diff --git a/src/notebooks/533-introduction-boxplots-matplotlib.ipynb b/src/notebooks/533-introduction-boxplots-matplotlib.ipynb
new file mode 100644
index 0000000000..a94baade75
--- /dev/null
+++ b/src/notebooks/533-introduction-boxplots-matplotlib.ipynb
@@ -0,0 +1,230 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Libraries\n",
+ "\n",
+ "First, you need to install the following librairies:\n",
+ "- [matplotlib](https://python-graph-gallery.com/matplotlib/) is used for creating the plot\n",
+ "- `pandas` for data manipulation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Dataset\n",
+ "\n",
+ "We will use a dataset about **temperature variation** in Trentino (Italy), that you can easily access using the `url` below. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "url = 'https://raw.githubusercontent.com/holtzy/The-Python-Graph-Gallery/master/static/data/trentino_temperature.csv'\n",
+ "df = pd.read_csv(url)\n",
+ "\n",
+ "# Drop rows (5 in total) with NaN values\n",
+ "df = df.dropna()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Basic boxplot\n",
+ "\n",
+ "Once we've opened our dataset, we'll now **create the graph**. The following displays the **distribution** of the temperature variation using the `boxplot()` function."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGdCAYAAADT1TPdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAVJ0lEQVR4nO3df2zVd7348dfZyM5aaasE166hCMmK7ULGHcwsMHXMhBo0xIXEaBDCEregbBqymCVIotWE1qASjERyTcwgmTj/0Wn8QSDRgQYx0I1oGDiXgDSBSty4bQdd6+DcP/blfO2Fcdm1h8+r8Hgkn5Dz+XzOp6/+dZ58+j7nlCqVSiUAAJK6pegBAACuRqwAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqU4oe4N918eLFOHXqVDQ0NESpVCp6HADgGlQqlRgeHo7W1ta45Zar3zuZ9LFy6tSpaGtrK3oMAOD/oL+/P2bMmHHVcyZ9rDQ0NETEW79sY2NjwdMAANdiaGgo2traqq/jVzPpY+XSn34aGxvFCgBMMteyhMMCWwAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQ2qT/IkMgl/Pnz8exY8cm5FojIyNx4sSJmDVrVtTV1U3INTs6OqK+vn5CrgVcH2IFmFDHjh2LBQsWFD3G2+rr64v58+cXPQbwDogVYEJ1dHREX1/fhFzr6NGjsXLlynjmmWeis7NzQq7Z0dExIdcBrh+xAkyo+vr6Cb9z0dnZ6W4I3MQssAUAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqdU0VrZt2xb33HNPNDY2RmNjYyxcuDB+/etfV49XKpXo7u6O1tbWqKuri8WLF8eRI0dqORIAMMnUNFZmzJgR3/jGN+LQoUNx6NCh+MhHPhKf+MQnqkGyadOm2Lx5c2zdujUOHjwYLS0tsWTJkhgeHq7lWADAJFLTWFm2bFl87GMfizlz5sScOXNi48aNMXXq1Dhw4EBUKpXYsmVLbNiwIZYvXx5z586NHTt2xPnz52Pnzp21HAsAmESu25qVCxcuxLPPPhvnzp2LhQsXxvHjx2NgYCC6urqq55TL5XjwwQdj//7912ssACC5KbX+AX/+859j4cKF8cYbb8TUqVPjpz/9adx9993VIGlubh53fnNzc/ztb3972+uNjo7G6Oho9fHQ0FBtBgcAUqj5nZX3v//9cfjw4Thw4EB8/vOfj9WrV8dLL71UPV4qlcadX6lULtv3r3p7e6Opqam6tbW11Wx2AKB4NY+V2267Le6666647777ore3N+bNmxff+c53oqWlJSIiBgYGxp1/5syZy+62/Kv169fH4OBgdevv76/p/ABAsa7756xUKpUYHR2N2bNnR0tLS+zZs6d6bGxsLPbu3RuLFi162+eXy+XqW6EvbQDAjauma1a+/OUvx9KlS6OtrS2Gh4fj2Wefjeeffz527doVpVIp1q1bFz09PdHe3h7t7e3R09MT9fX1sWLFilqOBQBMIjWNlb///e+xatWqOH36dDQ1NcU999wTu3btiiVLlkRExFNPPRUjIyOxdu3aOHv2bNx///2xe/fuaGhoqOVYAMAkUqpUKpWih/h3DA0NRVNTUwwODvqTENxgXnjhhViwYEH09fXF/Pnzix4HmEDv5PXbdwMBAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACp1TRWent74wMf+EA0NDTEHXfcEQ8//HD85S9/GXdOpVKJ7u7uaG1tjbq6uli8eHEcOXKklmMBAJNITWNl79698fjjj8eBAwdiz5498eabb0ZXV1ecO3eues6mTZti8+bNsXXr1jh48GC0tLTEkiVLYnh4uJajAQCTxJRaXnzXrl3jHj/99NNxxx13RF9fX3z4wx+OSqUSW7ZsiQ0bNsTy5csjImLHjh3R3NwcO3fujDVr1tRyPABgEriua1YGBwcjImLatGkREXH8+PEYGBiIrq6u6jnlcjkefPDB2L9//xWvMTo6GkNDQ+M2AODGdd1ipVKpxJNPPhkf/OAHY+7cuRERMTAwEBERzc3N485tbm6uHvufent7o6mpqbq1tbXVdnAAoFDXLVaeeOKJ+NOf/hQ/+tGPLjtWKpXGPa5UKpftu2T9+vUxODhY3fr7+2syLwCQQ03XrFzyhS98IX7+85/Hvn37YsaMGdX9LS0tEfHWHZY777yzuv/MmTOX3W25pFwuR7lcru3AAEAaNb2zUqlU4oknnoif/OQn8Zvf/CZmz5497vjs2bOjpaUl9uzZU903NjYWe/fujUWLFtVyNABgkqjpnZXHH388du7cGT/72c+ioaGhug6lqakp6urqolQqxbp166Knpyfa29ujvb09enp6or6+PlasWFHL0QCASaKmsbJt27aIiFi8ePG4/U8//XQ88sgjERHx1FNPxcjISKxduzbOnj0b999/f+zevTsaGhpqORoAMEnUNFYqlcr/ek6pVIru7u7o7u6u5SgAwCTlu4EAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqV2Xj9sHJoe//vWvMTw8XPQYVUePHh33bxYNDQ3R3t5e9Bhw0xArQES8FSpz5swpeowrWrlyZdEjXObll18WLHCdiBUgIqJ6R+WZZ56Jzs7Ogqd5y8jISJw4cSJmzZoVdXV1RY8TEW/d5Vm5cmWqO1BwoxMrwDidnZ0xf/78oseoeuCBB4oeASiYBbYAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAalOKHgDIofTmG3Fvyy1R918vR5zy/5i3U/dfL8e9LbdE6c03ih4FbhpiBYiIiNtfPxkvrJkasW9NxL6ip8mrMyJeWDM1jr5+MiIWFT0O3BTEChAREW9MnRnz//P1+OEPfxidHR1Fj5PW0WPH4jOf+Uz84GMzix4FbhpiBYiIiMqU2+PFgYsx8u45Ea3/UfQ4aY0MXIwXBy5GZcrtRY8CNw1/mAYAUqtprOzbty+WLVsWra2tUSqV4rnnnht3vFKpRHd3d7S2tkZdXV0sXrw4jhw5UsuRAIBJpqaxcu7cuZg3b15s3br1isc3bdoUmzdvjq1bt8bBgwejpaUllixZEsPDw7UcCwCYRGq6ZmXp0qWxdOnSKx6rVCqxZcuW2LBhQyxfvjwiInbs2BHNzc2xc+fOWLNmTS1HAwAmicLWrBw/fjwGBgaiq6uruq9cLseDDz4Y+/fvf9vnjY6OxtDQ0LgNALhxFRYrAwMDERHR3Nw8bn9zc3P12JX09vZGU1NTdWtra6vpnABAsQp/N1CpVBr3uFKpXLbvX61fvz4GBwerW39/f61HBAAKVNjnrLS0tETEW3dY7rzzzur+M2fOXHa35V+Vy+Uol8s1nw8AyKGwOyuzZ8+OlpaW2LNnT3Xf2NhY7N27NxYt8hHWAMBbanpn5fXXX49XXnml+vj48eNx+PDhmDZtWsycOTPWrVsXPT090d7eHu3t7dHT0xP19fWxYsWKWo4FAEwiNY2VQ4cOxUMPPVR9/OSTT0ZExOrVq2P79u3x1FNPxcjISKxduzbOnj0b999/f+zevTsaGhpqORYAMInUNFYWL14clUrlbY+XSqXo7u6O7u7uWo4BAExihb8bCADgasQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSm1L0AEAO58+fj4iIF154oeBJ/r+RkZE4ceJEzJo1K+rq6ooeJyIijh49WvQIcNMRK