=>HF0*3r>X9Ar??i5L|patXG!-@jk>&oG2G?BBm%IR2w$@wIBN@{*F0moJ4xMRn6V z+$7k-6w)<$3ql|&Gqhw}jQiZ#SukYzc~VVP)$4EXjnVJlKUyvb`pk!>D@MdVdi24(s9lt=B|IV` zot2h?%%jREL;IW9?2<>TWwG25hjK&P(yKW-fk8p(>;e;1=aSSjv?muLSo}e&00*``1*{UZ(>|rsYOd{XO@O> znSI?idlLc!GxPfIdYZ<@Ms|GY=ZuTnziGBgMso3=^BiT4W6itS zy@Vtr9-2PBklIt>e9OmYtJ~Pud-c!QobUGf$&)9k>RH5{CO*cW+FmQz#uEQKH$2?k zt=RbrtEb%2LRq<~i*ayxczeim?rf5J<)D=3-)TGVsjE1m>({TRc>mSEeEFbSCm|3A zbi21GBP%N_Gc&WGU=CNlxWnqn8M~oW*&r1am9KeMUH?w^4sZNClY6CLtB%H}y`y7( zeRzATu#xSAfPer$zogg7%g#x20++b>T8AQg>xU2a;z^3(EXVozm)19_>Yrs~NUlw! z<5xF^v#xI}w2kAqv6D*-!W2fMHKZ8n=uSDMAj*^Uq55 z`1QRZ)UJBfQd>K!Wh~_3!-1Ek^*NWaorWGRmUY1DWXm6+W2;+KQP*CHw`Uh7u zj!)lT_*$MWme26Y6xjg5>45tFdLeIb?*qY{Qc_Y*>8e~8)z#TpS>;Q9CMUBM_rAH= znaQ2(_SRgORmw|@K!wXwwLIjxXU`tN>Xq-M)k}HF$;lDYTLgLjBMhNqj_%&xRh^SI zwzjYJ_^|9YH#c|g+$kw3naz~^&p$7HHrMcBW>|6j{QT?7b2kWFr%yYZm^{tQB(E2W zZgRqzqA0|uoOUSP=|`gSPt1uc*o&`Gt5Q>Uu!c98<6PRBo7eu9*5K2@s;1Wj5KkN9&P*%lE%Uw!{t>^kxF{>NJmHK z5zg!FUO|cFfjjQ*?qcEHU%t3WB(JS`B({ESZ#OB_L#MJ4O{_Dqva#7%NZDrDzkio8IM`?M?TEpWY~xcw-t*vvo`-JpXkXot3PdS-dr7J-(LBAQE+o(T$-Ig&?__x zP~uD|+Y!+i8WCZP!@?D0cN_7;mKLnp_&l{ley?t8Yinp|C@L!IMzTA3g($2>g|n>j6CVUZqK5jqGC|#a$7+`0qYBBPhP$O z4d_#fbb)rxfddEJB#dlqUZ9FQO@2mS=&~*`6o|m<;X~Z)n>TO92^zBz2oqCNSBuQ| ztg#OE^bi;sZwe8l)+UbTb|oYw@gE2#Bb5OPwXm?Tv$KPg}O3C}AkD#%FvTE^Zw7#@k_yH?@!?QH;=3=ZH?Y;1T~7_MuF$R_&e_>Uj> zxxm0c+y`Y1CJHh_V7UW3*NUgid5!%kZ73b;S$E9F;xZ?J4E@e?L^t8)YcV`+%aS{i z%F{fxWWX0&U0sc}d`P~${+keiicUIOEIcbCV-K1C=g*%}9KV16j+ONDr)69VdR|6{ zm4~ONvG>yDFoj~kiAbgUQZ|0)&lhwH>b)G%@Ljuv+q$|iehEeX(k1TMQ!PaRv0-6h z!tvAC{Q_~JrjOAJBo^CcO-)V7WG0-%bv7eaGWc46bmCg%Y320v2+i~v+QCvyOktT% zpN`;NgM))836A9wr%pv%^tMT@Pyc9&Mpq3F4P|Cx@)%EYePcBD>{8HZnQpH9X114< zagGkwqg#~`)?jb%>aW~_KW-9%re0Dh>RHzbmY;97H8q{R^Ydd@{o7Af-(&MSKR>^8$m1dpeOeuPQ&Us6JfO}d?ZbIX;3vt?ysiyq1u+BgU6fb1kmK0c~?p_I09$8s|>v-X7$xg%dx zKrO>ZQ-2!7TF8d&6brv4!bD%fscbEhfM21kwmUD6SOXWv+oT=7-)|dVSl>kT>wA5> z|K0HID=1aN=%QX;Z~A9^mIqxUSkH<2Zf*Gc`?r&$Qx&}VqoSwRgSBTN%vdiZ5V!a8 z5Rkum*66}2UyDkHcA)7Sqk=)(L&0)PVdz?Z=bv_1aZ!J)bzrG-$5{hmJk=j{@w=N` zpO|hKIC;9mJjvV>EGC$hU(NS#Ks-4^AxjgGE#)2(@-;K7ao4bS-0eV>2U`D)0 z7gDxy_3zdF{@ZVNjwSqBrHk4x$>sG;>}N6=O?v0G#hbAf7Q*@(8XB^)_5Qo|+OyDX zGEvWnuBp1Xx~8Y>m6etCJ5S=Aj&(|etSy2yHda#Bma@g|M3{(ev)s^Uy65EL zMYGTD*9n<5HNG}Bd;$WWW?a%gNtPRiR~&Pl>C4dJ)sL0;j&dw#X>Aui2Ez|=ZmM*+$VfH5Nn+KM?ZE0mz7B??%GpO>?5}2a01}g1sAp+hIo0Jsx>lnQ} zHh0t5pWqnR->$?(Gd(@sns|m?(gVHdW5Vf{F~^wLSjvF6c~?t$=_vzE34wdOzc2=- z-ZbE#a#uGO)GKABpZ2tc*YCRB$B!Q`EG#6G!4;|;Opb|>k9vk4 zs>I2yk-X?8f&K+t#WQu1s?)jz^?0MycfItlnS~J z(bH3qk%pw<)!fnorgS0d2awe@f$pyHFpJ)A-@XAmmethMV8>=<-5CFr#2aG`Fg#bi zK8q>{QluZt%E%Zm>FMI;R#s;s6t9|*kr5vsuaK^lswpQg?~Q{xq5I-NaIiA?;7mz3 zfW`qjx>c_&fC>SlH*P?bCPEL${hrowUX10tX>Bd;`PatBM=GVQwAUv4N3dd;QKs@R zk8r%r*2b#uT4&0T&-%>b;^M_Pfv|@UpRS$u;OjFIh-*uc-Y)4j>c{qdpVYR zYApX%u1F=z)`TUn9q+{sMO0*5+E@KEsc*q5q`^Hv3IUz~fdGCizxSKi+oPFU4^}w0 zNiMS}M~Q{^&-{%u@|eVRY>DN+1uVkPPeh_1x!kit)?ax91?OgGMH5>=Yl6eW6^ySO zwk|Q?ibi$AVgiavNJ!9hHvP_c-uI8&8|?l(U9dZ&#a(x12hNI+Tc(wjm0?#^ZT{`| zU8!fM+`AWax3=~?!0+`4Nzt6Jy#o@2-IC6vejI1d>Zf-=4l*ux%qS=jL`6y*-mr9W z5shdp?w`@kEy>QN*i;Ae-%mldYu7F;ZqUK(GX*6jU8D2wz$h9T)HYf_jLrjy`1)=a zS+xB8l+-f5z|U||RTT^QmbozF^R?4w&Xksxo``7%EU7YzkUEg<;)M%;`qo!sm)0J9 zUS8g7BWl6R8#T&v`sA0>5iUi!xwnSixZmo|mk;Cjs2Z{??&|Ia974y>)_FcKFc4hRs3o4; zWnE=teC5g+P{`VyG%v1I>hi`Y$jb)=1eCmb^>qBL5TB&vpo!3jF~^{K2Xwg9)YP7y z9sry393%E(qBcDyB24>5 zti+j$6sp+tK7#bw&D1f9U-R|&FEiEmxLPFI$m5c)=4&&qF z{WhYd{nzyL9{AjND$ol={{Fp!KgVm^L2=(LuT;(K?kTPDmknmhDk`|cEiEmwVPCMo ztwcmcL;zd!fXtVEb)~+yh_&eN>jM%Kz1{aHGSbgTaIxRa%S%F1vMMd@`{HCL7Jbsn z!rr7IELt29U_6%YyLayt*}dtVuiY1oZZcQND8de`s=Aim!O6|7C?`kHz>s$47d8dX zwqv=pZTtiu-$THuhYzPGC$ZlSPzIn5VW*=+(J20~vLLCX$T1`RsiAW_V zfHdFc-J<{2%`F%6VK>Mh+5g-pt#e{|{Up^<z}t4+ll6rji!D_3rHgC@~;4DVx(b zCLC#Ubi^lb(|X+G@^MdReJ?Z(0$6pPW95@;^{L6{JSlBK3c)6Xz+{K-7eyzj6*`?J z4ju|^n4r3ER0MTd{QP1p$~CDU$>wo}&;r|QGTe;LgtRNatE;vaUf;c2?ds(0yt&%u z3w}yuduOWW!z#U~mnCgLnjr9^lkr3z;?sMHl9TH@x_yn*uNI0d8iVg*I{W0(TFvq| zdU*)Lzkpi1l4ehl&C*j$cm{P&PXGFKLDn$!>Q7Nh@_T?G69y^)7xvT9-Igq5rAK(4E)E=a&e+XHU@%n6ZNo~h79=;X;*4%N? zazXVSBqj<^Zvy|OuQJU=w+OdC`~j$+IhnhYDW8*!#C}&oB6F*h*xuX;$l%OrBrOF(-hqq@|6sItMp)9wvVDyU(vO4!6IGqgFrt zRQb4o_WmLss&Tc7wr}=CT?^&|_LXD#8)%FL1$Om;)Tm*j^CM#6v0Svla;X-S?IH43 zW7Mz6{oBT6LygupeO_gEq1d0JVSXwh48t9xkUED08wAboks*v~t({6&sH7zX%SOow-&~_n=K|yyc2mJf}`#0d}3*Fp7+cVE+*d#ri zY;06>yKH-29_Ho-mwyE`0oCt7u=)1Zrr&uJv|MAad3j^wl=B?myRbaJ~w4+;K<*l)BY-@bJVi%KeG4oV`l z9B?R60u?-p@Ekwh z`_fd_+WHstv;kY!iAnI3s|E(B*w@X>^kVaJb7gZ?hN!H*lbpH-$=k+8?nJ2(T}zQ| zDRbTd&(SmxuZIew-j1wfWlRQ}RnXu@=d-(hLAeMB3fi7^tx3PhR4)`Pm)2!{k}92t zGVc-;WF6iHhbL(~P`#^183W@V7lRJ)%kssj+!kf#rK}f{OZ)CZNI|Zk6P4Y4O9x_tkRZv)A;XfYzPb0o!$wK<)csh5LQyD7z zI<6_V`V+kp>li};*K)(u&=#!>LcLIoihPtg3W~WozV4Kv1ro3=?YDVdS0^KtGW_)` zR@Hq|!oMUNoa{(sc5dzoNy%$`4C$Y3M6ceyJp&#{R82?Az_I?c2qq>bI*SjsK3oc1 z=6SpWqKuN#%FuGPqSlus(U-k8HS2?Op#5w<{yC*hMEP%2E4!3GEv&s2Q6BL7Rb^I zU{^~oh^w9Op9_Es8EA@SMO9S?QK9kudsuIUF#V|NpQzt}{pIYu1XykZZ&*})qDsf`-n!r|@n8;SoYWet)KC}T;tf8{$f2N&Y&?>lCYS3si)jSTIxVC=!nzgIT^)ip=V2tS>~^Tr3rs0 z{xa-?Cp%J9xxc9N0_TA|{bH^!C2kObc9PWcmk(v9_G|ueVrPPxed``7JW04e*FF-G zD}@BL4!%KC5Wx_hyeUVXVuPOQI*`W`Q4ERuXmeXU2I1_*04M{%k>SxazT_o{yV zT2y48L5B7*pj&zQ!5_bW)LguBdF7~~|13D6D>G6CmeDlx! zwz0db@>kM86&;?Dr!W{w#B*J5F)ztou3a4@?x9Jsp`>&Ul`ZGqy#o$Y1B%l z47iZerl>`qFdD$|z(h!?Q=~%d7%jz1z7w<*?b22WmIMVJdP*|?;5KLQBpT@r`%h2K zUP!gKvdRXzgD4FYbmk5{vFQq!F^W!5lY7fFYp9u$F}D=$5GE{=7o7Drh0Z#j;#=)7 z`u=jRE&zL6%b2~`56AK*bC1!mGpN;A+eSu4Zf+|O(V_Di6&RP=UQDaJ>*CBO?*T!Idh$p@DS`<fF1)n7j3%(_o=mI-FbjYfl(0*eI)mxBQ7ISx{84`* zre$O#(Bj6|ZsOYZ%(%p;1UxT`_Gsx4(v|r`l;-IY+Qq9pZ zBV=mwXx59!&{}3Ky^EJ?z>sJa@|`y9)@B=tkg%%P)VSj=Gr0KA5VhQWpu-6gi28jH(a8Dis3dsuzmn6GFRKIDCbg`S;9bg=H{) zPMkP#?ARDrr6dvX7~ZEV(>op;(6n)ZT{OV`fu8O&`rw!&Ps-k3KS~!IRfB(!-`5o>Acc@dh`(7QFk{YrRg`zEX=FF8NkswFX>(j;9*#>zob^f~? z%MCebN5rIDX9xWKNrUPmp@7B4iq4n+Y)w>*;xrIAaqgTaHa{IVN7YGU6*;tD;)sLM zMy7EAjT`Bu6EYkJHfQjvFfwIiU=4Xs|)%@h& zUqQwdPLt^oQU*}M09M8v%R47o*xBQhIJu%HlU#?icwYRkE{ejPmx8a5+^)#T6wLOI6-NT#fjg)g#u0SlQ0tjD0O-0CxWdKw%}qygsi&W z82&HDgGZtHb@-ze5t-htv}dWzSbbWsq!*GVU|h`?-K1M!gfqHbsE4a5$ws5rX$em82$H524?Vl@Mq#fFY;)vIh@MKX4Wz03ygd0+Cm?i)h>8Lj!89qTUQluW#z+UQX|L8aM(PilX`> zu4co++4*!!5mr8mFl0n}$^cOQsqTVdwA{6&sSZ`=?nD}KK|#CCwIv)5tgYwy`TJUT z&$v|P>E43Wr^lE4HlKJOW(9Ec3c@UXuS34cIH%cLdiX)Lq8QShuL+v^p_^Uu1G!&8E#o@jG9yBy8eSQ7(^z=glhKR;w zDkaCf3u{b&zrjh#p?+D=u9|<|ijdII%F0R_ zR`L7fS9)wj!E_HE3^3Kp-hWh7^!0z14Q?D1eyj*9CT+He<)4XmaBltl{9umgn4qR2 zrvd$mWnbgQ>Vhma6Q^=Mng<;JLDykP&%ZBVsCZQ2-Ef}%um1h^q~QndhG!M|uCs$x0vs;cF1(v~%PZWDYSfSXx>lbaMlLSXiieW+kj3m1wBTt6aD{(3ppRXygoiqir`lAc${ z(1!co+@2zyWQ%P?cLtdrsE>H1UTybk_o!lPz3I9{_f0Indy1REb76((k(3*v`?{Kb z*C8P(bEk~tJSt(?yrjrd$-E#F%^9DRl&8a+^_Bk4^^M5L{UDUf>;E=@JBpV2)p_sC z=24MluZ5N#+76Q5NbR!TT=v~wPMp3>hC{Y~f4U-y(>*9W4h-l*ZVxF*t;qLzH?eTf zDkH!1_T!dyZw=@Vr-~xo!#w8^3^7}ls04URqY$MZd|?IpQn1YzR1SLYno0&$|3sF^PTqN z=g;4}si36;W)vyec!X4o^KfmZ!Ggs})fT1)Y-w38Bf5VZmCss7|5DM7BmV5}9n_hO zEk*S5IeVNl-C`fm4y&9`x1=Vm%*fnxr*@$Jbr8cQnF$l1wtB6De=P;+xZ2sLc85s0 zg;?^VEQ=om9s=eg_tsJm=OTKDEwnL-&Zy+~B>}(-%G# zO|wc0%mU_*SQhem!v4RMrOt2g$_nuTvGC=^MPld-g>B(yD`mj?W7jvDkf)atlF*5L_2sSMQ}s9l~Nr95FF71A?IVojP@j+Y;K_9KMMGIuIVbJK-ZwTvOA}*(vo9=63?+HRA{UD4 zt9cj}XFY!Nqbo$$TXR`?M{Ft;O>5R&0%2t_dm?XFnsutj`eYTgaR4EhTb)1UQC zgS@XMLbPNjB_#N0DP9@yw-f=e3CFAQ#)Ln72rJ)7{3KQA!-r2+Ea<4nPw?`h)`9c0 z?rQ{#z^;LTmY?4P(*u_nj@3)P{;ywMpcEk(@L9wgJb1J*0?IiJ71f)CPv;OaafMuP zAp$VWrLqd1#hBymfwIWP(Q?E5tu3E;RZAfP?}-yY=E?3q8A}W#2Me}EfVPQ?;9`_H zGGItG-M)>`A!0DW5fN8-=*7YlRWmiDH(#Zv-!mnIDJ&pQfG}HZTwGjC4DuUNDK+3k zNZ(x6)%AfJhguBjVQyI(86<$#RQ4?drZ$&{?QCq`5ux)m{Fcl?+kzJ_L=sz(l`T=v zy2Kkp2wdIV+PQllYVw@-95Hx>?|4ZiWTHsoO8lK2gvkk|8Q`V8tIK)v^D(OWAC9Yk zXZo>PmZy8^z`1*_N8m#SD_v2h8R+RZ*1Bun3#szZ_u0IL>y2oK#z!l^^Z&%h6Vn~I zjZg{E;;8BoqP=+WBA_EO1$__O#u014ON)NYNxbv(XG_Rog?hZaynhxJQXmSVF%mB` z`UBlgaS+@iM@Z{me*0$nN|Pwly}C)K9L1>&vKh^-fkrW$vcr2@be2TuH1NDf)fQ|_ zv|N`;Nona64vK_K{9-6nkO-D1(j)q2{vzE8(+9>Pv}MWpcXWV>6CLS@)fp9(*3?KJ zJ$fDC6C@s9z4|gbf1k1-J3Bikrxz|1F%*{7>5fDfwkS3$F}jzNm8_z!u8@d*2w@KU z78}h(Xk{$UxcX1?32 z8N{2-&F^PUHnRJAA#Mp56QXE}+XtVTninsoaR4*uAigxz)UC;q%w6wlR=$V&`Q7^H zWmepaHHZ5IAi}yYsDB361(F~xh;@mFy}kYSm_<^*^8#_voQxF#ZR4FY7NiDr2ogZPLAFmo4AFqGu(kX<6kvY-iVPax>V`PU7 zcIgs;cD=)!ni^vcS_C|zn{;$_ElZ)k^(#lg6c!6tR8#~3!~H`Jr@N~Q3mLY4^W5|_ zOdTlYU>v{|2r>`?o6LnF`RV4$9#`lTk=HsBN#Xngyc#6{kndySnFx*txa6>YaW8Pw z5tVLDI@fI?^fBq&GO(%DZcR^ttt%7983YWGM~9*40LYB{0oh3ND7g$RWxx^C8?NYh z)l7)i1>MYt4wc>+|AbG=)zG?iYYLbGNIayvLN8XHe^dgo+fkUJnu=xWdOc_P)k9e?N>h0}?sEzZIUhi#N zTZcU(J4!8l>eQLreVp`^|9a%uuJ>r99)yNoMVt$9!+gVXe+A(O4Q5|5!D}^r0#uS0 zABu&i@88$6t#-0d??s0dJ_umomwP%7#CEFNM`KiEXZoTk6-Rlj65b1;@FD!7{O!Tk zlUK~hj{W>;+y6R@%SRf}SV8^;tD*DS_*7+wwW1IQ2 zT6r+ZluKoSyI@EQgmh%CFmPaQVL?qrB}8>JQVFMx?RPUF{J{f&V??3`ZL>Oq6XeiA zvOfmLiydc24hzX=RAnl1S!ZWwlt(2_N(-k4N}L9uP?fOn5vfFsL4)&vv#TrAD7J_* z4lP&>U=HBoAjhbZ5G>JUlGMA=o$-C#f$r`gQ$qMCxC?Yk0CdE0AW`EYm~jbHjXIXY zy2OUCvnzlTKpB8tbNcjYybZ00ZaEJrg7R{A2>lZ`Wc2j(3=IuYWl_BD+<|{B$`n>- z^0KH1cJd8#a|rS69kQ%6saCpcV1Pq+LZQ0A%6s>Uc_e zD=1TPQqna|P5VDTn)><-Leh}a`#0_cLxIQknRbqDZjzWt86tMY#S5W=)h7D71>FTk zRR)Otk2#_XImEe1422v#0V55K4PF86ymAzH;~4@K^y<_&$^yASu3b(yZe$tceQIr$Z#)*=L@dRKJXdf0X|XEB9jh{$!yzGSfxlN) zR3HLT_3M{)O4~9r+CKfSZ=;Fz!&&W$yS?^rF>reNw}> z0*f7cNqu?i?z%ck5(4qVn;q+SUS8O5_iI6BSRj4J9ao+8f~}41p9kA2*NhTde=e_s zdhlEZS?r$bnsfph_-6lDl?$#eL+Fx6l`0oAJGuNBdvSa7?}L_ zoBh*54+J&vB9qbMV^|!2mMcN(cNdbiqz~XnLH9+@13~rhww%OStrhIc4Z+NPYK+r6 zCYC(dA{4bAHJLN9vtP-x4c+NpCRQPZ@wW9|*pmd9%2ekDl^0 zQy8QL78WWpQk1M6gJy+p=H~Cl98)u`3-wqI9SUL!pLOSJsfJMCcYXxxjhlkhy4_?g z^~5JPLPW$uR#o&rK?_`>f$EM+Ca}A45bZU@Xi;oQCV z@&ha1FdJeeqCRl9ZCp`aUTu0{!A*iwnKz~xc3N)Au7ICiQ!Nh~zUQW}CZ#Fg2fm~jr{$mWh_GC&j-*#RLt;EdU@}y)o~m(WmnRL)wbN);rpp~N&(qNXP4q%<>={v^@o+9>rXtHNV>0no`@DTS? za_TbBmM2vWkaEgLCh1jHhqreM<#9Z%6Ooloe?K`d@Lcvhh3&CJ$3-7pC!-l3yujGw z);@bR7(gFv{bK3OOPmg{Fp$>o%u#2Br2v= zrMXNxj%SzQP9htVp@n`5LCVj>q&Z-O0ENeAA#wOwMi!ve?e9!4F7c=wi5$2nTT=TG z!+M$Q2Ggqydn237ft_~!=V|M^{IjyANEfrSQ&=zHPqBfh^8;gzn>UT zOAJUV!GRxPB3SPJ-!@P9@0=cGtOa1&@EpMZkw~iw*WClu)5g~pj940PCRpmnni3K+ z_xP99@!E=o(~;?@)lvx^-Pt$3P__0e7cxHliw)pW+l%q)S;eqW#~ho?i*SM+XiHpOFICA6&#-Y4E%yAX>8fs}FK9Wydc6d`&l_V_%PmBs%gzLRD=)5TY%27{d zual10m3i)H6{2b>0{nPREki37uF-ebl;F>y`MX0TOmy$%B+Z81jShjPh#^h=`t?Hh zMBjnI0A9`1wf$>|1Z&1m#O9_9T9**JMyG~!i9w!q$y#akO}^Tkdj-3c@`7mn|o$xW++Z-^6PQ|X1a~GXK+Zp) zkain+=4EDD;-k2tZz4%>Byxf{q?n&?b?@Ac#(6}e*tdQMP25^f(2HGK^^#!Iz>H=Y za;Pv_veqAytn|-npWjXDcT_Q)Xx;*=Tu6Nhcc-FaO?rDl`i`UHg?_iHA^bBWScZcK zVeMBheZ7hyGMq*ZEaDe00QfO1g!~_bR;1aeC7aEKtJY^LA%S6{s}|u?z%AI)7*6{P zV6gokx#NvNCgN3L;XJqWYH*kJV2!V@5Mkhr`yHOAm=S`wc3ZT+xJ|0^R<{5qW};Iz zo*|b=%(rbI;!x?e>Ii=h!yItA5beIAuYXodjADm(H$}h&6#YTZ9kth-mlMS7S&&4= zk?KREvqKR9PX(Q5HZKBRPsl{q#UjPf6~c%_=mvNYR9}eCzE}6syeaC#2c?uY;*1v^ zjQex0wupU3tL(e%tkv3QhMyXXLokCVKZb;eLp7-Zi%f$4{ z^A0OjHMNYJedfYRVh(0)$&z4vWo0YG`vU0^VoWd5A+!<2EGifYFeZ>nl9V^F85}9d zhEC$Ltc%!hUlp7XTdOmntrx<8q;Ndo2mlShhrAXVxgO{@n8N)rLdH$Y`i3DOmxR=jF{zO~I6d>45u|FdIihVlP;k ztHy%4!LyD(+EZoGXo)GqbFTTsOh8!bZCI;&_wE(ER)HbjL;MB+#c%8D!7nh|1XK9# z`%-mY-K&!|A#@Iboy&Q)wru=-}x5-&%n-{SyAJPBnqV z%YTXt4!(SF7V{{AS6@F&%f=AJqnH?UJeW1E=zEy-`$^o|X=^LcPD%`BoNBxt{%~}6b91|T z^(uG~er&{VH|Pys7>ohP7em%H&=jW)-wW)f#Nf8Fa?#?&=72$n-tWHtYa~^2InChLSSTY&#IJ{H`^inl#1}jcGg+kvc za~K6VrnsK6gT%G*8l{y~iZp`OdAgpbT1n5u-z{}5p1LhD$$-vXd+kmfslk!Rje6;g zoobx`!xc1)BqWxBXb|XIEWHR=oSCcM9HSgGgyhacph_#ee92RcDIp+V={Lq)3S67z zO$h)#N>NW_I-d|h*DQTvtIJ64&Z;VJLZDjtzK=qxU>@*EZWUBvIzIEwDZaqqhP0St zC(tu*sKj_FkUMeE!sg*r#vF3IW7>`~8o2-4H`~}E{?WAhQmU;^yLV)NU#RzOF{!R* z!SIe9%>!LW=_x>Vwh^~rafl;LFntW-l-m_zx&BT_HA5S0Q|+5bA>UPf{Z-7YW5{s| zRA?(t<09swkwNUWfhU8_BOtKP`{MfM7NoJP&L*LUM#O1F#p1VD`C^gQM;P&=q4g@cHRB7kj zFJQ56Loty!9A8)_Bz$~cx7n02!9vf!Ezwb)rSW7<1JKttW1x9aUJYs3x4s2X>iRW&b&SvCJ}_ZkeAz zH9L%u>GIIjm(H%G0(}2IH*A&uV^L2e~99|S*V8*{4m*|eV9~eOFT1| z5oZLBZbq=28>+IaT8f3Gwz~{m7IUIU7MI{YT)Q@iQP(NNkxhiMJ15x?v88Vbt+*lJ;Oq9adLXIy|pf)hMpZ~N`Q5Cvy&?% z4f9^bnBtZ^e*EV8-x;AeiL&kivy7O{7T?m}8`F7*9G3^X%Egf6@bdD~(%K(r3ia`G zZRM|DzaY9Yg(*ZTEn?1y9rM31Y>^qwEvTj>BZc(J5So#i`V9y}dEzj=JS3|X$TkSB zp;vIjyV)S<<1qhSo>)}HBiJM{WU=)MHYYqj#B)RHOg^9x?c(`Y*8tkD zg5THEqnG^~unZO=lxr}t_Ane2JQobGql7+oa>CeEVW9&uDM&0~c*9KNWcVmJ4UP&B z)9BW%6M?39ECC0toSfVn=&ej)?`=zw#>6EOV+q$hK}#|s9Y-_i4m|s(;n1) z*yIQZsh9Ti(^3Gtz#Vpjh=`gWB9{iL2#*z-225o|Hg{x)@OiWSrE}=D=Uiu>=-60& z)>@1(5yEJ10~R<&nV_tl77_7U>berNkF^<2MN5k(5H)eSBdmB2{{!cxuq)Etr@Je$ z;dqZ9-ybZ8Ihg-c6Y1^MHtyCH7}ZeEyR0ws&;ut!w1Ah*c|eOE-R$y}D=-=^>*bpjbs%xyHbD!($V@c1~P3CK3g1)^&L-}3S#vYRy7~3S;6S1+vRHuZ5euvq4 z$qK}!h&%u4x?+s6GOGjLm^(wZX?j~!JDq%YLMFhUB%20CMWAb|YU#k0@1ByMvf;;5 zJ;0JB+qA4=-UhcER1et-X1-3xK*>Szy>2%#|el!9Uvw7r;@cDg5d@N z?Dw`1wD5)dhFKH&Bat0eI=nFm!4MnwhYt@F(vS1;Ev|YIA2M?1&H_jbe_YEl+!2GN zgEB{tZ20&Bo~UP`D(xk|XVnGg;z?}mYv(E5935-XL^?XUfD7Lc^umyLm1%t-T$=#l z1PlGRmeUdvm=m^2z{W#W=8Xxl=*1{#<)C`!tNL%?6kn#6Nc~K(b5J1C5U@WZES%Oo z<-lTh`!?DLB%1kn~(jwsq2G_J`Td8h998d7FrI`umB#%cDp1QJh%!cyI|M zQ&m+}yr)E-!%M0Ldko`)#G$5eHp#y3?#3cMeZrIy5Xv-$I)PEwyL~siD=Ne*2e%-ZVoz=0 zZr%Z90DlB%6A}?IFEQAjOxcZBI|nU8FKllwqK1@(^de<+Z@&==vk~ z_&<2~5Cf3Or*73_tQ=HwnaH@)-mNt$$HUolw;2reaE2pD(Cef2?A%u6tajKjGK2&H6{eLFO&Q* znk(J2kSEp@7HgH$`E378a>a@|?9RW!M6!GrkbJXV!{^aUGb0_x&rWlDe=fTT`uyz* zd>epATfEIP9&rhJ$+r&v4>F5BnauH^QvBnrW!m_!wb6IGjW#2uZriuscrzqrxbS!C zwpSI?Y*@N z-=NPS%Z$!I-iYVZv^_aXhuO3npID+eArXK^;F&wRy1MG>pWg99QUGE=cBNxK2DCxz zK%b!kB9>b-%zp4-OkyJF*k?1k~|zYJcrqf)C=&@Avi#Y#^_z_ zKmXA7y~xYE4c@7qg_&Xa>P{{$6^8i$7^$giRP~zl0hD+fRXyr`q29+Lz61(bwy;5n zPc1ksLyIY>8D<$;^uF(6S_zp59zwte!eYe9BdattL?p^;1M$J&qZr3Gb{~rYwlKG} zjN-)7#nYCW@HixlUl>VtCW8C*&xnPCOnvFWe8|N(ak>J2HUjrIM40yYpD*6^52yP?d+MJ*&?XUD1i690g#ozZA;evaK}uNR zfGgrRK0QI~;%eU4Gs9kYP+EXcP**VPhcX188}}DIJM|%E^5BveD5Sfi&A>@$8wZy~ z4WDtr8B97=1h)`QQe6Tf9T<3$m>4Q<0LiVjwQFi=?#;r!3JbII(VS49iJ|unkt)n# zhNL}IIQr`#(t)IYBRF_eUAVs_g&GYiWb`)~fbxj6jW*bG2k9JJ>H zius5Si~)iK*0gVmI)=9sM|wRx*6=5wIY=XY!Ul2v9e4>totKrccJz#lhTw!zk?$ra zM-ODhBTFz3NkvV~D(=K1E$zGXs|x~v)oz2USCQ2WGzI+1$Y=m2lSl?S`n$YbaII35 zm-iP=a&~HJFRSpHs6nBbJbsDX5wHRXTK^6XjxBW?&rMFoyZK;X0Z;0>tf~1A26idU zfDl+&y{qoaUm-re3}O)u88S$!CT0)PyR6aMga}V`(s!5cf1+!zVXBYph?PhJ$`+o1 zmYvNLXxgr$3v$B3#)g_=NkHHm&(wfHi*5C#yBjwiw2Alt1NMl&AlEp`Y|K-l(tP<4&ehW3 z;Pv?pj2(Fe1&p9fEUmTk?+Y4*K5`*d2=k&ycfls*AevF^>>9)&h@uXw>8UBt z^_fzLaxftwTM(6|Kn@6chv_LDSP(lv_JZCh+th$4J_P?fCr3x~l$y)(2|TiYtyU4W zTOtX-y>cA1Fr!aV-Fu6MW?==(=<$TvDV>Gj>^6)$9VunRx^Vw z=6%tNUYlemHb~oeaSi!f*MUqz3PM-}4}0O~Cpr&2>4j4fryVN?fke=TQPL+ELejt- zOMSPuu%*Do=&jpbDToU|#vvYq-f?l`_F@3j5Xbal5mrRQ-WRk}?Gok>Ff<}7d#}L^ zQ(kv4y@YI3gPBZ#DpgK!;YC_JQ$Pp5Uqb^O^_HC-k#qd~p%14D`v!~XV@u0L4UI;J zfp7NhBCNc-uRwJa_t&U93z;gLR2Hj#cr9KK~N z;qeEHF zVrzCt^Z0`7fhxH({+8AUYY=V`+Vr{k+v=;&1V7^ESlLx}-vw=PNG zR8DNg;|zefWyeOvr0}dI6fmUmcU}$woklzv=_F{lesRV=XCYdU)r~J`B~?H?^xYcw z#k1I;5l6?yGI->}2?yEOfRf|}0l36~UxwDPd;@(Am6;gVcAf6QLwSN#)VFigH+=DqKN|{Rd!S?jT=TOZ8QI?yE6~xGVlAo zHi<$d$(AVzWAw8mAqtt4P-)S$pcGPwOheLD(XN@A%2G)x(UfQ*3Z=LUgD6v3DrF6s zl(OW0o#uI-W3JdcNPrY(V{NzyQ{z&pVJ@Oq+6?MhCP+_r{p;4E2d zg1Ydie0&Iv5aZL+8(B2=COZvA(n}6|(<7NaBZM>$)(JX4ggcaVzKG zbsod0BBZRUd!is4p%D?hqbP1+;+3@fyYp+ujlU+X^4&4*w`JYcIeI5AXg0sxyTN|J z#aDZ~h4pEd+Fr+rT03jEE_~d#YVFCNe-?QL_<}l6{5VqI&+!!0w+=Zo)hWmmZc(Ur zzZKh`d*W4(xZ9Yw&vd4&HIl=**}o&GFAw>%S}Q>RT>0@Oiv%B|eTH-8N=aqb zeL{>kw}E4(8d7Fw$V0Fs8)DGpYH%c_D-1)Aa?fh64S$n<_2S-`XI~>Ey9Ql;yBJ3& z`tric!T66AiBIsJmO8A+@xOo=@0Mt2GUKP`^{;dED(l-LGlST6;T*rb2^W$C(5YM3 zJp9}wuV%l?4QR`&*=OM?xee^<-E+&+nx@42t$Thpg)K&4CaYZ4d)i`R_TLcx_3ZLl z_5EPnOWoSgdea(oC}Q3vCGb&CTAn$dn2=fXF&!*sU#s8@znPC;31n{$7aa@Es$*}3TMnPn5Ax*jJQ+YHfq zk#qI>8+plF&4Pvg<6Pdt&a4kr1lYBbgZ9@N&o9I8)W1w^;b>E zezk8(VMp#DyPK)mc5{YI!wx#zR&G%~A=wr5+&O4xOliix#u=yaO-;Y$zCGJH5#5v(u}7%^}5Yp z0^0QP#w$W9hRJ*NrXQ2CA*Z05-X>V&>m>i4jsEZcz9KH_SzGRxXKjf>3CKXYAQcZ+ zeBQpthKG(PQiUG1?~VBAAp}K!nG-POyGfGVMv?aR2_MM!K?A6eS`zMx0!#>-f|&(U zd-JheksXgyE14M>85g=EH!1Ng<^)WTu%vwJl%#asg=)1ByPUSH0sN8xEP8gwDI`z0 zj>_g~AG`8HT7+w)lDAcvp^&-i%PYb(;9*rYG{E$)_(eo5f=ou|&iK~ESRx9(Q~ves z|6l#3zg-Z2|1T4SdRveA$$W?b#t}88r3mh)>?f}kA}W%7#5pflG`BQ0^?!=}tGTN`_KYfKR`vz52)zPCT%1O4Bq%bxRYNnk{nWb5UOx(M+ zw(-i!FhCf!=DuB>_a@TrLPUgg^aU_4A(S6HYEWj`L(1LNDLBqrgoA+8EZ{vqW{H!! zM-^p)Bz?KPr*=G%`ZWqhRQHGyb_$q*I45l?jh=>zlTSYegO`?=XsaeGJ6MP#GQ#CN z=z4j2=ztL7w7IqIn)|_bPSMdZjIu-XBrkkE?wPmw_8zR#7<_1IuCA_eHEkBWJ^ua% zvt)6Roo{-NvpqukVVt6(n=sbBee;GHZMk-DO@Tk$1CUY}s}qjRJ)yf2veP?s_fymT zHJCCW`XD}9&sSb|?F)uB>$$^>k516aW<%4arp$yM+6QD2h%F)kV>VM33N7*sz63_} z+H21Q_*>9rH!G$zn%V-rpvuJwfC4pS+UVLroxPq~INC*sDqxVU(DT)cU6iN?`M8XB*S zTLUvKdOOO%_weGgoFeVQoCtGONLjXm5I_1kY6)N8MYIf;65*em7}qzkm((j)be+rH`bBhu^Z>(4o|t*^HelbVT#X^E@~!lufj8-SNE5!fiz*VPdPqCJsZaljSU0&dA? zq6SaAw(v?mI4~Bg$IDO=SR?o#r$viu156OROu<~ZMm}6?f@4DSL{YH|85+?6N*;os zd0&q|ntS_20xg7q&~wVY7-;DdO7B_2XH)rfQ_#2`HAfxaV6L4VX5^Edp3$2&Y+%>V z&n2Y#-^Q<;jSojM8E61IYA!0I{}(N%TgQ&yVJbba%ih+(f!qoq55{x{?hz@eTv4I7 zQLNcdk6QwNxV$6{lvGv7+ec$q4#tgZ49rB8edaB+B{xc-WFSzj$liWu?)j$HR_SB! zHs2zbi>@LtKJgQj^OINHax+v!St8kw-E1{rhPio!>#~MKnepa5msa;Sk!tGb?uEHE zd2&71XyKzrULGF*@%!)9+|AgBJl|P|mmQxZG4TB4uS@$y0;a@IN;RMJ2FaL}@H*Ah zjDLO!eEG_i%v{3zl@Y*qxM z1T=c&y*18HDZN&0I_{1QY7{OOJR@N!NB4j0!KhV3~qAT>` z+Wlwwi|rF8+AaiKbpEmJ)Mv8&s%DZmp#?K;G@sk;;T6s93gPOuMCRprq>`}_TJ48K zl3@dnh1VKCatwEM>^AxwVDtla8ohG0Qu<}pGu}vv z45@_$7x_q*Upo;K6HKiLP(3oWTp+M>ZVjRyyl*74RwXZ09~DAqk(rL0TOpi4df4(o zmbZ*NGi1=nmRv$KU=3w$sM;j+QPLjbAgBj`B`gu6>cNxk4|4>IDhEC0Ue?H&tmdonJ!-Zj|#T@;62`1Y~eMoSyEV=XC>GCp{=MQLJ-rabimGy7w`w-zATb zx_I4j!=MQ#3Qm0Y!zZD7L$cf`W`2CBoSd9X1pr-bZ7*Ka@fiMnJ;i<2Ha3q91-jab z6=r^7;!W#>)k)Y@c5O31qK?Kwstei&7824Tx8TlC<8wto+dw{W!?0qZep`S4eZ1vK z`+63q^XnQ_PC6rMK5 zUDj=SIxlmKarh9;ys<6{b&5~clMn!m%{In7_Hf=rC?TlwXKfDhYyq!!{l*Pf1^Myg z$FnaPJ2qcr2TH*{AqIaJYiXY~&y~p%JM(Ml;&lAs_(k0oG$Fny#Ow!od9=NFLX&>HzkkEadx$bq2S{o^Kljc1#py{!L!uW)%PMg%pnCPbiB)VV}8AcN)Y*aOr?zP zad+~H&~eM~3GaC|UM%r`jYpFON7r(Jn|C%=EW@EeD3>Ky#1d=v4?SVL{t&Kw`V zy2sp;Cm1Q&_nB)o8KGsRla4 zwk2}T}^Hwo2x*PcFN`E?@py{S3zoxw; zWAUPIcis8e3y4N3%67n^(Yx~ARrs6vsqqx>2}#Zt?1Mw}N# z=X_DLd-}Hbl=-$jWv5e6?Gi%_8JUaiy^=S_ys#64QV>yF z7P1U1UHObLCG^UHUr}1jo;8yrTvC=HC!@=fV7ZcZ$TDtgUDW!z!YGpeVv)KC5X{Qx zvv5I`ymM23t7(ImL+K>HcBPNf5p{A9!v;q05ECn_Lwwk&c9vaCe7w)?aY?JKo+yar z`0)j5)c39v%Q+}!@rn|EyfByl*MI#w?aZrzOmqT9FY>Se;DUo25fN>t5$<{+Sf=f< zR{Gsv&$)!