0BERBw7diwiIh577LGCJ5kcGhoaih4BbhpiBYiIiIcffjgiIjo6OqK+vr7YYf6fo0ePxsqVK+OZZ56Jzs7OosepamhoiPb29qLHgJuGWAEiImL69Onx6KOPFj3GFXV2dsb8+fOLHgMoiAW2AEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAaili5Xvf+17Mnj07br/99liwYEH87ne/K3okACCJwmPlxz/+caxbty42bNgQL774YnzoQx+KpUuXxsmTJ4seDQBIoPBY2bx5c3z2s5+NRx99NDo7O2PLli3R1tYW27ZtK3o0ACCBQmNlbGws+vr6oqura9z+rq6u2L9/f0FTAQCZFPqty//4xz/iwoUL0dzcPG5/c3NzDAwMXPE5o6OjMTo6Wn08NDRU0xkBgGIV/megiIhSqTTucaVSuWzfJb29vdHU1FTd2trarseIAEBBCo2V6dOnx6233nrZXZQzZ85cdrflkvXr18fg4GB16+/vvx6jAgAFKTRWbrvttliwYEHs2bNn3P49e/bEokWLrviccrkcjY2N4zYA4MZV6JqViIgnn3wyVq1aFffdd18sXLgwvv/978fJkyfjc5/7XNGjAQAJFB4rn/rUp+LVV1+Nr3/963H69OmYO3du/OpXv4r3ve99RY8GACRQeKxERKxduzbWrl1b9BgAQEIp3g0EAPB2xAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqYgUASE2sAACpiRUAIDWxAgCkJlYAgNTECgCQmlgBAFITKwBAamIFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1GoaKxs3boxFixZFfX19vPvd777iOSdPnoxly5bFu971rpg+fXp88YtfjLGxsVqOBQBMIlNqefGxsbH45Cc/GQsXLowf/OAHlx2/cOFCfPzjH4/3vve98fvf/z5effXVWL16dVQqlfjud79by9EAgEmiprHyta99LSIitm/ffsXju3fvjpdeein6+/ujtbU1IiK+/e1vxyOPPBIbN26MxsbGWo4HAEwCha5Z+cMf/hBz586thkpExEc/+tEYHR2Nvr6+Kz5ndHQ0hoaGxm0AwI2r0FgZGBiI5ubmcfve8573xG233RYDAwNXfE5vb280NTVVt7a2tusxKgBQkHccK93d3VEqla66HTp06JqvVyqVLttXqVSuuD8iYv369TE4OFjd+vv73+mvAABMIu94zcoTTzwRn/70p696zqxZs67pWi0tLfHHP/5x3L6zZ8/GP//5z8vuuFxSLpejXC5f0/UBgMnvHcfK9OnTY/r06RPywxcuXBgbN26M06dPx5133hkRby26LZfLsWDBggn5GQDA5FbTdwOdPHkyXnvttTh58mRcuHAhDh8+HBERd911V0ydOjW6urri7rvvjlWrVsU3v/nNeO211+JLX/pSPPbYY94JBABERI1j5Stf+Urs2LGj+vjee++NiIjf/va3sXjx4rj11lvjl7/8ZaxduzYeeOCBqKurixUrVsS3vvWtWo4FAEwiNY2V7du3v+1nrFwyc+bM+MUvflHLMQCAScx3AwEAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1MQKAJCaWAEAUhMrAEBqU4oeALixnD9/Po4dOzYh1zp69Oi4fydCR0dH1NfXT9j1gNoTK8CEOnbsWCxYsGBCr7ly5coJu1ZfX1/Mnz9/wq4H1J5YASZUR0dH9PX1Tci1RkZG4sSJEzFr1qyoq6ubkGt2dHRMyHWA66dUqVQqRQ/x7xgaGoqmpqYYHByMxsbGoscBAK7BO3n9tsAWAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKQmVgCA1KYUPcC/69KXRg8NDRU8CQBwrS69bl96Hb+aSR8rw8PDERHR1tZW8CQAwDs1PDwcTU1NVz2nVLmWpEns4sWLcerUqWhoaIhSqVT0OMAEGhoaira2tujv74/GxsaixwEmUKVSieHh4WhtbY1bbrn6qpRJHyvAjWtoaCiamppicHBQrMBNzAJbACA1sQIApCZWgLTK5XJ89atfjXK5XPQoQIGsWQEAUnNnBQBITawAAKmJFQAgNbECAKQmVoB09u3bF8uWLYvW1tYolUrx3HPPFT0SUCCxAqRz7ty5mDdvXmzdurXoUYAEJv0XGQI3nqVLl8bSpUuLHgNIwp0VACA1sQIApCZWAIDUxAoAkJpYAQBS824gIJ3XX389Xnnllerj48ePx+HDh2PatGkxc+bMAicDiuBbl4F0nn/++XjooYcu27969erYvn379R8IKJRYAQBSs2YFAEhNrAAAqYkVACA1sQIApCZWAIDUxAoAkJpYAQBSEysAQGpiBQBITawAAKmJFQAgNbECAKT23y1xZZz4OwUVAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
+