}T>5F%mcHAm{Reu$dF-fPtuc?a7l{5{;#L=E`->xp1ZHkAQ7P02n&PUk z4i239C@s1Djn!j)V-P_P=Z}_`4=fHPps%8+h%u>>D;hlO<;AYbiVB$0tzUM5`pa(z z>`G2l(Buf%l-)6Xd6OD8I1Dcm1E_)t!K-sN2I3DO#bO215t`qbRVfsGh65fsTx-n3 z#ymDQGSavzcuOZ~F7}>eg=WpHnTKn1*9GgJa|@zdLk6ThgTERY8oFf3(_Yz<(N*1x z>n^o_>FI89&vIY|H1FGf@^#PYJ?7Ust&}?63=+-<5@(cyy{-PRv3jJhDFZsnEyIWK zZ{6dBd{)5t?d#gR-_P6Us&L#rIZf@G$XoOa{d%@H%)M1pnHKx3TaUNN#b!qacY$yD zL7!c~i^1mz`#A*-;;ZabnU{>d%2CW_j}6j*(9P~E4>H4DBiZkBw!wi16XYbh_)wIA zC2!QK^ty4HSR4~L51+Sxl8ick?p);_i`WEqZo-#tYg_MZ)Dd-O<%mT(1)n~CTzP9V zej$28d?_hzUHJnE-DeW^c3z9^_0H&YZQ?;iTY1s)<&Q*mA_ZkdMd%@1_6-gRWwr}Y zsQojm*rk9kF0LOv_*JJ+s}%UT-MlWv`DAB8DJ9d{>~vFj3bCA11+Lt;>FdWw9uTgmR8qYm<(tS=MCQxC(kkjl;>M;~_76WfBL zs#7375Uq1SOp&~b%KWm9`^CQ%yv?Xy4@eslA`05aAgfqs<@{2y)9g*i=H0n=?Wo#b z+#%G2{=(3@1}Axgbn&9pcNk9seE8k9Vzw5Dr5P)91*TVdUw3GqgN{6T4EoD3ml?Q; zRC0C>4|3AdX8@iu)H3t_Y7;;Gr$5&^I21EmIGi^7>C2z)oUkDhfv(MNKjZ^NxzrFV z^wg0fma^7NTQ)Z0<=0vV67FfuY|4L6#bN_PAmmofYT1U7F z;{r+VTt%}`Ip;_t(6ppV^OStv)YlVk!FFGyDM!5-1|`P!Z_97&cXv*7%3$}wpvvhA zJ)G!4bQ~`uIxhCrxWOUoFs0M!JAhB1-WFg2K1faWb5+~+$-m6OYvlGKO;8&DJ*`+d z$p_DGY+wh-r)27NCtER-eWcg1^vVjzJQ#31u(28^+Wv{4?B@LGR{d!{ z&&ps~VZ*oc*83`5&#z6qe3>(qrf6#~)IP?iO((@jgY=2l<)ox0qMkU%tOx|xI4p_R zlVmt!{BzL5H?DM!wkX>6A=_l+vZe{7-Ps65eePtZ6iV!WtGDd$x#rbga z2>Jn+!{{wqhXX`12DSss8?F$L)j@T4G6 z#_kyE1bK$MM=-S_j{^IWLQXj%jX1+mXy%Eq&ry?_!u-rvm5t!8B*C7nZ9 zKLRu1JD02{26vsKd<4#2zG|6=A*p&TUENI^H$r{-{4_1=hDYgHPTcB_-(Zy}bN6tSuhUd~P3;4>ZU5-!z!;B-K$wgmaQB5X6EjN3CT-aO= z0gH2_(aNq$R)UMYAXPHVjUf$)GdTY2t|!T;tG@szZ&~_d^fDa+HXJk4*2#FmOw$yQ z!8&mCf+xi4Ctk^43#q`CYaa@?jBlOfq!`r5lGt%~tYjF2)$60FI;Q>`N(|EXS*efW zZW%s&_(@|wpa+z{SVKCyOYbyH!WnHiQQpwt!4&}dWba-_?PC!40gQt&%F0q*S(TIO zP2!Wwgl8_sJPn^0Ei83-=R!vZ$@S}HpAe}h`3c?WZ6OE;1Sq+9IV#1bYKQcmU9OS) z#$RJv;-zDNZNUyVHr{&^#vIoO3(UnY8(!}i(2+58*WHpA z;+1f`jV&y)Gc&uHF)O+Y>4kBt@kvHTPyhG>f^%0PG3Ab^jUFB|SLf;!+@x!J^Co#3 zdUm{C@Gih6F*qkBX>*vCi3u?PQ$s^T|Kv}Rcc~L+F+e z>o}ZmwQDQ4inNLew>hE>oDMEx73uF;IZfMcj~+9|{l;=0=?gq{Pc&oLkVBJ|@UBev z16`9}OX3S$m~`${N^U%)7zpD_B^F;cotx;?3SEW3e>dSn#uM7fJEJ!1$DmTqBK?yEDJl3U(|)+*I(MLXb06~E+??GdsB!U)@1n-ykY z$2&7E;%S=HgifX^j!;|!bcXcb+s)HC z0cqd9pD3^MJW}2EewJJf`47^JyrvT;4!Yx`x!-HkCa8x@&F@{a%9b6U8dHP@9+-KG zvbD7};Ybb*G&4I1mHkga&mvp}RX;CJWAbFSy;Ni?E0KkG?h@l*ovCOJp%ary9u@(#URZ6ADuUDxk*TVDN~DzQBP%M5Z<6NIVev@X#KE%K7*) zV%FJ(iTnygZGIW6Hs4e~ga>68*Mt6Jkz2}{VsC<6r5@Jt-xaOne7uwrZ+yMKdwl;t{l2SjfVlp!Uk(>Ovc_(l6fk>Pz*^S; zcat@n-T8-@zDVETJ3Y~NqG?Wg(@hMgnix#|RwObJiDo4DpZcdy*yyv?bKOt>{uAuF p3cleJH2=@v5a7Ad-9Nx}qwl}}9Hq9VuY8V}?QDDNE0!)h{}bQVW)1)V literal 0 HcmV?d00001 diff --git a/static/graph/557-anova-visualization-with-matplotlib-2.png b/static/graph/557-anova-visualization-with-matplotlib-2.png new file mode 100644 index 0000000000000000000000000000000000000000..a4206873d1079c6f78fa238b4e6a08233a912e2f GIT binary patch literal 35618 zcmdqJhd9!toTTkh{*LS5z$*eBBBHM(c1+gB1bF{(UKt%kw`od5xs44wYn($1Icq` z1zDm~!vE6ia$?{oqz+1|a-{R*q?dS^&0>c1;g5-wWTl=s53h{9an|ck;5#XIlBmP) znzhHyULUn=j0xlAAhpm3_=E(-($j*Jd6^i#tLEXa$oaFcuL-LnFHa&Dw)9Q_ z^KHdRA*1*GdsM*wQY9;flO~8e7&o}A;G%iy9d|G@Gc!|*$Lv}Na%$b#)zuXx*N86V zu`C_>>vZ@pRitQ;k%Hv$qestTneF2^mEa9M8w@lwq>xNh?|RL@p<517S8pH|Mt+Wu zpR{qM{rdH*wImc-GGvvfS)^ZO`%x_?WVg^G;c<@I@p8k7rJ31W!|_N%R!&aDoN{}~ z(d0W;{d)KPdlUO=+SM7hZc!tY)UB$1_|K zZ9je-L@VI&2kR}Yrzg7&-JPBNiw<~vc2?G_(JH&)vX@Qqy=k5Yi%}d3^_wYcGcz+3 z^_+{_E(uzX#z#d_uRV^>XG^z9X`gl7?$@-mu&CcDFH%jo zbp=haI$XY-6{pYc$74{>gyB@8X~ITxe!~AK;c2lOzC?zJ=2VK#tP6T4z)6O|aX&(R zFX6#(GK4)3bx9pe&AJm}qBS7MIO5~PCmm?2RnUmz4(3#1YN6b350%eo31_Zx-?xA9 zVjgY}mWp}g%F3B&&Rzkry`U1F5S$_+h}oYzc+lhK%HnVfZ4;KMMQ_B_zGkehu5Qv+ zn2G9=v~y~N$NWPL4V0XmI(P7tODZncTtHhx!*PA;yUXUB9g{+z0LIS$8PFcv9xj@UuxgOS$Z)u$f-YnA*rFUQklUW%+rpN zQ;L>F^ooDT=*`9BeIFQFwGW@MSR+r&Hg1qwaiA2x=o^G{{`aTx;NYOJurM((k?*3p zbl~9foutlg@k1*!Gcz5Xk#@d@qn#0(2g$net*+8>dEmnh&90Ptnni>(NBNlW>&Uh?$CEqQznW%q} z>M{pgXP|z0c7Fc!-#ZES)8pM2or(QJLtjkWV}Jhq85vslr+}Wida?cN{iII15i4$#>vBP5vf6yz?)b>a$YIUIao3`Q`03GRulZJ| z&_qXfw?Xl9IaAZwV&j&B!$U`rvCzx6WBClMv1q5izk6Zdw{k@MUUAaUxX2>%I^t-ELH4=w^Z_B9%hlH%b1%-x&j@7(@MX(yJ>b0)CBpuEo=6bXTTi+`gS@NPg z^@e64cX0HF59Ri=Kj5x0X-KqjTK6ve!W&0NrD%uwlsARXioY6SW!a+x|Ce zpU^o6i`1ELd;VvZGU-JYt5>g%+a7p6($y7xvpNco@!neP>z%(t@cJIGHglaxyZ@cL zSXNotaJ)0p9>hYSr6LejTrKyC)(-EEO+g zGhSlaPC?S-eU4NO9>2D>wvG-Xx&QU+*9Y>oj0KZO*KD~_!wp`iA7$Q|C#GVJq-|{0 zz6D(xEYx$G>qvlGpP!i#5E9ZU7$9YFPOq;&`P1ktp4M$vI_5a2SNfv+DQY(5&G@A7 zY9lGDiB?5j-7$QtRbrwfC-23 z+o990uuAB+c=hU)2dphr+A-@lZfEl3 z-rj~CKv)m2Lz`38d)`nE^{Q-*^7YPIHwv%(Vx)`XGiXL@K6&!Zb?Vmb+c^)?JZFE< z#?z|eQ$jZv1rKMdN{qlOG;uRh*c<0XX!C*r@Ja$<9lG0Lm?IWnavKhU< z&9q`y{{9_p@bY3q=H}&%z&gQUa)a9L>bkQw!AkD`L?cW-!^Oqr0zGd>TiZTt*veNU z+2y`Ft7AGkIw8o7!{d=ko3*8-DHqRw;(2)2lOvb7_Hrk9;CY%}J41wmC5M3Rb+EN4 zH16CqYpvbad*FKtu5KNovbXJcdI>Vs7GzrTwoj#uBXM7+yhOu6?4 zD*j~*Do7UIZe(<{W7A!Lp?`TBZtu;godT@bn%C(e)Dz5n7}EaaXg@nU8=lkh_JO8> z$2M$$5*}6w&!fSHlX9MRc#@6ihNF%49JQ4DN=j|r-Q67>x+NxUU;QtXmXs_lEy0Ol z2$H>i<3=UajW=uKl5Dp78?)0b5gdN78@;yk4EhHK)Zp^d)BiMGlo+jbdCf`lsi5Gv zzsR${zh6UL9m?&=UW){rP0i>`xR~7uuT$8hm#(UO)-E92=%>dy0e@Fu59_Gq2*0RaK`*?XlmHHZIspM(8-)R%VhYjhOOw5}AAL_+dVIx;P-!LZTi@87={ zC5~+8yHZMc-0I-C?plx6Y84GWNEO|O8(XVCv=(4kSy*sh%!*rDUWVOR$o(Ve5*K?^ zYb1R^Uf!m&sB$dN<)d}8TL}TR=NeVL>9%f0n+~n*GExLIj&*8J%W3pK+l$wA(vWm)qJX(SyysG zN{R>6#^B)K>gwv|=4NOTW{M33Ez@^x|GXVQb#`kbw6GREEByk0iNoQFi`RdAxUoC- zCau%#5-~F8X&GE-~EQ!!>{`>F0i-2DAYMh|nzJMi{ z&sc|Zs-mo%#BbbudNOf(2&kklTlL2E>%p?@H=gFVc6EizXFwqe3k&0o%lq`{6As6Y zBEKUj2zUwuKNk{ub9!GlQ2`a*sd;=vG>;=!;K;^ z!*yn*F564}28Y9g@Zh^WcW##s9YM32otx`QlQ=z`I6Z-_!=(~0ss6;ua@b|yB#2*4 zNolC;WnV|aZ8tYJuYbO*?(pXAu{Rl+vRNYLVQ=m4@834-P*hevT*!#P=jG+7By7wM zYSz@$?5<7N2rwKT9Kf6XS$n}Ch1}TOJUl#vR#KKXsu01VS8nlPVE;Dk<`rclEIPli zaCL1>!fnUO&Fv66(+WH@=eqIm@NhsQn1;s@EgbD7O_PDUX>;*s&v=BGCj!oxv~{+f zrpKTV#MtKHiFh`|B`&pJiw?tSQ-Cs-rW4>UBKLN_0F-0bM+I5~l5c(Mys-{0R~wEH#F{N}#&$A?d!4jk=o zLRlp&HvFXsQ~1liY|8!X!@qt#(bKDQUVom}ox>eGW-Z~mwIH@Tn$fq24!Fj{Q#NEJ zplYc}Rj1F_y@|&Y`X-V%)XvjWya@|O;x%j`fEBQps%vWU@OYHmr`%jawAnkMHzvX*ZM^QW6r_N!cDGP*6~GbW7U@b8}_|jFZz55(D8vG(lBks{;cA zb8~a22Sukp7af9ey44QX?%cV<5Jn?yC8%R($KQm#8q;Q0dj72UGq38M3o9!tH@Ue1 zwF;=dc=5v0EgZ@22bGkLmbRGZ9v0g(GNSY7QFLPB{XPf42=GN{n>VMPRT+nFZfxAT zb;~@lV#o?ksj8|fj+=^V0Zunma6YY)Z)>~8p({>@^&W?-fR})N@VUGO?03>6aU`Rr z)&<8e?PM$GrcTBCxVQ)LSj^7b@$qrOg##+P!Oh*Xyv@_@D#}t&lsvy59ZeI{CW}x~ zR_+s@86F-6A(_ zTCDS9u@7~0l9G~uLcwcbn~P(qI$n3U zQaNF5WmS8)T66pMZBm=3(U}OP1L<9+RYf&+|i-3awv>387eW=c2Af3D6jr2Qz-^1&FXbj zJm50i-|x8hZxR+=BkyT3k0ln(L)Q+F<PF?-WS9`ToA;HK zZ!?7XA%k(xHRrj5A8Fj#u}5HHP0vd~s~pa%Rpg{W5I-mVjtzDCDI9)@7;2nFTo%@<#$? zWubZpt@?d*^v0EPOCL7jlrEsjIemAHn?s>Vz&>g`GxqbRJz&uyuj6H)w6UCRv-U4X zBAB22RV^Gd7ht%e1Yl{n&?0SBM!&4A?3c+cW(iMs=<>xyA9~H7)TA@yNc3fr0(Ak@ zJJ*$RIPSK#=uiz<-B!5Pa(0XA zj2l!?z2xNNYMfTI0p1!JVOs2pYBz$r=iN^B=gY6&ZUzRjyR`);@l#33t*6)HQc}b$ z2l6%bT?qXGz`RU7Vt0F6qU@c;hZ zYL`4@RWY)nmh&2Z?SbgJteu^mk5!=DkM|G6_h;bt05}8Ucxi22n462%!KsYa`m;l28+B;}!4&pWP97Ob>U^M!Yb|>G>DEBf>+3-WIh_;rvLlcC)$H@^jKg;P$P`MglWY(GJ2t=7x#9?7;v5%q&;e+)$alg6oTsS;Q@Ks`? zA@}v`_a8ja)VRaN)iS+~LZJ*pLqbB}o~i+y!fGX`WFH;5OCigyigs^apyP4g>=Xjp z?YLqf2lviNl5L`YZmJ6zmqtc)NDBT@csFuFfSL^i`Lm| zevyra@xpdfaDUxt5)*@iLh!7Cgwu6@jXMJaZ!pUvp+rn5~C+J`W{S6xZ&>8qXz{; zNoi?CSy(ys#l^+>?zE!9LKZYS9^m3|xg{z6c|iezK-^xB%*F4X2E+Ybus1>JfRj}V z>|EkxJ%W_9Y)1`f?p~*jr!f{?_O(iZ)x*Jd^D^c=;D7i14cJf`8X8&!1BBAeiKPH0 zZp=zE+-8I}`q5%jq<#_8z^!>+vZ}W1m5i7 zfyXn1HRtE&Tei6FAD_S>HZw5+oh}gf``0hdc6$K$PmwF@&Sm2oIel%L?wmBh>*j@d znWzXN-u9ruX^z)H&i4@di$ndensE1kkTZJGHN~Z+r40=Y>FMc}m2tS-(NW#RY>p^J z85tQ@*XpLp9#`qIuf9;FlarI5o#v0M6c!a#j;z3w9A?er4!(KwCS03H3h&LEohwc` z!1OXRzv+h~fA;oLBZ!5=`}Fzw`1tPJ(P)=#n3(wa6Q>abRp{?utC%)am^=_?pxDCU zH+Xpgs{k>9mxF@}O=)>R2u%UNx7fqn(sFra1q8c$byV+sak&q#VoYXEPEJFE1P90TZo{bus8Iysg2}0bMJ+B?U-p|624PJ9kpJ%9 z%}mF{5Ztqe580F+0j9LD!0)^qoS2ZnVk6_?a{3m_LW<$oTUS~-CTO=Cwz{d@YtuGL zYcy>A@dIk!v=d@s#rG}CJ&}9&Bu@6G;n=_b@ZlJc#&qO!ecN`x?-kZ#_^>okH-h^X zk9H~>Qj(I~?v0@2*5P*~fRdiBOq{I9%RkXS+=8>j29*I?Opru5QI#pO$5;UlAk>v$ zq;{FPy0ta0%3G|i^v52c=}^cxl^y|}0nGE--rl-Y1C$}aHhR2+0O*UDlkGXmq(Xay znMeN5R%mSD1HU1+`-S2*K6MMCie?byDptq%T1yY1r?y0pdsF9<2iZvU%ir z3RwO%6xlw3PBuRiEo%#lL;!uiK0W@Z42Hy%KXLvbjpe+0FttFXNX1*6^h$54%OSweI zBVcGq-eIm=VPK9^3suYCWbIC*onr!X&7{?um>Hye}KU@K@e` zZ$P_8kvuY&6tg`{?E+nBnB4+UbZDp9>o2;S>yzjseZr&35v z%wzJaKh)ebj~y*9uT!7%7o1ZiTsAUs+<<k;9ftYndjc%etcB#%FJHcVHRcn5 zeXtj<^YW(Ndjo2+JBSL5jEo>6QZWhl^!BcQyY%1*Y~_K0uEaYbrbA$ifV?*~H3fnV zAlX9g^6O}ddQgXW+Nn|nWnyPxpP9UP@gPwEAYe&GhH)!HronSvRLNTtDaG2;klo8f z8EiB`pfkfkw`67jkg*T4??w~r$!9#C9K(tD3aS~vb~`}iP|ZMquK)M-0$kMu&=uI^ z^|^f+RaMR)R`AvS^XXd@^*nOsMg@-n#N*SgN>_Et#4kZrE~n+NAudao!XaccebXFW zrPbXpbY@9)W4t!KguK}vy|+%ijS0g=|M@9VWr~t3=D87!!*L@%65gb9ZcyK?b9oy8 zI&9ikj&rucDu}lBb^tayK0nuXFH$Z1ex?wNBPS;Z2#pSC>*!!YqmgpzNj;Y_4j>l7 zW8kOg1CDKAP=sHC`?*Qi9`^S-v4A3~F|ce|#nRI2PjgX+p&vq8R$W7mmX=22iFY=d z+&J`Qz*kiLr}s}aN}jv!FkkufWyMRUO zM&-it@?!#^jX*vZU?@M|CG#;7$1Nr%CYVHdY+CMEGOWC#OzVF0RDU~+B;J<&<@umY z0-1F!`O~~IkE^_4N#D)pC&slAWTPaZ{AT>wWZBlm!M-@^@A|u65)u+74hAZz08ao2 z%Fe!8Gj{UZI6^f|Tnvfe(W@4?d6N<|V=K(!xi<+qnr^*2Ahm}#z9!u={SiRP*p(`l z*SE;x{;v^0On?!0aN;e~`=DAbFOPgSY63%r`j9S=zkWLWUiO2uF1zH4PPmhU;}gbY za&U$@g|yyhV3ahTtQ@O}H>guL{lpFw`w0Ih@G7k%Ry=g3=O)z?BZ{(utzmX^KV-A; z?c1-Xo5P0x*oT6&fi_N2+nqQW@#@Py(}O9lxpX}tBy`WeaH$Fa9}$p74Sy+eg~*#kG)OpKPi3zdJ$M%0I@q8iN9`rR5ZLS{bf(I&hmst#tNefCBo_g90eVe^9=qcS^;tpgOObC!k0JsY#fv!>i z{CjXz)o3NS0|Yn2x^h#rXmEM$%Y5qj3v{EcSZQK-O7Br0j>SChUiaE>`Z}&?%l3^? z*j$#2SwsC;>}33g$8*Wra&N!dpxxc`f%glKR}8?_237KvynJ)EYSLe)n)X?cPNF$o z>c)**!pVGk1_#0J0o|<# z*U8WAv#`g1K&>dZ^JSSOtwR3T{&k!wbw{Ejy^8QFcX^(UwjJf20uQxu61g$e;Y*|TBdc`?v|;%6XS z0nj?h`25)xES{%%+u%n)7X@n!hy!rf2oTNzP656B(cXSJV5q^XfjjuimoMNNNdUbD z=I0?k0bMWE>tz4(Z8HjS;>7H`pw@WLyQI$B)N&9uVVb$(meWCIpgYG!Dz~Qk)wdaM zv&^eF#ZPqkMgX(}e~_1#zki=xdI1zMcwsI-kil-N<-{1p16-0gSjYgvJ(Ae(U2I0i&_h*dYho720l{|{K@VJBO<3{g4lwD796!AHIj61T{3%!O+Jy!=JO|{yG zKz_4^-$#*CQcxfXk|(^Tei0~Ycs#I6FhPKi_(cvb_cJsMpEi^K<8KDp9tz&emoH(F z&Ye5gyI|1%4%-YJz!exX0Yma?mCV2*!`cc}=dFut5{**$NUwg*Y06O)Qvbt58MrFg zUC!~faqruvyOEI*$fzSU~6<}UD0;bs)T|Xq~#|UXo8nSmy zo>gIU!gXRL40F;}cRfE<(GCXW3cn?bwgz4>{3O}$Z ztWL=NHpuu#wU%RogqgW5AW|pU>dA6IRTuru&~<38d3kvR_gz3x5cF*jWr6A6N+{F6 za8nFO14y?Z!Nh>{2g-rzix>2CboZlY)}7&pmr~RSn$&Oi9*~WJ3CEaz`S@|NSAq2o znxZ%kI%-D7G^_@AC9P2$S7WZ-xUo!9^AV2x&xf4f$5tt~NNqlEuM2g9WtbEvWScF( z(IJ(H!Zr)Y7zbCE8_+k$b3$73NEa8MXIaLU%{sa#L77E-ALV19F zK;;<$%=Wic1#G|9OfSl{3D(}k9)lnWoUhT-z{bGd*NruWO>9k>m<`nXb+=fK<3qzx z;9AhWY2|uwjp>LhY;yzM=z+NEEQDeQ_|=0vtKFqxF{Z^I8EO)Bjk`2k}lt>w7<7^0zF5nl-@sp*{l5>^t%M^7nB z%An_6&z4_(mWFOi%2zg1F*s*z*}|@Us-SSe{T$SFgC-)m$0Ru{!5NnxK8dZJjLaXO za(nynWuD=m`g9*3Bn`R0Pa_+~&s58|(e_niv#q*@M$#&kF%QD0(GXqYv`5eK6|sUO zs#N))VUuH%KIGxshZzh1%r!cQefu)MauI{OM2^WE>UYaMk(Q0N{zSpB_{?eX+b6ke zi-TS9ncVmF^v1xg2e`)H{4~!IlxLthkf&+#WQ$Uqf#MGeDI*&F$3^_!JvR`I9%rk3 zi4r^m{g+1;Q_te%m7z=#*8Juqz}mxF(7+@#!= zKihP`j*%|B-7yRHC12fE^pKT)rFDuRYuUuwpmr6MdC~6O-Cck-ke*4F@T$+r;ktSA z6?6l^q!suRmWUU?f_U1&la$ivC%bf2x7L{-Meg5Z6w&gSVBu(sRMj59^+Ni`-o<5~ zBSQ46o$l+`n}CJ|Mdofq5V{l+N8@FXUeriS8Jw|;^V>W0LCIvr3L6bC$olfvmluzt zF`?x_!U1Y?Qi!_{p#kw#;;2aix~4x^Y}}azc|V7T54=v-PCMJ%lLTHuK&vH!74$MS zRaG(Pe}=}!(=r#uGCPrCMqi-=?fxCQ6ei#I^QSm851@42NkZMz>rA4~|Mut8K-wA9 zZ(rM88><?`!64M*xR=1`{h!?fcAYrjFK~2qDy+0h%{swCmN?$(0~|7L z*8)EO^@!rmf?Myzq8O7GT%11zFRg6Ana)IX+!xtVN6{vgTSLw!?`Z)88ojWxa>Y-W zDIClJkgKTP(aI$Vyo86IDs0D2NC;j`l{fz9-UBEAY_?%yXArQW6giy+{|r_y9*6D* zoh8EfeXUpYnwD&(Wr>~ishr#V8TB-RCw%X_5>mm3ZDxM{4OGaA3OqhBAwlcuQ#0U0 zZsq%-NNH_}lJ0pK#Qw3Tbf8+!w2L@HSTGLc|ME|`J1h}gOjIE_G=dnkhHXQrqhG&% z1@uu^$m@qBgy}3cZ;Z7TO4E}DHkeEPeGnRLqV;67fF<$ctGje)L@LsHnpvv;&pvt@ zpxP4+4MJD~{N~ppDd3NTLPFwe1a}1z8hinU*mV|#4e|hZO?P*Me1>(U8$^x3X9N0C zff#_N zVz#U0*idpG-oKxjn+wL}_CG=R{D%!~GjW~tr!V8B3dUutBtUkIr~OtF)`!iUwhz37 z;m=0Cu@E4XW2csG1v@YmBo#ko_ogowj~v2|NmE^&-}DDcDZ0#SeDCXc2Z;G%ED_!F zzM&);Ds;4(c`aje>NM92f!|~pz_+F^ltJ%Lgl8;f!URqpd zx;JIyFFr!i>V)YW&X?b?ea$2!>?5aMrd{wfuiyOW>vvadvq*~dzgQdOCRh$&5CjB} zAk49eC-!pICZw+?!awuk}=9G`;DWO;pv~be!7)Qgx&8Qag6N!Q*EBu)!K^w81@)21AK|3 zK-&$a(onC{tM`_Vb7oxD45N}(Y-L`xL?hhf-Trp$W$KBu3%>Dd+U6SnM!7D~ZgJfrS+&Qy^JsBVg`?H5lm9m z=-1&LSLD?$7^l~pg#Mf1oy*z7xD&FyE01aW2bp_rB?@sKJnB=TG*;=`qU_og ztZ0OsFLXb4}{)Y@CUss*g`~-BL zXl*;~9VCqg8Tg!SCV~eRjUabp_nJ*XlBJis)rn(ddfzCUiQ(UU*iRI_ znk3UDgw1|xWhe&MbS_(La{k3CVg-R2M{Vp2IM#VrJzy81F;RCauc}L__e-233*|@l z7|OP)5A{#&IPSNYh**{dDYYzdAr*9YboK<@)REs-fmp(+h;Wu5!VQ2+O z^QN%$$QysHHx;L+8MJ?2vMYD}hD15Oog_U&8IXXE(k)00w5jdjm4!7WbFT3qD`BTV zE3>6H+Ol6?-`+cSuCZ97e4Q4hwC;4kF21lp)I@QXfg%S;k>mb{bxn7=bvci*Gr92d z3-EJRAD?p{O_DFXL{sTq@%A1!Y%z)q;^SuKcGjCk);U2pM{I1>>#BKfQ>zUbUlIn z6SrCh`8jV%FRzA*w~NABJQkvF4LFIKt|1YE`bVL-Tu5gvI*4d!fKmym9WaVPhm&8B zllj>5j@8o{vQt3H?L(uK&?=>0E&02VhGNqviuQiQ^(70bNCZ2LvGyu7^85X7?5 zA@Jq?+6oue+z)J-hTz>c`22N(Nnpdh^kJ*gEd)EjRya8(CMGRSV(+$m>@2)qcsP}G zE0}dWbQdt+<~Jc51*&uSH2H-Kw{P8Qo+()-+~`9Ax!z}&TV$5dv8zj~N4s99Zy*{A z>03b9qG*bfIiZG6`T0k1!fiq7WcLGS0OgP4jy2_P_Cpe4(S#tpvN{SQtB&%6$Q{_h z%@{rb6Ap;8fEkzqh8%$J7trTgxP$Gdz6F65AsNl-+X&UMZ&4SzJfug;RxD53?UHfa z5E`$@h6EWmMU%Ni9v-4DR+QIQ3Nc|@kisNzQwT1WjjTZ8D>HLuF((bU**C~e^EG2gY%1n!k1al8m2 z0$RDd5b1?{9j6kc%YeuOBH`iT3Ef@u+5>oOB=cIJvv<0Jk-@lwoCo7K{l!*T7o03` zm3w-6#>YXGE_1N7wuYeB8%xW)F>8YgD?-3amv?ZWfDm$VNlgRW8bY_1!{ousF>aV( zrFsY9BjA(JA-`^V=^=`cE4)6t%0R4Ck$QwYXf|cLecLzcYA%)&W2gFCP+d%rg z39StL5jADy5LtF`%7N=ixq#X6PN zdLXs{UW2R?NCKMhrKR<0a2cTV1#RODUU#V1<~cHhDKcbc1+q)Cd4`nu}?s9*U%6H2?9uEQQgikc%)npQuCS5 zODiJ%vXtYp!9Cj^&?({J@Z%1?&du$-)vEx569g$`Q{r?JpfKFIaS=5oJz3*tqw}%- zl&6F9ncmbkGuHxcF;IYbUkjly1A_^;h4S$8q3eX~(&^DW(01UN?0)00*(xdoL4SF= z49m+*)k4bZ{!mksK1?1=S%PPspU;!gTLsa7VB)_+_T1}XfqwP(gDt@UiwM^S3ku;L zxPA!Qwm{JDxfmL}{iT(aI!I7L^5%*X1e^O~f6&RKEf99lfFRs=!;I75)R z2d@xX6>1iA(&K+k7dfID!Vhz}@8|SgrU-zjk|Z0}W?VGZ6x8n<5Lkh7SQr+dTFauBxOYh+U_Ku3G>bA3Jqv2<$ zPlbh4m~SOkkR^v~Hz5^UK+3Um9Tt(GnwMMj1Gm^JFY@S|wFi~pLu@Qes6Y<-6(LG6 ze~tjEFZdXiYg0>usKW}X16VCF%=esNlwxoh0zR)nXMijvBz(tQ=2IAjtU=2r&FD3M z_3CD`@W3bBaVUQ?8l2z)y_y}um`s)JBu>2>-hZ0Bsnt;YIhRGMa%Y+yM zAK%*W7R;7_qzO?T$Qwx`&ihJ%U|N^kZ$T>u^o-Jl95XY_@VaQQ#&VE1bsn-CcXkrH z5!J%~VZWjVMjTYQIKtYu4~TDfGr9=8MM_`0b`6h*h;tH%i}0W!1#-pDxlX@;a(VYK zOnw@OAf&9rStaUWpa8a?w4wk5CGlB5WQtl`bo5udWVIY)EkTCkWgNy z{XgtE?UR+g6ex{>yxY5p+26+!C89JcAI(BP- z7#|F@Bp zUQiQXlAt=5h`Uy&+Px%hQ%CNDg?a^cgi4CY9S#l|4UJH{`}gldY&Ku3G?qup2N^7% zLD6J2QlVNjC;{Tv*x1;MuH@dIwu&^A*@MfJB#=dDf>HoA7KUn?CaYFC!0#iL5_a7( zmzNLtU(SWDT)XC(vIQjhdwP%vVkjWs*p6AxyXb55gJBQ(1qk##LxS;GSyAzS=}g~7 zLoAx4fvE{=Ryt%|`NGWXdhpMQi6ZXc_E~AfU8eBH!MkJ_*tT(|E)cI7j+&dD1&R-Q z{93R*n4aL5<@GZlh(%c*XlpaHmkg5z@w5}-Ya;lp*Q%P7$<;R|@7 z@~JuUUcTbA<$pppGofAG=aes`K*sQ>#p~!@zXdZI-803($7j=vlY`Q1X=Ro9av18h zer*+GGb$=};PgYA2P4*P=1|3ep@oNQGg1L(5VTkmGcz!bKj3mz-xg6)e@=(R+07xs+Nz-B}_ zX@=wK!!J$oALnhne1&$GP!%SL1qo&ujY&b%~e9_^jKng@gD@UMm zNl7(=_Z5?rlsC8x=?VnI;61>S1&Qj~_3MNR%Z<|hYf;zpEQ0n~Zo>lf9=yxcfn!|XBKYZ- z0~Qw+kaETO`5lD0xNyLBTCuMLbs+JxqZE^n@JTO-dDh@q5r%$30d0chfAsj*iqq+W zf`ltL@?|0IM59z1m~)+l;|C|bOk1JUB16+-qrZ0*m4;PvUcM*YT$dNm6CL~06S3MJ z&Z40~5WJHibKrH-efmkyk(k2|xdBxt1h)sA`yuMQ9+P3bx`3bve!4{h~v!4+{8 zqsMqDY=l#($NQI>lZMEBZr?u2fHcD?)tAkm`EIdf&;6lHzS}8VYFtXCDFdnP0)CpN zZ;f$pMa;2BSbx<|&HNL&zrugT-`ar_hzT%)L?~lQtr9V?ON3fc`Hhx6#!#W~mJpR2Pu)rf-`-V7F3s7;Ut?NLt1#W@=kY#!+|5~Rkzwr){ z)M%sIg-}#*HicRpR-Ump{wqn2l#qM`6(@o~tcW>mRQN;N7Gs{J^5-yo+`SwM6S!C( z?toh&+sWP`yWtcPb$VR!=LJY4TqVzX1D8|AUU1E`4*l?gpXrqY!!wou>bFtn*Ra?U z^8mpthO-{t#brN(4XL*T#RSq6&SDhRr^_~Yr4bl%V-X{fSs+P>CPkZmGBc@Q;;FhD zO}@{$ef7E*ja0@0(f<@GQmr=pGj)!B`cupA4SzbeiM+2UmAIc8tjo(^$O~MLy5(PJ z?@L6rw6XDwP@XYmSFy|NZE8Q<#!$AmxXn!SgU|N^aWF$Q;U!BYZxRwUjV8y)K1QjI zeJi@J5ybr|&uosf)$|hF;}q6^+lkrc&)4zR6`Px@EzdtM`V~75-ImH6*_v=Otj-@b zzl7#MMP=5%6~ea$reAVAr@*&Wl$53wZzPFGAg*gN%>1XSYt?5L`rj4V&C39}dm9<= z`t~8$6_iBX=--`b>b;s<$f(35V|p)CX#0ISI;$!$|CS$Hsdv`3zu4CaRLoM}S~nBS zE~#Fzydzt(Dx}COAj8P)`c(12Qzu0ur&Q8W?<@wP6r7)X9TRvoOXr7_@OdVD4ysiAfeW)(zB3uniXmO(vRyf**f~E7( zoI_uH@)OP>fEb?ZrjkB^`JnR=2?g{Q&r#gI!KwA2tP6KLCv5ghK}=kJ>r&i~AvYeM z+cq2+AjE{$Kyzfs*f=o6i^N^tJ`9gO7arsh)TY^S#bQ?7{Jr3;y&$iLIqv6#M}9Ef0_ zqI9rp?eQV`)2uFF+J$BO8>DZq!2kYAQ-0<0R2|2k18Yuq4UG?|{n+`+5I%%ClC?If zboSY$T2qV9iv?PAiAq1J|67-Q^uDN;ND)axdqs)VT}IM(?>{snGs$b$saSb9iLsWG z6lBNLx4MFY-8txquE?qVv|b=S9wC}O)7e{LrTpB9?IDF}n*d`<08A$iKEu(_e8^(F z_VJRbR&aLg*y)F|$JstJS+vDk?sMK|Z>I7qzb@a^3BRL7ex{`$mq&qfQJzH! zL8h!O*Z`)1~K+8gUk^vBm6QJ?S((KsP- zS?qNsq4+s6e;0scy1bh3Uc>@{^y95V_B_3j+$7(H*U05b-i=4U%#Qge?Y-QfnD1E%1qo*u8efK>i9RGAvN& z^;iUwh9-mhZW}{y+m_MUW^7_szLr_t&D1<4byzX%<>WS@p>b!9ACK4=p4ya@X+4>d z6iC*+#05uCwvo|Ar{Yeya^V7x&z*LP4~%4LSMYo^_5KxD3@4K8-FNfah(A}MlE`{r zvr^%Ye>8o&m$~WofYpVIDU4)%oWUpNdjl48vT{4}($UcZcY47C^ESWa7Vhbh^mK*v zLN=$kdX(5?x^tdh8}Y}t=yf@3{s{&6@B&31yMzU`q>^x28mn50JsooOy2*zRLr2xB zuH%;|NoACN_MSOINpnH&@ti|x7fNd*XsOQ-NkTjw4wUd8V3}!=qMBhUN zUX_s}g_jggjw&??AO9{g-l}u!&#)oxf->#~8u>2cFrE#C;#hqs`IN>Z)f^lQTW<2C zM-&--nOW!`@6Avhwy&@s=4Z2e3LwwK8Y%P5FA1fKxUs-xsCMi3Sfn>Ai^7f;_UF`9XD0p~CX-)ic_8v$l7A16}FXLIssX^4GH=MtD2`$nzx_u|3X z=j>(zumZZF|2@0a8H!~OGf&aL<|G=L+H68W8 zS0wc~F~|LKB@mwMVK`v zzG8{ByCG6)*vXWt>TSe%t>nhcn|J4euw{Jg%EwX$?4d^9HZE-5xqfUug{A3a@&QjW ztl4IkHw<=bxa0%PPpNU9>y?iaGgL2M?c&iry%@n3YIMFz7)d)syXDq|nY~J{bos8j z*3!iT1cojp^{bs_YxC`Nknq5HgeWYSQ-FB`Oq1~V`_Y;B>#BX=^BuOxBceE!)KQ`Q z?Ii+~H$TZvUR18h(-}LnUQGtI!i^m?>I0v>R~Kb7O0@gu*AV(%SCxE_P5g7_?_Vv{ zot#4?M4HyUwkJ7X{w70_@%mKA=oZaW4%PRw-sx#1Lx^}loP&|65u&SK>}N9~!~t32dd(pqwjWG;L*?pYrUz#O z$>e4^%Jm978g;@I-pMVz|Da~D*Us{5?G)$sM4COi+VGLc`4F1$*gzgi;^PzI1(hmZ z^(aywaHuq11S-o<=t{yzW(*I*rzyas^vH@CI=iasw^=ErCk$>X14ogPk^((Qm{v4f6zl&o8ZiI3G20Hgg3q5Lak((2xU=IV zr~U{&FJN=iB^8V*P-19^jbJ8$X?I_i9FI>Gb=f#QJUwYJ#KtEixPZP$5DMW#G?u|n zd44zmW5u9lx`WpUZx5LgAV?wd8H6}=S;i&rvDVY+>QCxQQg-bM&-wqYTighfp;lr* z99X*?<9k0khF_A+7da;r=Jaq>SF%R8ko9;$0VFz*s34+W!b9M$guraSMVQze45)&d z_<$91fNSpa_Xuf2aKyx5?qbbzw}y~j0R@0Jm>pvReDCzQ;q*<-SfQ9d(jK1Le43Z% z@xk`#wAWDtL`WgG@1+gW$!`5_9Y`4yCp(q&yt)rjFr>7*Y;bx&82?yWsy|+_0Ty@) z@1hFBc!DtURbev$Bk>>BJl5O@vo0`+)CV)npCRa4RTXb4QG^o%S^`smpkjHghZr!y zyuE_NK`$gJ+z0jE00UMRU;CrYBSV{+FkMG)_+FN?SYqLVEJsjs7ehfUF||p5gcCe= zV<`=dv~GypK7ICV4+f!bQ)~`f7Ntmdi8E2vKmx6umV$&!HPHl%reYNzh1s^Pgyj43%LPVl-$ZZj4TWqczJ+=15?ym z4W95h5KYQ_bubFhY^Mw6Z_{Kt$sH&5C`AyY*bwk=;i15=c_injj~_8KLEl*V#>ZFf zzkt{c+6%;YfbS7z0uB!3H$%@6u}A-A{kI>3Nx7r#UBQK7nx*+qXVJH-vvcgTkqj8| zV6_p>7a>(3AON#}k2U(`Lg)x;J9x!}!66X-Zrr%>N^k@c@p9^aS5{!^#g+{Tx)jiQ zV9g9AT962_gb#|@hIz9p+s64#7=8Ye?$hUy*ItMGvwpnWvC zdm@-xK$lAeMXIJ|WW@<&mOcTH9+<=AyHmv&5yY#tn_WPkW7>WV4K3~-!ho_*;~$Xv zpNrijdK*O-m35Lnk*3)6$tGFw_}bUj?Azg8<-ti*=Am{F=C&-Vn{yC>PYNLnB|(Hv zElvFRH>9}>0!d`!zI|wA^Z#Tr3)dIp15x%@hGfbUe@gfzkr!G#}FFwY9pa?-1mTH3g~OJQ0G)kV1fg z^idc@hA0Uftgn-{PEJnXh2QQLZQ49qhw)z)F^ke6I6+@GYX?YI97ISPxSOyrO?3)m z@w<>EgH!7XVi(MVnZv8Scmabcp|b20P2ih*&EK1FnGO?zAz)B3Cr*ziB({2Fij@Q5 z0dB_4D$|tVR?Vnn?am*gn$4shg#G(`RRv*JGX@nUg2iPf3WQkC{S0{W@C~(6^a+fk z6l7)+8$-U#*>i!D%r8=s4QylQR2VO!XhKT6iyN>Z4Ygnr!w?HYqpDY9Mpj^y)U1@u z2TATP%5qUoU9|h1G$ut25@h_%-je^V?cN9m{j}Ho*YY-wyIPkwF&h;BNb)a=obWkK zoJufvO&8*Csos7V(X6u_|(i#BDWZ(h|$kAKYZi;Oey)Ixoy*LU{DE}Lq>{02mf z4YshM#cd`GqC{|i5LciJ+3EiMT?`a^w^03}i0`w1^1NgO{gG2HCn5TJNIw`1Ypndt z11E~%kW01CsfPI=OL<}J%2`Po7a7Nh*DM~6KTNFaB*U|6)`2Qc*jqA>J?|2zvvu6 zem>i^zT!}Zpl^#to>*iHzx7crTcS+(g8!$f+1pwL7nx_JJjd&n&*tSi`|EMs*mm-8 zz|&6!&c>4Ww_?{z%=@dSqVBU@nOi1eTE>>EPQtHy%zfq?ry7O7V&U&Bq5*$2kibXq zY$)`H-*ENcv2%nq7F+l*Pl>EPxEBzS7=x;Tx;cIlkODFj0wbtg;PJc9rV~z4dM;`T~|1T>-$XM?ld0b)}t7Leh^PVkMcleg_2M>H8$V7{iH#00O z45E3XboF;%J%>As`XKnsG^uwlgJs%_@TYe(77|E$YQp*kgTmp;d-hSRW##XE7_-{= zBr0T0#NkJt4rs1{c4Cyff5QW~y1PKGdRSB>YP10AsUk6#r9flL#El6 zTH;895%cZg3;M>+^nJTGynIT$>LmA$N(fRgmDGnd}J0U9_1!bqm?p(vy z1cw>K%(GLY3)Txm!5hKVFghVZ5(zWVlM)wBR4{)uuEQ%$QxK1rm06t|k|aBTs5KuA zQ2z=-EsBlo58>Xx5!_XQFmYk-#zI?1#}x1_B@Z7?CmysyFlJo2Fh2^9tM&ZgLByI} zVI7C@rQ#^3t|i;O2deMtOABhak^DZw(bGe=2PJal`MWmNUYRH(t%1o#8__b z?n2z*X!v$DzR5KC{{P@ZHd{U6}*LdHv! z*zx5?%VljFE6>f{om&5~Z`_F$1WXKq%??OtLwQ!^-M#x47l$MFCmdH}>cEhkYfR6K zok?==s~>hOwg{NJlvQ6}fA9Tp_{0i3C>dZ2^ZMQ#w{kns6n{rX|Bm4PuKr+=*)fD8 zAqZ%cj*gCE`NuH(!h#uIogsMG)ye6+ZWgW{I<%~@10*S1;fQAmDtA+wZmd?J+3H`R z_)+T$K4?SLv=y)^G(CU+{*9(G(ewoy>MsE!>gqxOU5-X3Lb$4l*W1y3&Zg%V7oS3W zjVKY_ofF7RoSn!2^)Cww&=Yy_Ac`ldJB(a@vKPfrJAeN_I5;8OK#~Wy6)%lAqjAcf z>Lx#NKXLF!Ev;iDQa!nU22Sct=J!JSXCNq;heSRQK5x7~{@FP_Hi~bUNEh&Y1wlB0 z*pn+Xq}oO*0=$qpK&jl_-GhD<)e&J*@1Jhcr5IjT%~7vFqvB03J+(#pmNoOz+?Xxq z%Olzo?^II(<*==d5yR>P?WgNaQ#AVtnk875Fm3~dQ;FnGzM<=^id%TsWOfAE%}})L z{mRE_Z2IlDmH?Ld{rmz+fN`4Ia$2@wo{}&3#p>DLIydG+4&~#H4(a5~X zdvnk{101ot`v|aLNl6C|AC?s0hCK|7GS_YI@omC(H-?8yE$uZC7QuIJhSnEs&wr5! zSfBn#qVAN{iCX`2da!$XiH@1{eS2y9hyJSWn=-@*LBCUS3*Z$8CCaO)n$$m8IzM5>Ay0s~c%)8}(ZyPCSWENWiw2)x90h z02(;#DzE)yCi+v1TF5?d?>~hTY^?Cv3(c}5p6i6hG^ywkB(l{mL}4*q)kUGO-(1E5m`s!w~$Xl%B3lF&*km< zb2T1FXoxQttPA93RTXGn!JiFr29oWYXk_C{aovW#BcLifk%}M3eySvX1{)^PN(PL_ z{H$oqA+~hG%g(|xm7BsY<<&>$n@kooehDl{eIH$IV~(61j~>p?J-ilAd_7#l)FKeF z5P}43J9w5#L$c_D@w->?afgGrg5J?JHShI0EVVSFq_5~(VL?IT0N@o87#u@OB{BD@gT`zrOhXnx8E5~AFMP}YMHkw0CW)wN`Sg25NN;oO0F&Ky}>Cq5o9Jrn6@Gdlz1Ewkj z$-xXV6WETUN8Y1TKt|$Pk|wMpY`2%!mbykxP6x=v)2DI9cD6x3+3nt;W~|M!r|PDP zC9>&Aj5|7@cS4lPpn5&-X473}?aJP(#w|HlQ?%iFS38)Xzb!=i%lJs+n!E!`rvHRj zPCxlWf6X(mLydlYzf17?$qVOBZlBPSi9m;P^CM*#x5qXDjPXckzo}{VJV;XbE+9TC zO??Str>7ly>j?QTNt7-xzB@eUK>b$U#zw-jcHc%*;z~UEUhVqV4{E_?w^Atbr19bJvFt zb3h0Bs;8e@<)4Svp${0Rt1j+7#M)ojk-9f0{*bldp*?yOog@c*rd8oWLZQcf`K1B^ zPPsaVhTHllz`%3c5JCRz`3RJm-^P))I2?^~mvD!7sqF^e1O!u!Bwp#h;vhRR+fZCV z-a3nxQQb*v`1$_CzqLg$%CL-hGqKL*AxJ~g_4?y{_ea57=U3OR=&lM5hK3z>NA6%? zr2>ic9NPjOk~$Bl)3F2y5t^PoK`_A+hI|$s{}v~}d_F@m958&^P>=>N(I28F1Ig|9 z+(Z)|4tzu)jGkCsFpUKu?%`gGxCa}=4v^)1w1cV^2%-t%Oe_biQve{|x>P{^0(!_z z2M|Rw#x1JH4-Sr{aiA*%Im@8WV7cy?qW2z4<+82I2o zKir@6wX#y<>*lvh5@ZP&B6eH|GOnqfT2sToiXrf<&}YBz=`rF3g%DSYj1S@*sQQwU zkZPx~^WdU}NgA^H2VEg3l`1SmQy-vR{8Gyog_1qt zxj+tE?^rAhe_4Ks&c{NlimtXc8U0ph59Wgw5aff}MWpNi&)k!Lj7Ug_#ciBw206^j z4TVlSxS)9_sErOtK(CS6^M$_|H<}2yBX&KAHk14P3Vd($`z1LLktom-#9JYtzO{*@Px+$XI>=~5ii<@ zUESR^VB82_s__u{zuV5zixH^oN~(I=gA9bTqiCXUY8Ltlhf>Ra0M&H3^d)?=JOn&M?AeGOClAya0s& zF@szt4<6OZ%O;JJ-VE$#XCP{%eVazIjZiFnLb|B6Z&++YvL z&+h?C75~8QLFNS>_xG<~!`+Xsl5xS%TD>3cK~{k@&?&{;$w|-H_^QJ-HWu?8a8EA0 z`0S;IL+j|l3R5$zKBxuTa@6JN^zYxlH~(40Z7du|X4CoY?v&ob7Y7ZULM?PyaK3jf zgFM7HeKnN|A_#VRAo%dS;iUZe@ox8uJt*rOhJmEW9M5Nru3d0&@DGKqp_d)C910L%a22~x8)n~2*8doq3xokruG*C+a+Nq zkrTi#+u62Gy(jeyB`0zNJcZTf;R@+M>Y?`m;VPap#K*!+^``f(4-jua&Mia{pMs2b!b@J*-$-|d34E^$!J3`s$`G|YP9)WcAr$>umCd78v z^VJjeXKZ(nufk~JCL>wr+|)Ys3yF+nQB}iNlyX4)D^5CoRcQku?{;!^_ zq6)c`0uX9C*i2Hq(d-B&O^fW561UMRv)3;OK{M_-YWCPFLN#rW0dI5L^~2XWWle;3 z77MVYJt^o4U@1Vl*JWnH)B{uxAtq2Z={QEJkI*U4CZ~m*`1jZNazg-+%r>MEDG)>~ z=h?|XalYDMqa=<+Sq4fO7L0?v{dAy)+h@;cHlj2g)}7n8`&5MH9cbyDluhAwS91oi zk}4oFg*YdNJ_uzXq>x8pAVm2~H_HQu93h$|8U|Q{SaH99Sfm-%-FJ2UwK|$j94&_0 z?nUMjTXw^s}1|KZI90*IOKLM`R;K@&O|sRKu%HP^%3nfKoSL%Cl`U=N_~a)Mc%8`A%w1S5YgzxmD}69y2@SO-Cw@p zz;~~5oInKY0TMv;7I2sJjg8kvbPoT z6puD9WS>Oje`6=oog?Pv)S-N|90U))mhM^Y2QPh>j#*GI<-)Cl;!{PZiVu)E7!`KOMZF{8F)(<8s( z2Elh-rA@81kI=-}Y%!wPuC^-hLc8-s;@ZKk%NZ5lSFHS0TKG%(Sa{C4(?=?0nYN7z z0$v^@Mx4Ea!ZBUeaf3K*W6JQ+uEAYa+Ud8tz+uA#pE{FK!P zdQ4H=SNh&t_8+{V@2}ZX^KQ^#lXc~fao<3V)%K`!nvV%Iv^4srE{E)Y%a1XiQ3e4a zR*}RGkKQ*)U`YylQIcSTw3u;)q=3$Vd5~}Tm6`v~3FYCvo`WQFE{DFOZdRJ+r+$-v z&z5H=jm_#2SV4@OW&{fiiMmO>##3O!g%;n@dU`c=$Ren-;UInT#gHu*>1lzjvt^TK zU+()WwO7*n&K*}6P4?K~vWmoD()aSoD+lqj7bksm}C^mELRy<&{EX=SW|(?$;RY1@3?ED#_oc@KMlk|C_PbRSML9Kjzf7 zKW5mBUo6^jw`uIH!Ma+o~sViOVE8>fXJ)lKB0?=rLmcjiR0=$>N!ukDJO?k8&*{#W)aKNUaNvXBSJx z)Fv15IZ}*#3VT4oKkZWHfN%lpfBqzr9qExd^gLAfC|%qVZ!fF6pRz@iOPto&Du7>A zDoP>wXx-5jJZBa5w8(T-2oX2Vf}#`awP(vFYRaksekSlxPtW&>`TRJt_KOoY0V$gF zja+G0AxX7Ox7GEhY$vYxx%2V3n42zGn2VEE56JwxFDm?YTum2mS_-Axdi^+mhppJz zscKCM(ay0`*-=*)usM>)kfm#-%wIey_cG;i1X-WO7xiAqgyQHt{g4y4TFLFRH%(#v zI)f)uUwsD5U)S?xHQQaLb94{$RRxz+uTF5EzO?YoqpSGte^U~#0unDpS+skfTB5?O zC>|2e?)Q}`oQMdQjdLq{Uu#mL(|qwYv?RoNK%dwx84TBR)-X)kyUa;7Es>Ffwo22#3 z;3DCbbtfB>*K=`7ao~#bx70^V-_n2Al6g$^_G^aA@#nGzn#BT%j&Hl0cO{+=vuE}- zWl74I>8x4RMpccaw=w5SSMC+=%CpHLbuc;f$W*(_8CNOqmhLf#ktajFo7B9lK(qrs@n5dfHb`!l6^-l%c5ECpoP+&mTeU+ z^%n=-*B;Z{5TB_WRBaa}DT`-OmKtaK!#~TT#NYG8>RrT7Nq^t%ryFm-#EC5}7gjI$ z+e$cFPcN#cGn|8zwcAEDw_088g-cmfCjItno3|3W!3T!2mpGlRxAn^UDw<3_OYfB^ zEaM`@h_7r=jmcTmVEV|G6&VnQ;LRSMbk8_24WHvGFl85Z=xwr`I4UIEi-@Z%xIxP)*`2%m~zbgagUSe zUkXD_)CFZp(TY1whPI2LE1Lb!wLWNoGKg*>_Qm+}$ z)Z&aY>Einkre?$y=!yI7(l(UilmzQ2a^#EAY+Lm`btAjl;-N^&nV+&}W^;1!<_ zu9Zh)1m#B=DU*^HPyBh8C3}rCg?z0(K6NDgfCF2b%n~+wIJ%h>LNjGPV=I2?k_uNz z7iGqWOuy*346qJO|9~(}SYJ?wGWo(bRJirjlc(QJ&+_a3T{Gp(zeMt~RA|~>j@U2c zKY`b$4AXb0?ll!|V?J3*B8@HgSMTkZvMTrawcSik*y7L2*WWcxD3Mt{*MF$pnT)BZx*CyiqxBx1Lzh;X8bX=RU! zaLP=+@G-G%+u9suzu&HM-oVdq-Bwrt(Iq8;VR!NJ+6=QOy`Dp<=Hd0i(lZLjBdvr; zB8O897t#dVOt-oV|EGB6=^6vZnwLR=a?*>>f3JGGc7ux-Y00|g1`f@ztaYv}r^b6O zXvfQLG+^hkRlH@Ry-5E8R`Tp8DljU#qmcDt{ERyDZy}6JzvV;3-D$3plwr|VU*2}w4U-rQm1E8|jw{WG@ z)3&}**n7*sv_ zyG+DM{FZ>6cI@QsYSD)_yd*t)K5BD>_Ky6jsPi)KmS|D7ekkBRq{}{wtE>szX9h4e z>(KPjZL+lgTg|NX<-4C;G*5hMa#cJe282TTH`EdU2ZpWBbna>ZO?HsQ73=b5tAUwl zes-i9S^A2?(l#(uG)Sa5!CKdCb}?d+QKw{5$kOGM;AO(yS(aS61}=HagqdO!jI4|O zVkA;X)eC|h1aD*7Wh9_bU(CsuFV?DO>;i)R4Mv&u1U81zt z^lHd8@0AVy;BquH~F%A7^X!McjmOQu3Ek#5KF z&5cpIlO#3rS*%$*>XOYlaTnt&YW(bc)(RTG;m>=Q!YW-nR)Q1B@>t>|&GXjgw)mjY zJ=GLG;T_S|Ii^vqH)Wz@r~Z;iwS^BCDbd)*f=ajJ|MsRGv+MkA%%AsHH#^$=#^T%d z9Hh?Jdofi6w>{kT$rN7@>AP!DO+7avZtk_8$o{ zi+)7>%0~{8ZrynvrT7|`dpd&N(q_?9)jjPVmm9Z_R{-tiPCf>4ZWGg&p8 zJLT=kj!yI3#Col*%@LOj1{7&o2r%6i1(-%j9^iWA;uMoTVJ$Scd9^B^MK$7@J-YH4 ziRZ;##V%|8p5ZZm$RjM*Gs{V$Ht4P)F3LNm=)r`Iw$QCm(XFi)MI7YBNl&RtoE-Br zp25R>+y1LPx%wu>Bz&Xx&)R_9B$8eG7>|)nmh@ui1Su>_`lfS{()yP%2vop z`rI3v?eTNt8h2S*rdwNcUrnwaJ;FhX(W((|)~3ZKW&|o25O#|sv~&tyIbP_#NsNz*W)nIgfrhwGpSik@7s>BwvsMvG zC$rPYF$#4aP#>gAY(LSVaRh6O0&Td8`xhe_Qj~LN&$xC}9;?H=;P!03-BOvBEuStg zjO8kyu_AgUM@&pG>41>Rfz%F^GMci!5eL2jBTD$V6sHyM=*VXi~%1;|00hnU;7^1yCJ@i0Y-268bKe!N29rJgE}+>1imW zJGb-IzHJ;1!J8z8ff7=LqSuG+?*k|Ghx@b#&s3i`uHbW zRp$GToccR=i~y)KH9<3p`Xo`+gP}^82|_M7&ZkeK!j0N<>Z>);N73@Mwq9Msz=xw; zo}Z7Bt!@?yedtr5mcYhi^8mfSz*yLB=P%VbZ*XWw!O@Ic;8rE|d0R|u8W7PVr z?%7mB)+VQqS^>z)=mewg0zN7yN2D$4b?D8YCZZa*L0*2ZzCJov_*+=2@L69yA(DgO zh=(&2W#VWyIxmt!b)QzWq6CPNf9ZnLx@E(LJpp_=ETZrnFuEh+lB_<;)sPt0pmYL^ z7&Q`3e$0IMq#{J~!uLr$#1NqXqA1@0csz^Zmwwe@2GRzMf`Ne(vH>cU+WEjOl^z|< zhTjZ~@cpQ3Auav9Wb+dfE2|)ANnvM({PZKrCjl^u;$@}AaRhYWzXZ7=0Uh4bl9I{a zzk2}7B7Anfz-}JSb>DZ+CiPV_j>wuWXKRc2@!b~AeW@L_kAg8l zEgwGyqo|GgNx_l5yaU6--S-{#pymPmAH;4Z78ZUed7=6bZy>?rM)es>2|avNA%=dn zD$PR;M{xKs_6Lf-^A%xreeWvI5QC*)9^VOlP9`cjma3mb*A?mZa6HsA zXmBJZ@`agLTQ5MP@prarVHRa&2MY|Upy&|jNAz=1E>1Seoqc_}astCw;5&BS4tps@ zM+=jjvgaW*Z0b+Nf+9YSXv)LCjc=f+LOKGCjas-j4?ko;(2-xmLX$!LF*s;h?gixkraBMEp`ePu^nlMQM&yX< zZj|P1VoLY8z?ukcAOHe07<%#zkoArs=z5`d{NnitM0FJ7_L-R2fU;Xp z39WzhtE3|S%|9U~#i2Z18VuH+@y_{@@^XKyr!c7}C`{g$U&eGwL0j_z4Vw&)s16Gy z<;6=ehH=_*Ct7Y}q9c=Ni{{=fLfTuP{8TH$fT=C#l=v z?NDV9Vl^ivxVh2Bff=0`0C_?zq-D!tj#yhmvj}=3Irj87R0!EFnW66IsoE?u{3z9 zeWBvV%E2B}PN=62-&kbhDv=&io2>PQH|gD)#YT*8U%o(knfmI1bK9DNAG8e{8XSw! zRUi&+ba7Ey7q7wUlmm1KE&-^Gh{+6icF|&UbX@Zf6$>P>UE}>bzdv;ThLT}^>f^!) zdU?OQj!V{cp`6xOGhmj1ob}zg6i?9$3^I% zMk;6BfmErLIKdDo#=iEimxjYR1&0dST=<34jB>a3Lveu}0D?S7k3s49@f99X>@_g) z9!Ll!!xCH#g$$^QLxY2hw3;=%l`y6W7X>~wj#7{lY|-R`42PI42(3MOk!0owG)UMe zT9vvX+h}dQkH3PLnyB8R9rX6@ox4^Q;s%-355xFq?q#!t69BubB2XxYx`kNthS62D zO&xq@VLj>_-L@CbO|N<&A0D@7vs{k%bM<$tZ!S*1m?(ykniDga;6N3KAYZIQn^G8k zj272z`zhdEL)0b3+og$a?x%?v2$rwy4ZktlA!BBSePn9ZBB}KKu%&HeQ-9llS4Yqk z$e_Tii^nPo*ePNV$FkZ^sL(b?D6EMDIj_#zH1%`pcn`fQJn3 zq_+194>pAw<|u+9G$-(s_iX2U`f!UYN33(`XSe9@V&_hsIBNOy z`tsf))n^;gM8iKl0US?#l>&>QrkN0GjHzK+QBNIcOmPq1MItdePZ}vlTgb>|$GnaF zvSQWNtQzL}oJYQ+yd;}DV(omh3gKs!8sl-Fa`QLV?Af+{2%S%E2bQ8GKiR6biuopb2yTJe-DfosjP0wgL;hMZNRDR#duXg5y| zohG=%xv!vUC5hppo1J#SVv9q4bt5&sgWK-4?m+Q4wcrfWi?H~C^G_*q**0g|&4;hQ zxD%@Q?WmBNGKnPP^xQvsT~hn8edQ%Z9b&k0#V;mLxYiSYXWcydekasi1g)$dc&H$!jGVOM1T?y3f1C|7G&UOjqQT<+?@Oao>t)+XwhZ8L#$7 z9(K7dV8ug{O<)PGZ2Z2?&Rx-r9BgHJH8j%A4MV6Ova-6@Kfe>D_|0~cnB!pcnxNKW zGRe3S^3tq@(v`ST5`sKx16um_+2AS=(rJZd(Cik;fyS* z!PPhmJN2a)QE^v`7QsvNFghkEV{=5!F@hCj(P&Y$X>sID%)~aFyRE`qO*v8X35g|KzXCS!{5X`?53# zN#uYux6(5u(S3~V375ax#mrC|Ek2*gL&@c=h+>BDvpb<8`*htc1sbXJBkPrJaFC+p zwYdIF6m>M#PiouoPxv%4C&WmXnnkwahhySeZ_?D~Vx90*(F7d}xJa@Op9?xgI5%!r zIJRo!)jrDT^B*Tqh>}Q=hd6mA`whF_^rqF|NtMt3_b$^SYPfHVQR?gVO*!ey%)P89Tq#%{_VHsJv1CWDn%3hn zVjviBko0BwIR8wfJAM0YSy|JQhWX<%@?!Xt(BQJIxf(fVg;%EVqV}~(mGjT$;g5&h zwCw^98S{`reDxCW7_~g+%5Ov2}|B; z+Y_|xf+)EU;<*fkn-Amc677yz8?h#zj2T>KghkTFTY1Go8-3Fsfg!UCUz?* zx*k0y+8vSBzO@Nq;(z#P{4;Yb>JrJ7yfOxV2L+|=+ly6=WX@)8Swy--7m>@@&KP&Z88lSW_^Gl)gDp8iUZsDq{*Q#GRe2BeODdFd>qjPF)&fm5_&YV22+%Vuo z?@Gu6v6-#QRWr{A));nXUaX-Cdk)vs$GTo1Ur9Y`@8qO`vZWq-QAv%gI-`nl_i;#O z02k?!2|iMI5z3Zx1+sV0#|s(fKo9KyVnqBKYc6qJOU#>RhKl|hN6$^m&Uax@KR|~J zKr>BQY3EwJz3pyZ=&>51zA2$Qk|8L;jEsA?ZVe!Z8}F$&6si!XEsbC$O~vCV=8jFz z#Z*(RVOJgF_ z96WINQ4`WbfxUsa!g=QwURrqd7?L~@WPpAsJ$8&eG@&HtIT(xh ze(P&%nHqD}s*ri1Re?STW2U9`n?Q-paZbsJ7j356#r1uzI9PVJPbDQsEYdc4QA)4> z6{2FL)PO=)ZGiP>V$%2yhQ?Csn)~ulK-I;*znn3@Jmy+iHT996UYi#%U+-Mu?s zrnkPKAuCVe=k^NpG$ClgKs4V`J#|d7e)f!6Fuqm8nPpRI2{dC3*V=)y5E=&SjEp?6 zEZ`2O^~{PW|HI6}XSUY);9EE82#i1(@+w!DsPkI_v{GFki4(nbbTi| zR=0GD)Nmg{8NC~k^yr`}YcL0a+{6slAKv~>s`vq6CN$8*1a%2A6X_Vd$0IZPqWUwr z@7vpdL!5^!iI68re4GXd@I1*?va&9&16a`{?C%cQTc5g@RHTK|r9 z)n8P&E-ddQGhv0Z_8*WV+}%iKkY9Qs_jz*KFWKA22jhVsm6j%w_nDfOxObOB8rNCT zr9X`a3>su;bih_phJ#cgspYe0o7z#Ba&V_65c0T0nkMZu9ui9CG(g;y|{Fi?cyyPc-6A48(6RwO}rsM#a z1#6>(xOhoZQ!<=6r+fVB>=g^Ft11f%Pk;^-RJF5bcKe){S~oyjd^D7Lb`4fyc6VK$ z-}lUOgaQO~U5~Ncj^s=_cyxnU7s13Bf%bOPnD!@RS0DQXSq;GX#CR=JGvr36k(~5Z zG}P?fkeCMCArfiKi-(q~rKLq-ngdl2pt)h7nSWe0`xtbonEyD}ruP%c999zk8+RHu z6&XpP2BtMY{R6yW+|=Km=r6N+TD)+j0@aJ+AZ%s=kA^TvAyo4d z(i(`3F3S!OoJG{h>_&|uZ3$T{^4b0SPYqw?BF3E6Lm3P|3b1dr<_#>E&?hh=PC)>~ z>!!5r9fV$V-<=T%Z845*2zMX6ZVc&K=pGH~XlaQ@MPRgIm63b{mT?#yr)+AZDnxZ1 zLo4SvHfn8Dzq<1yYposhnl!ww5AG+s_FibXPagy0gsfWIIDl}|{SHeKD&GaIlWK{4aROKL+-p?W6@pzwEx*(SqiK{#)T z-5cO$#ov`@ZX%+?bC{c#=Y(qHuAqipn?z&ZPN5hzhgE{X(ik*-(aAPDlkNgM;J@-K zq?Ug_uc%UiY7u8dZBNHK7#mQW!8A9_5`b=yQ21d(sJAO|^iHVcsjdH5zy<*4zWmTh z72J8Bv-gUNFZVqxVig7z&=&u&e8+9r2F0wIAPR7~ZHvRJiw+JN@xpKM63#82{~532 z97~K9NZ`giLb?HJRZ#VkBlEg;m;XX39TqUnJDWEgs8|*tfdPl<{V1Y7 znL0g%@*c&kH0;BWt^II!5+mzrl_Dvrh9@gOne=VZM_Hp;B(fNwy`eMysC}w76 zqU4T}5q3UQJT_e&LP?eoaCI~bCpa?KDgjy9w4M7}^ z5)K6DsBuCzYH{$OGJ|2GcnzsN9*{pzxt7LM{H+58)fz)Qs%=i<)C6shO~)IH=IFj6pKG4 zG0Z%+7PXYgsi}`BDeHGd%!yztL2VZO16&)FoUpqABRkU+oUUM}ivlpdMxj;ed2IvG zxWPmQ-QVYmsxs+yTwTLHFqF)r0xwYWqo+cGW?%Lm8k~q+C4s!*jNY+`My~d_P^ef+hI`CWQE3>oJ zL6bz&0>!sf!gNgN_#}mJ4~PmoHb%S68HhF@hWyu2fsfR@*io>CVHtqI@r8%VMi3)( z!3_DS@h(vnV&)26$`LV0|ayzhw0-gN2BJ+Pc!h zZi+jZm?KOGk;U{{N8|CZBGg|MQ<}6GfwmX~Go(uy|1$tk3!~~Z!w3~r$Rf;YLg0hx zQU5nVBL(6r^tPeFBI%j@|MU~yEG!ND{(Rv}?K)fwNzO~h+{@n9%R$Y~(*gfSQe-G@ z*{HzS$WS&_P*no~Pf>LP1A|2v-6?FZ|Lp~CC+wXa{r=A{xKk%yj~CGY-%s#zc5^u8 bW$SkG|NNTS*6l0s8j`+_k@j7tP1yeez7mjJ literal 0 HcmV?d00001 diff --git a/static/graph/557-anova-visualization-with-matplotlib-3.png b/static/graph/557-anova-visualization-with-matplotlib-3.png new file mode 100644 index 0000000000000000000000000000000000000000..01c2de00f945358939c081f53bc92c4b62cbda0e GIT binary patch literal 31569 zcmd43cRbbo8$Yg+R1_s0BRiu`<}orOGdm-DZ?g9+M0N-vy1p`RMm5)G_=Cw(@u4aakv}^T(UWi@qJ8+*lX)T{FJ2;|MKdBI(N{!7*Ii%NYl_1U zNGy~UWQk4)|Ga4`Oos2A^HfrmJ2!XX+*NLoJ89%J@Irh_veMeVzgCWXe2s>JIF55X zM!#m6Xpl6$V7hRgVmV(iTJDM*#vpYNsa$aw$J!ZnRjQ$DHTlT4X=KtSSvBBFXE42f zhr8xlg}*fq(|HP~`KHSSX`^dPo)+1goNk`>g*|UA|m?>r)i0ZzEcsSh=}sJNbQJ-6tyV&h=^VkFugfN z#H1>H?+nqsjL`pAf1x9PpZL?2+@<}$fB)8b%#oZs=VgrR?JX%Q%CCZFJwK9J?Jq=Cy=*q~*NJc?iTpS-+a!N{y3j3L-_xRJ>5n@^2ii?pE z=ETwnMn)geEboRJmMWy@Ny0*zb_1JlZ#+t!6|nu*j(2Mq5B~eRwJBi7#@3cKJeKvZ zI1i}|fBHv*lDl{B(swe4lQK`a`UVCX4WKf6Z2~125+Y@o@!FI!83kugpHdyDsI0su zcb@oklsiYL30(t&TT0*i^Ask7c8psl%a;62OeTVM#%s*m zBD!eCCnk<#Ob@49&oPdbTf&~_IL4jqNd^2{-g7xwX?fN*6>>ZmQd(Sm_|2zzps(-m zdM9H-T--u^c1nuZ?@v!xMr$r#zI?LOa=e6%qg!h^2~O^MsmPWcyuVLYAGmm;zEu$U4l0=5B{y>ao$3Z9gnsgWwuTEPDgPV z7#hMgj_2kw8xLiv&6U(l)CcT1!{=FaxuNLjnn>~W8gqVGSpr3c!yqOqkqhfP+npkg z^YQWNsh}q%rlq5k(+r%?jr_MZ8L~0cr7pQAJG8Bw#(lJr)?$VD16LlhT;4gozFUct z6yxRP-P`3(yG?&7M=Hc5DIYd8tc!82tGTDAr=8uqrl#=~?*Y_`cZ1K`#L+H3A>?3m zvcP_SsO5P3_ir<2=hD%Y^Twew{2QN!dBcTWW@()ZzEJrr%wzY$wHI=Z#ygVnW= zlLOesEr+u_xNM2cw6sF|U#(&1&Pv}S-TwDaNKkP0&mRLMb;EeGWoJBG)M26m!@93H ze6X_7(NV3Vk~0gJ-Ci{oDr%R7a~HAN&rxT;I@e`_?Tu zX6EI3P>DWQ6b~$j!@CCrG;l_ zZuFOvkfk2nbPo>?N*VU#uG%0dEN~`QR)RLVIC^aaWH{+B^;8sdcF*94SN;taJ!;wh zX-HVUXENt5(Tn(P%*^(rMMg$?xVyW1c(5iur(9b4S<=(fW2x_LX2wJt#}ckvW@4%IGTYGY#qF1pHbNG(3N4R+Q2`(XnMWW=Z8Zr;AV)E;%UP(6nmi9~f@$6Bk$miNp) zq`H}?sF)N^af_QHGIwTwGC|c$~z} z*up^J($Z2-cej&}Askk529EH1_re^XKq)uth`wf1xwkx0nJM&m+K+)bpYws1R&s$o z6i<0+8cP*T)6^fa%HC9Rbw;I7nhjl=2In?u?5+9JZ{5Dl!T8$z)wSEY&(XUR0c&^Z zB-`wmW_j>$)i=D$3mksVN3PF)9q2m$HCGR!TSR_7O|G)dYn|E-pj*xYR33y?ODT} zgy@*rC`b{e*NK^F;|xl4Bg~^?Vv352pnk^EZb2(@63UE>h)~OsY;wb6IkJ5}+f?3= z@ZSo%EXn(g;>my4{-(Ox8#)_f&{kq6o^OBgTb9_)FUPXSu$ADJkutLmu~W#9GP5V! z_oUu|mA&vx1`421<{j!7I7@QpPcy$vOPli)O<<7NZ(0lD;o&K3Y&_hX%SmH?~{ z%1Y6<@d{cjIIC4bUDUL9p{ZZ+alPdq!sB6Wwp;<5M%a#t{xH0vD7w zqOYTa-!RtExz_0xjrR2NqLk4sHR|Gx<&2h)kZ5abi$?2}{5(873=IvvP0}Aufv=y0 z<%ZUu+-0S#d{O3IK>?Q2M1ds{cE1MajHhUjWX|Lo4-)yctBW~2T!z_F{GjD{=)|DT zefHX%xTxr_!NDr`+3v298ws5}rp-<$M;~u*>TB0%1~<)khX)6BOiWhSeYJH~*4EZm zR&=Ot-oEV!C-+ihTWtff2Z|a1F(~QKHLwS=;tVb>E|-Z<%WICV?HmL)!>7~^8MtQv z;8i)bbP2#wPT)otpoP`Cx$H>BV8ow@Ctpto^_g|CgvTZ%0H_LppHz=Jhk26FoRjZU zPDl1&Fd4mnq9ntYzN6wODy($TeJIr-uV}PQ4Ff5&Y!Vw@@bx!GG-ottbVdPlIA=7! zXlvogwE9W0mA+7Eh1$qlj-HDC;CMcv{ej$cp8IzaC-49D!eD~8`W0+(*++0=EOT(e zSx}_i_qP^&#hYPMm(@J9V#z3&tI$s7v;2Fwx0xWm@dZjoS&*gWrKyWNjc=Ajq4Rgb zW;JxKvp(A2-W2mqV_WDIo+Kj)n>_wk1109#T;IUJX2*3?qvpW7=_(m21+eMH8+;x; zdc>11JZ^pV0X<<+#>dAw)U#0qH`F81oH>AgmdaX6F%B4YsXJRcJ1raCx67LT{o=?8 zyb{w<8f1xo@aL^^nvm15>%mHm%S2;cW#wj})R8>^oWtyt0(<$T8a`8-jq^tJo(qh} zQ;d?wyLdDjEfMgq*to&l*LQb7U8-rdD{PC{1*814oh)W`brlc@EdBTI-|Oo|EpJ{> zN&-9-m);403)TWqSV>6<+`6!^FevG-du9z9yjOO2Ye!c~OG;GPlc5DcS)6Dbajx<4 z^duuEFEMSIm~!1cI)?Jw->(^uhk6a?DE5>kKnK?;85b8GW~=F3IZg54Ly=B5vbL?Q zt-s=?ur5YMfpRyVQ1FY3j|~qaqGUHVH?!1ic@ah}!4kMlXf8t3F9cFizZ(5E`}+Di zVy;`3zv{%lFDkmt$;lKB@FqSkj_~fzHLT%KC)%d|0QX9)DB-%NZMwdzpHq^;7|NSX^{~&&Pn1IvSAj^75j&I>NzN z2m2h}Dp3)RV0ZU}yxg1VD%ql5-H0H%i#b1k{!D%OQiIBxEG{!M(^~)Aw{O&P>q|N@ zt|EuiF+7*Z$PNchj|TtrX6mO7dP&g6k(@qd`H$j@2t}VV4b~TK%xs!zwH`881KRv# z2-K{J03PQ5s0}_&7!ffg!c9TyG*-LbufRwi**4`WLK|n&95{ks2NvNo;n(R7p$tPsw$wo{e{BOU%$i|)L9aJcgB6<9PWuTgiJlVe(8oN zlnF265W;?HIr;~^oQFE*X!?2!=`$I)^o)Y-ot-kHx(x-X{r+p@wortm4n}a?CXIS} zdUisY2mAYMO8bDNN1;hi9{v$d<2HsHB%nGlI5>z>J^5GD64znjToVu&*!bbYU-jb| z^#{tzmv4xA9`3HA(JZWQr1t0Y04$dn)$ubVoE*+cU6(7zU>>B-K7INWHl@@-rIca0 zMaQ)=6KKW$TXs4+gQ~*gTQkY(fJg^_{4lD~c(dfslK5OcFHteSq@;JjllG2(a)(7Z zt3v$N_BM_1@z#JkqwjA5=YXYyv&2t9`eSH_Zm!y*BbsoF@7%iOU~m5)Z!9n8vpl^I zd#fe*Gr%^51cq_wgg;9RIWmeXD=HdIcz(PQpd#M7!qMYyZa#JYvP3>-H{kjMES(Fy z<^bvlZg*;08sVzE8;&+{QX$YaVgFY{d-q;3fDV!tvX`b-m|U=snwpxYkf4S-{N+>) z=kW9A&#;Z455#nAK+~YLUL~g!g1UIp8FJX^Sk|O#Y#g-k{VnW_HK>tduD^+xX9gdc z25t5VL+9Px+`Jk^%sdk>wyIaph&>!|XZCTrwFJF3iS`Jqm)=CX)E-_mb z+g5~}9AhvTxS`^kUj^pAWo`P36W;vOr%wqXhj{pr2YeGg?o!&${ag+HbR-hlIK6)= z-{Vi{6O(RI=DNDNnlbknzF)suLQYPOCr=uHhcN$`oNTclC;;RLw>{R4?Mj{R`gEyr zLu~qhbImBix746&5rCWB6`%o*uzOa@69*QsyHKVxK zcVX9i{rQ^iDzfY;8W0e`hoz3Oc6I$wRV4_>178~*9eu~J8nI0t)4>m4ej`l!sZcLq zV>vhP{aIdK2CaaVg(LeBY;tHg#@vqr0uBI&xYSNX!0sJDH9>LWY2HP@f4>0BgEi$_ z<-eP6moZUc-2=7du~6o~!r|Yx%b6J&u?z86YbfQ`=lk;jK>hmo{>>Y+wg_@qS9b*k z1!w2gs?BfCHEUyal^;IvQpW(Bsel*VnC%&@amfj!)1(4Ym_UCwNrfHmHg$@Su8#%6 zrZ+sCF&Nm7CS})|+bfFOrg$Bi z<=)6ZL~XCl42ltx=Lt7=mI#kq#gFcqk9PX*r*EwhzSW{K|7moLu??6Lf`SYEB6 z?XEP5I93FQ6MwpIwy= z?@LSB!+#789;KaZm`Vahg*&YBLms6n<~H39=f4GTMsKFDWvr>+>@~|yK(BhKS$Zcp zUpH+XsE|o)*>iDa0%VpoqxWn>T+3)qBO#r?$xVN$rmCvMpz6U8 z&~Wcm>mW%+tcaA<$)~4h;Qh_@Qz_6(^}r-bZ#!hL_f)v;G&VLSB_-jcPF@!*oMQ}p zfqu6$8PWn!t-k)3-Ws~Nn9TB!BV>a^{;kdc%96-LTU-0#!;KY}kOmAU8qJwUb5~4k z)Q&4%y!&APd4l;Xc)jfGY^cX@(CkpZe*P4qoKB9!0!)Y2UQ;8CAgdo=g&!XuABTpX zE*!A09GPAR!HhXPHa=c$g81Ihc6@w1&;fw1t*xzq3i7^7?2!PffOZ0Mz|qkWDYK3a za9=1=@(K#T7-RW+2KQsQqWLG(MB)cfKz-~pged#4?LNs}os9;Z%;_E zGxpB=K*wdErM*CW8jkwYdvEgc@X;h<;To{f0R+Iy0w7pgT(rwz4`)m6(%^iVnR!t; z#EJ#hw+A6ka{B4y$?;A!nl$w9PeYdyIP0+0Nps=8<%s(w&Fvi?21-*{ltbsshK$9WTRjG_U-I9v9%e$Z0ixIaZ-CT z$xt8r_qUhgmg2k{g4QOQK$38>v)hGMMl9`GXVh<}J+uwST!1WZX@4d~$ji6|{n~*) z-MMic3ytC!`)%Nk~uiO_tiGIr9syP&9M1!qeoq0TN}#8d#%F5;Qu&}cLQ+l z^UN;r+kJf+fN+3cYtFSImg*;d{Mg#);eoOXR|m~7a87J8y^(BTcz75#I}&W;{c}Ty7-8{(^eQ ze%Z->S-{Tf9ZpU~wkv5orqu=|0KQ3yJ=xJA8_7BO`}ChenZn5~UAiIzawU{b9^-m# zef_;JtO+k)zSKjeZfv+~QbGBHFVF;#)XGpCfDR5UY#kiIe#2USf?KJddK7#DJ-x53IGGyQX#=sR&2L# z_soBS#(SHKi?3AYLa3RORfEryRDKLP@eqOc%y*;$)(sWJdz6?7R8hGaCU z+IZ#U=7qPpH(AJwtx)OxmyPZAGa@#UM(|JQ~QR|DY_EXzPC9Cx4_@u zzgTxE{)QL;J^>3CFW0lL7MrYSW^I&`VvimQstSbKuzsI{lmqgp3 zgLNn-+o8I7V+S2N5Oh1UBCFA#OOZXmoBQp4%*XhycU-@C@#0D6$u1){qhFrVZ#qgb zi7KXpN^VNz+mx#c*`v5J#|#_#F+_BAb@lPK>B)AsL_qUq)*8ZkvJ2PohVud2m2!iU zWIS%3tAO*?m8iqs$-`c_JO=;y+}o>mfz*79*Qn%ZczzAdSzVEl)r{@L*OzXJySz+^ zO&juci=6^3W8F7!x+9T|i#E<7!)B~wcx85JWmI0jt@cn+lM1(q^${ABN-z^*dLu0w zEz45Ya_kR>7K6#vfDRV2(=a(+@3k~$NCgb-WbWiJ2Q*>=k^}7_iBDA2|Ib$%%YYK? z7B#ad;M@ye^aSej^6pa*$8=Nx$p`-Fr?1LF8wVR$l7oX#vHB88zSIBDNYX=||G#yW zwsW#hFqm7>7EX(=7b^|4vEMq8J)b|GCAw#@$N$D!AJl;)w%!Bk^#%1IAP`L^Jjk81 zM2fe`WWMPAkWaO?Y+aibdZA5qlj_3FD^b?FW2cA~Vx>tJ>Oq$-UmWD8m!@mrqNDps zaI(Iidq%;SNGovXE9(3zQ7hafGWFruAdI^6Nh)@3k*w$9* zRO_Kqxao7;HQpR+q`9a>SxsgX(59x?GwBtCz$kr-`JF!C>T1qBx_m&Qzw8 zQlHm$TA-i;$3XT>c;F=72alX0`n_Lp!47@ZSeh!5=5~ghP6h><{dp+`THS9B^xB%q zV4!Df&70rEKq*G{w3_uzxiW>D1g>|it~yta#PUr*MFVOKXdeV2(BeRY)iN%Fl$59nxM8h}^TYWDZXdo9p45*5J) zfwKf9KOey7$?*|%d+0{;`uZa)HIoyQlPCL2W#__Lfdl}qk<+A*fz<%D0nG_So**`s z>n#J*u|)gNyk12{Kr>*nBm4tL!m+uVQ)U#FttjNX7&9UB{q zC}EecIWMPq^)Uw&>6&rxQRvr|m6a#6rpIspL-8)troefjwt;^DvgxgO{Qr=JnZbko z0Z+7pe|LbR-G$1n3P-843uX*Lewmc<_+nj0Q`4OC^PbQ@rKMZJ^lIs@P$A9byaoGc zctRvmaTxUfNsF?fBKr(9XY#=mYDMZm1!QwwU25#`f+xsFzT%SW>KO$$q=FAWKf4Iv zuCZ-O#AkI3I1p&M26}q07OyiJDOe8ea;ToEbO<@zXd3ZN$o70f!x&BRu~dBN=e8VG zl}e_D^aW#qH?})x{CWe@RSFgt7uzB)3!_lA|vi*;k7m|tD}w-*TVP!by$i%|;njEscN2JID^ zBc%*1e7=01X3M0hme&1& zt(o%gz<_{)ZH`VJ3-R!*!9K|pcH!pagnbf?Zv6ZCA|OM60NiOkwd=dPyTEEECnhGq zTGG|k1&*URSqthE+ZAXG9E3(q8r5L|eiXD^!)hlmc;5#fwN^P5eKXei{d%E^l-Vuh z^CVw3MT(FA8EMTr7rFQ}+i^K(pTy)0zw*z{=I>`kBQNIvq&gMH_l!$-$U1+%@}ixL zcJv?K?0sQoa9I+L=M$iNc<*h@!tMwA7vwdk(dxLlJven*R2>yanRgh>BG`4SiL45M z=?HD!XUznPIe^nh=sIAYgueiMuQB9RH28p&i<`R?gQ2CR#k_w%0);@fPwo51ZW*~hb?&+h!j4{TxfbOkG*=!k?$sFbRkzNI#4{#Qm_tbhro*``r?p@s?vKTgT&*N5+6Zu)ERh^S9&e>3{0AI!}|dnrRGt zEG{lC6V?ce&FlKr_qP9w28yew#h#Al>PrrX4G-k&j>lZ@Hq)J4-4Ir>@8z$e6dH#5 zN@@8=pI}K@Rg42LJ2PLi4m+eoE@8>qj1J<%DH_ICH}^#15BB3)f>rPzDB6`@71+7U zu!jsENs}g>l}phkwR<65y5V+tfE2gu{@{TIRaMZzKRDNg9@vftABZX0Zd&VPSlpyB z?r*Pkax>)JvV208xV|kCTMoOQo#pgBQp&uf0wbC}1hX-Rh4v4@tb*U0SHF<;*^;DE zsSb9$d-q-|_Dz&p_&e0>Z`vnY#HYwpsqQi>pQl;SIw`uvDWe_!tVOy2tT5$s%(A2x z-DT@s^e1l`}}RXs@wS4M%I$9%FRSuv$QN*1%eckcAl zx$J;auvH5R*f}^9QfC1;i)MZETKd_6chk{{^GY0pY=sEbh4&bT%8}P<9I6B5dMY|P zg#$_iyh$O~zu?(j@mi71EI>Ahc}rbEh6MF)8LaG)mXMZm#s?_cDm^4=E%%u01;*eX zfVOxvz835QzDRWRg;#?W?eEaE4Dq)@`LpO8E2wFrl-#%mZOK1*A-!+trq1diZE8mS zvK2^yltY0gq;%GrcCy)&$l8icTY>>273r1$X#;X!57sq+u5u8w;EN!+CLTw*9kqv0 zUBA9I*%AU8lh2r2Bopb%%1W}r!|)dxoFK3a{`^TzMgoCNoY8^S?q4!`Z7f$bVmdza#+K84BF-ofe*9~zFl4__D02k_GV2hXjGW6vGD*at7c`-@|P;IgC!uNVg#2JJH zutNZKJ-zp-md(zo&|=JNy5^>^u#b~daZ8I7bxc)tHN+}vMjzLVf^R>$#z;r!`1r9P zKdt5R&ViwU0ca_(zmYxAzaAa_-zgY+== z>sP)1_M%Rau4=HX@emG->>|^nXnZXQ*#IjcrO+1Yt^A~Pp+8a2imkwLUu8|1REan# z_t^E{1s>!T^6vvwQfaSKZjV1){!*Ez?=qxhu3ny5sn&$}2r(Ck4r#%jWMxJmwlU;#68%8hp6k2^sMlVLG~|F z$1U{{m8VVuS*OVDId0d7WIr12{YrOe4G#Cz8TwK8m8~6hUv-XSLhnNexB5LD9n03^ z|J)aX#L9S4l{Q!X$=L&emlV_rqla!MI)+QcItRG32Y#y#Qr~PM@7C~-W5#S_0%*X8fA_iIat)01!a9)JEl zIFDhVi6=Rb=?-M1d7=;OlIH%<*03G2@5amIfsF4GS{cR9_F1Q%ez?^}cK-!6p@lJt zMjc$m8@Ha#GC)6Ycq2?t6K&TWOILL2m5^SlZ&BwvAjhB?A+@e7kI$NIhRlh>%w(_;zVkE7oZ*Wag7y}NmXikubk;(^wk z;j;I}_&j_Rg1OT810x<;)Fgg8?QNlmB(s&L=T=|t{p&m?RK%?do~0&D{!qhB%6y*6 zXlcHLBE=}~>uP59#CimbCOVf!H=x8Hs1@Xyh;O!i_O-o7dcJb4H|IPTbArz~t_=6x zVzdG4IewR_OXplP!Jue|PRvbh=NFD<21W1hL{I|2S^Y351 zQR(`+n||swxkT%`5CC9Cp-^l+6`lC?y+CA7d_qDDdVX^c5pn*R4CHTwg@w~qB4n6T zt;1U1bXah4a`L7c@>9qFu7hx#ea&c-^SEf`h`6|T;ObZ%n3-L|XY7?@N%2`vWqIpf z^%Oqmvv0ip+};USEiE6Wo$ekUL&}U)%|v*6JGv=;89wK_7y=Yx7j(kl-8M#W8Pf0~ zIyz^iAtQsp6T03UE(eFh)r>fSy3p*qZUG`+=@NI^((%EXX^rzZw3gxi{`Ko2>(}9% z5Z?g*`mjGC*b_bu#4Ei)4t;v>p5{xjwZ=_QsOfiRWjBF0gQLYyw%LAF{bfoDbNH30 za5U#tVWI_kd(@?6d}v5`{W(w>X!eFR&Y*4! zM2`dPwehkg=3+iqA68zzm;QoZEBu9(B4X{rSBv-JM1MLguA5(zqa<#%C`X*pi!Dd? zKr(I}D7dx0jlMSsHUt)eL@uwb;kvp;>O5@0XpR$}5D^!L>RxE{A&27O{{m}JEhjw( zR52KDZ*MiS-)E&?uyswjBDcI0d0VKY&;N^HY2!0i)xZDD&CR`0j1xa+4S zW4yE8alFS#C_p?LbaqfdGcyg1jk9ucq$DLF`XDN5#GRHnj={Lo+va1|uUX24SlWlk zJV&0`Hl&n~3CKLR*3T&5D4Sh#uUqy$`2G70ID?{oOh@mNXqR*57D6lULxG6XLVYty zw62iWCqrW1EA$aF%Yf`Fn!d-#darE57mI+DL-60$b09fJ$%4v+wJ49eVZ$Nc3GqbW z_0Y-zgY@?H3T5^#ZHs29S>FB(HvmEcQD+Yzw+40-IFFzlTI&O6dnKXioaPUzkHVG=x-%LJx_k8kC=w2)CP_y zpN+i%YkmH$%6j?dp6E)Hs`2bMI$`I-pEb?fASZwv-eAO?_thv(c;;46A|CPOt{TxbTJ@4(Tl&Ib`%!*TXE9PE0u8#)ng*hu~OZ)PN_Hd3i)7H zpm*6|V7pvTgoXWlx=vykQ*7dZQ&)Mzd=ZKkVvSImMn>#^T080a1tBv>EKjEVaS{dq9K)(}6(2z>Ae7S}$=^-^v^QxEncqf7@7w_X{Qnls`)vrk9q6%1&^s8X(T6 z_alU#;%n>w`-&<9QcH->z|Y}4q;G(h0HP7#W8;r$*S?~ ze~M;N>Wn|%T>m$oRO=~sQxaBA8nyj~(@|#b<%Ji&r6SU>4Pmd)^mV+H^hhQWW?4-t zIn4@W5vHEZ)?>cD6mv^;fHzC{X85~T8C_!@(k~E+*oHGyagX&sj3V_oO-Vj>Se%b+ zgIqbjb~aTDT()S7Dg$%3h7NGy)=TdNBBdYlr3Y}6GRr8^uU#;^&}MPN>}lX#6L3IC zbFKKfqI=vPfc06ahkP#?W33RYgdcC6w=){zclQdEQDotK^Nk2QJUzvn*V=f%|As5N zVsr&U!4~q98&CO!Qg;=%qmVpU8O6jYy9;T*UWuWTWtkQ_pE@m9)xxicAB06$YR0N< zb3J{lF7(}xvvOeMp63-tb+Ze$Wq%Ef4w2VCoHDyb(P>uRrF66J>V?blRbSO@&-5!f zAtjxczoeK~dA|6`^rjX4Q1<39-34;lhs`SEhb*E|aUEE(Gt+@856^ufIz>*MaO-_* zv+Fyl#`fHBf(Fln$uAXP3{TF#rS!)Rdr(jP4K1aQHQCH;F8&97W z8f0#_NaS$}KF^ENg~UWXCuFvp^5d^Jm^o>vWX_oDL|C9+-6Xa9@Fe^>f+3cBw8y%> zpi>_27GhBs@g)&4;Dr!8br8h*1uX zxTHr4FC+b~f}P_Uan2H@3@KM=y;IrC&^nM3E zDpQZSDr2_o-xku$MD&%I81*Uy!R)krOdPd!EtWEL=Qi(sc-2#8vTjrbObN~5d4!G@EX%X*bJxfbVmc%c; zy+_b;QnIp|>?YrPo`Ks<+@aAJlMs*nXwBG%u$-{BDW&NHDdWtUGl`09)G;7Yg2o%@ z>iPmNqMs@zCI&%X6?QFa>$jsTs|yQ|?;k*w)YjJK=eMuzTqYwUq#E44ysB_>0@zGw zzL4xs!p(tAaG=6I@aYp#8*jN@@!Pj@1E^H%nCNH_68rif=MIr1$O+%LapSgbF+e|P z&n9J$hPJ^-ARtvP2o>MC^Oo}hGu5R?Xfnc3Lc#fjw9z(b{Sc+;xpr#BRm8b&HWehy z*CK8fFuDL>6yk_6Jk7&Zj%fwro<2R5Q9vm}C6|(x_DEM3 zRDOx=A6k$l0b<_cO+ijroC4l8RHcosR_cL&CQ4ybO`!MtP;Kx0{JWv0SrKP5GjR6L zST>rsk;HVkgGn0^K@yKY3=VfR4CUi;su2(CfP%HW1H*X#Y6cF3=Fig%15K8A;(F; zxK@=TCc%5N;Hf6W$2Wtd480{zK98K7TwQ!Uyb~`?8kdj&LE;!R;=(hCv+OL7wDEq0 z#3pAn=G{A9nN)K`TF=d%4S*S-+}DAQd)>sB8KeNPT>y4sFzi>(4#W zIKv~IYs_p)4{dE>{30E+faT>wh|pb)YR~eS7#SK$OHTIayx}84A8(uOX9EBVvQWP8 z7N99WNCRx>%DV`%XtW)FI>gU_POpPI@9E>yvO66E)(oj#%OtMCNk=CIgQ-AnimMNx zaGO+es%j7AG$D-$aXLZ*t92Ks{$n9SPAbTwJJ+ZOpM`-JW;S8rq1__RXkc-KFt~I5 zLIIfb+97AOV4?y^6=7LyqU?!kem&%#N7KDn?waaooCT%^q$EDCrdb}0YfpH5YdKz#neg9q%~x4xrF zmPBQ~%x%uj&Jqqf@QNjvV}noGS?X8AK#xT^g$!XS zN(^Sb8vy9W6$N4wkAg$MFo$qDW1Rds5)$wsX(G68-)@*zf&(FlLXCmw*wN83<*GM; zsvIfCI5;{M4J`?h^pNPMLJ$e!1hJTpnk~)_4j|Ovz)5HhKI^Xk6uJNj>qLj4M4+#t zel>YNdqY=-b(43eIVaTv_GEZz5Yhl}SzB8ZrZq}SzxDQdiDt>WrOxfaKt;PnxgCl& zN>*N8-iZ6UoMwIL+{_I48M?Vu+k0fnz02o(zDx%lHfgw{UKx`V?%IjK$x^8h}-e*LO;9$$2?qmT(@ zf~YfmF^YQH1qRYv8tLobm6T+-6ba>ueS!hqKMxZ-*#P+5@bZADbsaS|H6bg+M1f#n z5W=v4N(;(Z1u_Tne^BLZD(fKnpPxSi_cIV8Vl|IP3zqi5<}o+V)jTlCp3ga);dn23 z?t@i7S&1WbRjv_9ok1lJrfiMvxDoFqLFG>u!!0-;Jsn85ZSlU>Q}MOJ31GCjxw)Gg zANEzj0wf+kf0oJY6%rSRtBmU|9$JEkYcv|f%b~%+y+BDQcJ8we!e1n&T#7uyEIaU# zj~`0j{HJqvp?ojvq{rdsU33_KySy|2K3M7CAQ1I(;q57$y{6UHa z=J8;@xrNo$>d}=@CZk4QN=u*xkTrxa@GpTAj;??O01*mn>pOE#u)If9NKSo?2%b23 z1&bJ|=hWIO!jD-kLpNkqgD>Ik9A6e)L(L8CBe{?3YuLh7xPPl1rchWMMpzuqj;Z9i znjZ>deK+ou)xP?-ePH57hu65eZaX$1@&~9e!Io=dJnpm8Yn~osmuahAYtJ*n)2K=w z&m^Y@qVPG*$0>3r&2K3=-JU$_$e>XuH730n{h=|{BM;G??IAUH4+jmX$t8oIg| zJvB397<}~Vk=XL!B|*0^;1!@xXV2NX4clkq+5^50B~*XC@5c`q?E^1XsO;vS={$=- z{U9TOQI&Xlx(=&}PLJ5~p(WLAeWGx)JC{C?A_VYXJa`MJw4Z7{Lvsa`_M)1m1c)9H znl(Lu>OXfFg7*SF1;tdVk&f(_a-z;~?72ZG+4;ay< zK7$=z{Bvh@X-5Egik;53Ct^zA)w#a{#MI{<%^#2G+PuGv=At!hqMj%(o@;r!M}WTP z;a93&rTM#;i#y`VHBpB)PyL9bKjd~R=x0uK^ zQPtMaI1iVX5+m&5tLKJOyQ(xkkeZ<{=xM|IdTl;bF$i^hVbL!3wXv-+u>QQ3@<3EU zp;=s7Ssquk$*UV8fT_@E#IMxH#z~GZXve)`(^Y{dT(=cHJjX-UYwe9$R}<~rD?#LC z{-iE7O{}88Q9_-)6`MF>{wK>u&d9;>MTXPsj$SPkS3L>MDXXk! zsD+ZwP*hv@cPjSh8l(eM5(79X6t?Q-ML_`ucp0Ie?ZXu%QTHBdebmnBX>6sc_D8ah zCfzA3%%vNeDdG0UZ5f+rScQmV7Be{QT^Mde-%L61xqkOClI6MOE2qqX_OHlmd@}m+ z&m8_nJ|T%A*BYLl?)BDUd8M*l_mwWywuIqgR^9eCtfzP#LFxzlCeHgqN_#g6)JQ6oZ_kEluCc(kIzPr^aByBF#})KEyrzN7=%;E z>3C&PZ0IbE>|T~3mCjJJQoXsL?GN08>mJ|BLC2|L<$R`l9X`1&C3KloQs~zDVEmWN1EqF%_Y*v-L~g8JT4VKNiI$ddX-TD;EYvz^lm! ze3ahS;a+LA#Ee>AnBT*gFfw6HI zF=L&uub$Hr@S=!I>}VUUC`Lr!Xk-Sq9n(ZSWl$1vzc#OPy*ba^)YJt1Hl`E5>3+|6 zNKmx_TX@ZQ$SW_CB%cr4E)w{UY`h^skWVcqD{RUmf(c7%fXk=cVo}v*4u1`UComIt z2xGpEP%u011JWQ2oPulu=|Uj=ceuFH1JCH_;9wXQJQ6E@0w#hR)V^sW zQm?9joMP&Namg)yPy9n?7<*pYLjOzJ17ZuD=|JR&xJ`oq4iQR4=sGadMwr?K+Y%-Z z7{q=5!Wdt?EDNZ(ka=waKjb_!#O2^G!nnpXB{*jQq+1{Ww+yN(G*-f#FQfw5Pa9~y z)GAbqLhlkZU>N;^;KCThL!THbAQl z4KVxbO8>~v@Bl^(r2c+719%yd+0AT9@}DhYSrZjQLRvVZNptm(05Nz-LDsqs;H(7D zisX9xRX_xU1V?>q!Om|{Xi|zJ3E7Y z&tJwTVK9L2__G-3k>P8#Igq1a;m3ehz%Cgd2X(m#M)Dzp1OZTx%V7AM84{mpbZCKn z?0UL@txRqoh_GOSY~--A#;(t>Kq9FEX$qd~bVm#u(7})bjE{hHOqe=>^9?}Kw+VtOFg(C<`6)+XNq=mvJy@K0KS==aaLC73 zA>&eJP}OZyxdIcK(VJ6#!7S@%r8TI4?9(p9Qdl6cPC_wgJK1VJHQ~$wJHK15f{g>q z+@4%Ya+HJ6E_5`>X1`XpRkgW~=RF1c;V@FHpJ|cTywIOc?s|C~+ zra9&|VLsDf02RyE#!FB|gLkKZ?_7`R0G?53ZvfyLgCV#de%avPLkuWggqFG8q3S^r z3ZQ60C-Ct5xfGplz@flD0-piyZa+$uO0IC=J!d!Et$qZ6R}kjOd!Umko=5PAb43r}-4Jc?h=&CLxY zb8uZe;PDDcNmu@xOxDo}0%E3@y0W?o5u@bGdN9xF-C!E9QU!bj@(N7hda2{!dyZ7v z!idFNnB-ZihsAP%h+Kp@VFsEI5Ck76+qV{AFYMJO2p@uFf5L@GD%LUp3HDa)nTQIF#a1eN@+bhT3TTgzhGu`qA37oHW=wc3t%b+ zGIa3&Ko9IPAomaN)n&yGEE;l+KyV;tV4*L>!BGgKR2&=-Y`}4<5(Z$vZGi7cNrk`w zE0r9?P%1|nVeT0c;}Pama{6#By1GAQ&BO7v@U3{ftfmo!HDH1_F*8${^grva<;|N< z_;m=HD<-w`eua22Xc}j4#*=-1g$RFvxHdOIU9y;emqPvBKGvzh>znd|7TGMfd;P^M zD)J!`f!Km2O1^aMUf==;}sFFDkeX^Dj{;8wO*(&_Wuvdd*9lH@>S331?k+iK}gy%Y3f9;qtvngR-8$qc-4)AMJ=uai_U6)CnWz z-q%ED^Iu=Oaf9mq-Hl~ky(B3Ct_rATUHrSLkl-NU~ z%~{`{#=pPzZU1|ce~VA))i>hLWm+h~Tj#q!21rq#27G1O*t7gqdA9GG)^Mt2m37<4 zm$CT^{@PbcYlTEumGonkWG)D|!c$}xV$fWXIA^cI;$6q;bfZ1Byv@s2)S-$psp#p~ z(}VN4Oyzc5|8~em?E7JP;cPxHSLz!#phH39HEr;I4BeF;H~i{`8fmV*zeR*FbGu$k z4w}>Q<_pI_O`XB0l;b$AX)6 zCE!~idXeTrEEm`@AN?g5JmODhfZ<5s<6XF#^73^USxS&)0r3lP1*B}v^g$o3go}s4 zZullVkpMKWXVs}4Pq~~n^_=v7{xu7qkMVECPEX&sD-``yJw08a|D!8^;>(--b15~k zJ+bs{zDRHX{)V`+P2c~LMfNc73axQp0knEmA{TU{qz%XVhpC$ z>;pXJ1^OLy;zz}7w#YKdm<|e=3gl&Sa+=#-?=TRq@`Q0nm~;o3CT>9h;$sxyaOGI6 z{B}`Irz}gN3j6<_#Bhf+)J-xJLO>K`BrplY{__kC1A{XNmZhc5(4gTE3;Mkc34c+# zgup{;MKx0>z4s3YbC630fg2tNk=z9nZVCfi5Yq*ehwq90-cofGY=Ger$QKeO(RfiP!t5$Mm>>l5 z(owS0Z_`YYtoO=084h49PAyv;6m2AEEvvV_q z+Tgy7I6=gm5oV)tmtlw$1|U=o4M)MIHQV^c()wk3W~EN3j^m?Zm|ZNA;i3^8p^Us@ zi+I+)EGk?o|MQ0i|2K`7DFQq;&pZqS=V1m&67*jf#)Eh`)NY|nRUMtY=~lNfz(DZO z4Z=tRAS4)?H$? zEy&-nqfDUD!5t+`NI~Cnu4#Dp&d&WFD3lP`>xj_9ih5%gaaZ+Ht@Yul8LGk3Fm4VF zTUogW1lqgt2Qa)Wao2$lOW$eS=(|2#ZV7VvrAUHhOeF{5IedVWkWc{zgPY6K`qkV# z)<^#sSKiT?Y@uxw9%-o>%Q}SBHxnx&yHBe0^+jL)(li1>fPeuJ=|v+X5UMm|KuSPq(nM$^K%^4{0V$yx5d~42 zNE4+7sZvCW?W;($(<~@BJO1XGXWq;oFnOa-NWD4d-gDMo>$6X*LAJ%^uzV(X`Sc-4 zH5JJEsP{B zHFaAIUQ26oYN`qR>988eoYA_`cfPyf?MDSuRNjzB73lpxm(rpJLXP3F=K*kY5iE<4 z1UuLIdT&vctSM}R;Dj0S2j-Ri@yMGM6@3x(lr=qelvGzs1gupopM)MOfvp%*MDs*{ zZO6_321t(vh9^7JU1X_BxiqSKOP))q>EE$EANZ2n3~aw8B_+V)%JV7e9U3|g3EQienPPvLBl1p4Xj1dN{#qJZRU^4@VX1Mk zEFV}HexLHyXO%2I6{-KS_kCA2vDpfBPNw`D{o*QMo4_vw)%WCR@cFDk5(%u%Q4n3* zrGGvG7HlX88GL7DqQKJ!NSHCX1VN ziG+RGeLz-u8}>Rbzq1R++*;|kff*(0Masg~sKt9w3`7Adi8KY6Q!s&`4Djan>mN{a z0sAFr!Vs@&0c#wX8$a`Frqwv$csqG{d1E`@!l!^!O6-y2tXt98BGglWQLz;9lBE)Z zmW7Qc91Wmr#Z*+l84Y7(ngPC&PCTyPpDvQt1EvtFHbkU;OMhrqPWDjE%c4$AUMQGp zG?aw>!k~8wSsIqRPz05Sj>wNG6i237H7jJ%CKgh3_ zRa{)d+N&Q7ksMu{9*Upr8P< zcudVW1no27Mlu_K;&<28&NmPY;WD@R_xN-T3~3<5F7{_%{GgwYIwY z=YQuVH6Jad!gfzW|9q}{ZiKExsxkOdk5^5+0E8KoHCWIW)`lSJPspJ|TaBzh9Pp_5 z^s)&o_^fgloL*m5yLUpNuy2JGY5)gRUnxW7lr|`nR|9}rk|E`ONg`%e)TfBUyUZ(F zWz12q%;tT;{=)RzK&5Cs`kUmldiu%`egIaiTnBQ+ui8(7M*?6Fu0S?|UnuqntY*Qa zxG^{9O)onEIdCvx?BCab{fdUI z5p3;VRAGaLAS4Ml-cBzcpWRv~OYYx)27~T|8Z#JyZH^Ozy%;ts7 zObwlzns4PkFp{O$;~mn;IRXz}{uwwHc^o^lU?|;;cDb+xto-iyxS*-$k&mzVgy$CM z@7J5Z%hN86*ZIJlsfqXiP6GiwX?YHwvB*^LCCYn5KEL+$zsi;8^Ia$JtGy{&uD{hD zhK}WQ6iYkgc`A8qszgXoICEy{b|bPefgYAzaiawtPwDizCCV)mHg4dWTD@fd*I;&c za>oN)irNI*i_^CZJTJE|k%`Jli=i6>3#~g3cX1jOy$Ov8mrj3VOzJJFnVg8)P9Skg z5#+ZpVx%oMMg(PK{m$AxCtI9Il|2-9XLIfd?`%jlM=Kj`DXXFP^b)m+Z{d@Pwx|3L z`#P&pxx(!_QUoi>*odI;qFFq>c=rzY){n%dnMHrT)rQw|WuQjtKMs7&QFl4Cu=Zss z;7_v~?c~QN<9nuK(>Zn~M@9Vh-@=?wGJ-47y9jCd(zC^FcZ#H>Lri5+k$1y+Gz~LKkLQY8o0Ri8gH zTXT%IRlWC^ORy$x;i`iq=haf20LJKve$N^_gbnfQYg`sF@wV34i6WUgiXB2p5p!rD zj3T8sRCtiD(``_Pb4xKAgQ)P}M6N?N{Z>Pp@Tn|Md z>Bk|a<2X>+yrPb(#h8#Y`vT84{CktG#*SU2KSn41>Wb zNH}2m@#1`*bfTw)Mwp&chWGJfizpXo9 zJsx}ht{D+hqLS)f76MsRo%0$CeJe+cT|EXjIhzsoUh-eBrB35*39F8MjDM7 zPE=N`HO{tQVPdK--%Ck8RWC0BsYZMw2@exA~VA^PgGJCCebAx~?=aXUNbb)lA9 z2ai^*TN}b%B0HtXN9`_5O=$9pjldy3wcP-o-R3d2%_=PDSNMrPQXUV*Y+A)x@6~OL zwmN+wN%^;~C#RI%ggYmE0e((D`=ruY)0Vy$!tl}EY6N0Ym=Xmv>E3cUS3Z*+Uo2}1 z^-z`-MRl=RBBdKDMfs@=Zv!lNNhQ((=5ffjBgMRo%i| zRuBY(yGLh~D=L5i2SRPgxf$8k5@I+){dgg?CcC+vkDnjSc(HluG@nEM9~WWs3o@ot zWCdNLjAPS5=K<>n;GlqrRE-1d0E;aL+cw$~Sw|)o5&W%yP%w&Cj4|DAcn3Q>IaCLjI#>`SJG**- z2m$2@D4)MKE?QwAEC<_$pc)5dmu8}>svwFJ;u}!tS9_|PSy*U+65xCbaa;(~3zK|( zeHXw+3gUe;5IcS8&xv;#3{plZtH{8@DAiI^p3Vb65fG2D=`%fP27q<}mF;@xTSX-$ zKYxE6h%tcD{};BC))>1ZM~2_LiGo2D^ybknPw`Y^gP;FhhFuekmv6dhXjN`iD3rsm z1uLHjV^EOchxWvJgWCmkZlVR4VIkuSJB!RrwO>u4;w%ipn>TL&4;S@!6L47BRM-^4 zF_ymiUu4ltW71Afnj(!5a|f`rv3N!mOsXB**m5-?djp`S2M;vzD4Ux<9s_wUtmPGy zdcX?=qy5ar#mBgQ&;?=p0>A536F?6TiQwl}$K%^-KfzjWbMVB)F^?MZ4Xc@G7?Sid z7WTv{i}l0&!7m_RnDSfTNade8cjV&Dedg+_N-1 z4CmYLFHZbz=fCJiD-$*XgAUkT`1z|`TArKuuomzbqZ-_PD`ozKPF6Lcq5`Z0sOw34 z2EimX?hg(Jd)*7B8TuQmHdkg~OWGa+1!0Jke4h@ue#93d&8$*MHr73!f#zj^8P7e| zH<`ZN9W4NZsmwA`*mV zE$;cb(R}Ig0;~3TixHHWID!+m7+e4S8wLw}*e{JUd^!EIKYnjx0hnNqcIS>c#^}ln zkO*W=#Y9ER%gdok5hDqven6MO5KQTY`4Z;x6c(CS9G#rN9m2O;Up$EnKhlfOd+qOm z=hiCg;X_?|8B~YB@&&#S2#`I383?RFkP`p|3%Ue|TVPkKxp6}V!(FHyDld{U75D(q z7BV>(^j(dNx&a3ZiXuRy|$mA{7Dqemdn0O#+--|r{DObtWL-cJ3h3FQ$bS-|@-O*YXt zmf+!cwvVB^ky-plcKp`XHfuu^;89`HK@kz^OHgiOD0)+=c1Mq{pMT_l)4=1=Dc$Gw zT`ykL@5IAA4R2|MHv*%Mmnv)mz>b58NrwWGM>n^O@#pY!aB6`tGXP$2BF>;!gXe?5 zw7gXZ-;V0o@S@N}7Jdyd%bb8x6p&9`CLq3QF$QOB5XwQ+0}FOLoZnLSrV1Tg2LIkk zt(OxMJNOddKpj8+8s6Gmwa(r~vdJD3QPo z$j-uPJ#waCJ;}G?han^(DoVJ=-BR4$0w;fjGTx?f+&U7P28L{Xc`~SZ<5Wy#NZV!g|hBF%3kc3L8b&of0l@j(fBV z{b+q>MQe%LxC91Em5WO$P%#F)n#IIg)en!Tjmlx$4PhbI;>OlXjN83`SJ&$3jk8^g z7HB)FmLLYBZTF_K^tRs0fiqh7{`9)+trb7U9Xjl-`ukJxl{`ifn;ai9Hz+K+nqX&t z{_|tYNX|~-_Vu+xP19Gwufqy&-uI$t+sygj3aOu8TPtXt&WqZ}ws*r*J#sNy!sus5!pAE z>PcAEDpM816uIJ=O;y=?a3nk6xh9&m+N-DVw(#B&pIms;cwC5wbrJQ+G}Q z=;LOF;A-}ULEz0Y*hqUeb)%F2Uqo(dl1({xls*X8pMP^ zXAI(6&ijjFJ=M;Qb7jbbeF9d$7FObe@2EDjC4}ygPhovu`e%jNkW#fP*K?j`k+O@v zWX7=`CUJ1zooMf}sr7$Le!X}`&eJgA?6O-n(O`!}qQk(%XRg-oPTkLKgX^Z$ecj3W zVrQ{Z@eD=(#jQjO_xPgVZzMRfqwELA`rVtkQ_B~3gl2E{vmsAVL?fHAI|JTCI-|_- ze_oH+egxCXd-Oe6>A_Qnc!`MFm|x^~q``Ua+5NrRthc;x=ssY*dU}Gt&leNtNH4lr z#mzcOF4Y5Jzn`jN;s~0V!6eoZa%#hd66@~o)K;X_s7)2RDLocJq6a!G&hdrC(>M2s z!xk2{79~o3UB{zDfAbo-52(FdtwKw)?p`lZ40LRM;W~m*9~=C)&sb!a3G{Xt6MW^; zJ#ez@<7dHhT&xF*x%)Ahc{#5o>1B%fy}D!E`&l0*^$6D4!dtEL<~n&!^yw*)A>!Eb z`T+CA%3h^%j+qb(1ts0Bm&f{Mo9>!_(c2kK^YU@+*+*g4PrXcnHw)t&{by~-ycde|jwla75 z?ni^7%t>$67nDD^W*ckK;ozMOtz2<5%?^C3`&=yUA^CTl0- z$06f2OHqC;X3_=5o3+IOi9>3^ubFjqxbj=7B?Km~-e-qrVHRm0v-GX_+fhmw2EGGJ zz!l&Hu}CBBRgJ_L){ z+oq%}zqG_{qnxlAGmKXwRQ7n(<*8Px(K{yH=k!Eg(6Wu`@3hJTX4R=KtLkyYctMQPhUiV6;s57J}O^*2&3#x9U;@X{v>(b00zJ{HIK zGEqIUQbB5TX4d6~2;75TPL{H2?DPe0DYZ&_bWE72z^=D9A3nq({ac@&a@5!w7h;PU zJ((e8VWs@~!-Gk0AnN+7%9IF0+PL?ONCg*Oja_U|x?~%PER$%sO)Ofj zH|#|O3#_c@MgahMS`(@M$QJRwHTZ8Qx+WqyNBL_g)sj)FoO%Jo`?5>_^%dqTA$t_srPO?J;h)d{>JV&YURnS5!JnIbviQusbo$ zsVg9gujt=dOP|4kSxlbW>))ITlu0?k>~nWq7>bb7;^N?coJQ(r1v!41j?V2eHUFeoWSz+%EoWTu;Qhr3s z(+%H$t8^tXl1#2h+K5#8ZEX{@v3XyveCpOZ4z0Rpl1HYMgT6rK7E;&Fky$v!d1u>z z@-t^~L{biKoD$ipEH}FTL3D)dvi!6rCr^0+lP%D zenze+=7S>Hmm5^BaLheb;8-6SV!O-$bhkG~kzg6cemtTF4Sox^Gmye`_vPiLc_Lb+l|kdQsoT z4g_&qA5|_%qCXSbAoC4IX_M^3+)Z}$c-Ng$g7<1B^7vYe3UM@RJuq|$Aq%fY?7qrA ze0nQl619jKZmv|=3jXIiXmXO@(sAhow-yp~m@&_felD!1U8%6eyQy}87cHGoAHi?c zG5icvG@nI*Vb`+IH@F<(LM4Wf((Uf%>q~q{`p~Fk$z#g=>&W02jT&%&Nq6&Htsu-j z+-+Nx?9%?Tr%Vp7s`%^dq|uCHA6#=E+TL;xsALvq98N-O?@NlXxwB{gg!(+wNwj=n zR@2L~vkLxd*2liyf6>Q17x&YyJ)k(jvNYY8NcWvA*xqjpSNlU|>~yr;b%nF1-HCd0 zYXZ`T>Kznr-oX^7C~Az)b07%nrX;u=&B$p#J}?Xly;lVoU273LMuqz_5`04|o^C}D z5$%#BB)ytpHj6~T384#qW7UMqLJHOnV|HftCG{Lgx*(6} zu-|kwAyc8GYc)bsn!9^mW;*M`3LAn`;Sm{T%C?eKuEzLH!t>^@%da(#Ok2hJ>5t#y zKpc!kb8e^9{^CL0MDwenH~nuszG-{r zk(kSPoPgd`F<~VbLGt`AveOl}>5Vkd9;A)JkfU@7ke}HWb0coO^t9;bUV7RkDKnz4 zzUr>{?E8?!=EA-2l0J;kv-D8bRQW^34h}TMgr56gMmoIO$#oEEW6ujP6jHyZkYMwm z+$~u^I-z8k4RMeR;N1Glv-_TP(brRK*1!TareP zq=jM09LU_1I6K{!%q_St@58NhfAYjE+G?g;pC4(nR{I?--^}PgfYp}vL|?(YPzA)6`H!+}4$I!VhGTuVk!)GA35nBh8)NU!J#0`82U70}*g?Tv zH@z4J0Q*~D2Q8TR2tnWgfO29A`xYZeSkQEKsBffXF(IB zmqAjDZzdbeq^#%@h%i#1rs+d5T3K1ya_t9C^Z@=vv^=NZsOn=~Ezyzp0mK(^BqLy;hN0*)PU!k#&!Ddh#< z2y`PBQk;c#h3YBre%^T0R65kWgBp6xRA5B~(1D=4hOB}@kJbxA$&=8~1X!q0bOzzl z))rbU#k4~cA?2P6zxY580z?~h5uxYg92yHdeE2DtidZgQ*h_;-D-0<$P7i!pc(KuLk#QvgnFUENAQCt1P8g#~o?-%sJUSiPWBc{8tFi$jCgMJCqP z*47txP|3Zkv)|p8A|8TH(%7iAf4?)vi1dWq#ev)l;8XX_eXFb2d=CWQx+(BEZU7o1 zCp#PZW`M2--XXXF2l>u;-^%&Zr`N!-1F$D?z68Z&h`)KMre3)c40c3F;WRYl%tr#Z z5e@dYnGmq0sOE*a0R872G-!d?zE$iIK+JE~eA$K{SXl6dwp>7j0Tdg_HzHyZS^yLd zfxE!S3Jk^||G-~?e+M4bewZ<0a#vvbfcsKGBFzRf4yi~7huanYP$mYsNVtCHUtb2A zQ>d)qb-(GiCuyk=V5))k4>KA|5yz}B37wbFK#0=J9|Y;Pd@~+NCwT83&hvpB z05uL&McNQdH;5W7>X0L`7DZj>Vxe!j=cs;_UqTsat5YCX0NPN7eE(r*)T)lTvQK*@aNCZ z>K55X-9esUR}WuY&YXJ5F9T3cakC&%r}2@cV7*+~bM_;a`qy&y5&~}gEKpJr z&xO8JtOOaFIr(u7>g~WcD%yYMURBizfJwm+179-~R-o4l*0EUc+=HejZ9oNs7;QZ0 z<>uD*^#`cOV6OfE8lCRbofeYdwNO-6W?})#1}-5e@Uz;${R0Y9L97SHAfOV(d!V=7 zj3^g?uwiyV)E7ns(c*u6K`@ly1TPf}{mop#JpfE+5Zzfv+6m5n<}kv+2^%4y@tVu6 z`CH|0pCrt)j+{iX!|pN(CFxP?wthc8{(Zc^(L?iEGlQoL$93ORj$z^YSJPzzj(2~p zF*O?vMscumMIO(d^(9vLiFM*3IOiD{cC;E7@X|0twr+|t7N(k4>Nl+za{kv#E-8sL zArd6Y9dMvzqd8}w%xh#tlX1q0T~1%5TvZd@x-{*JN-l72+exh*&VzNdM8S%ZYuC4^w;BwX$vV>BGZ!9SRjus4}!}? zkjBnZHAGGIceF9RBwkriDZQiaa85Ln`1y88r4j1sM-dMmZ!fR+U|WPsY`xRna{V1h zo891BX{m1O0-Mav;lKn@iMj_AQ=i!Mr}Hbn&X?=+AZ@1yq-^l1781JS3G37?p3jpU z&Q%=dK&qb&P=^x;o}KcV9sOrjrOE~;KXqgBKM29T~%Y9WVJY(L;KcsH2z#6u#;PSP1iuyb1uGkt}wQVC(hq@uK zhTv$C*k2yc4>&GozZoadw0AuCiM9oR7>}pEnNTis?pWZ^fe6vND=DHy4@BIU8b1!Q zA#GW6x58YeIpPR|jw7oxMaqf<)UoJW(aU<1ORCYd7~YtDdv&!A+ZcY=~DP z*P|;rZ*MveOe;ArsnVskAtnkuZ+x%T4D#o`RdN=fE-SC>0;)1B@C#46s=ua=))wTx zQ#6;N4h=T`5JuWEYE16-v5uAC0QCv;LN4Tj;Q8h&JLaDqoA*c-ZE7v0b-u@ZA&WG=_O}G%R z+N@cDIdM#Jf|BxhRdk4|W%7^ft6I=K6<-?M1~952ruX5#-*WgMMue-_c34v*Qdxb` z8hwwvU6Utdx-lA&ilJwP!GM9>)F=_?n0((p_X+c$-kpByr|!Z_XmonrmVc*G_PbD< z=ld`D^%ZQtlf;gU+Ej2%I~?jQ$jqQ7;R8C)D_16RA|{8+`F(G6Z?F5_Ey1+rU7MX@ zM+|k$E=Oz3MXl&RY?N^v(6Mpegnp_4<|)y}xeQ8?(OoVZaq1A0rat~u93aPg^w`Cu z$j3SDEatejyua7h^jeg z6by$zdQMUtHvc8$1d(V;CX+1{->prUr+dnYMLF)f^cp^Hyy-l=?7M31oi?F+EZjWj zczEGtk|*EFAr_^cSQPZoqc7ItI94BC)9UP2A}LYT)8=`lrgM8`p;NTB3Ifx5R38*r z`5kk|>dv0RY4}L}d$7$kJUDl*rdKVcwSf@ODX)S%wiS7DBoBQ&w?qCbt>F!mNbT$3 z4a{dpp4jH0;n#@2MUfyA)S6O+^L4BJVB;A|H8zx?cxLVx%l3Oy)FICwIK3Tt;tOJ@ z>y^Y;W8wmy)0DxAK-5ut8)N&PW?=`Vk*fd6OQ@F~IN#i15HkSi(Ntpc`{g-1) zUe*6P{He-4Z{QaQ&JJ6wwPV5^8rPSB7v!TF*1BBAym0GmPTrTD{8G1Z6IYb52B3ME z?>RKABUMp$YhBn78WnoRLj)O-Y%NsqWFK_A