-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize_model_probs.py
156 lines (120 loc) · 5.2 KB
/
visualize_model_probs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import torch
from fairseq import bleu, checkpoint_utils, options, progress_bar, tasks, utils
from fairseq.meters import StopwatchMeter, TimeMeter
import pandas as pd
@torch.no_grad()
def main(args):
assert args.path is not None, '--path required for generation!'
assert not args.sampling or args.nbest == args.beam, \
'--sampling requires --nbest to be equal to --beam'
assert args.replace_unk is None or args.raw_text, \
'--replace-unk requires a raw text dataset (--raw-text)'
utils.import_user_module(args)
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 12000
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
# Set dictionaries
try:
src_dict = getattr(task, 'source_dictionary', None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
# Load ensemble
print('| loading model(s) from {}'.format(args.path))
models, _model_args = checkpoint_utils.load_model_ensemble(
args.path.split(':'),
arg_overrides=eval(args.model_overrides),
task=task,
)
# Optimize ensemble for generation
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
if use_cuda:
model.cuda()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.replace_unk)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=utils.resolve_max_positions(
task.max_positions(),
*[model.max_positions() for model in models]
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
# Initialize generator
gen_timer = StopwatchMeter()
num_sentences = 0
has_target = True
all_probs = []
with progress_bar.build_progress_bar(args, itr) as t:
wps_meter = TimeMeter()
for step, sample in enumerate(t):
sample = utils.move_to_cuda(sample) if use_cuda else sample
if 'net_input' not in sample:
continue
encoder_inputs = {
k: v for k, v in sample['net_input'].items()
if k != 'prev_output_tokens'
}
targets = sample['target']
for model in models:
for i, sample_id in enumerate(sample['id'].tolist()):
encoder_input = {
k: v[i:i+1,:] for k, v in encoder_inputs.items()
if v is not None and k != 'src_lengths'
}
encoder_input['src_lengths'] = i + 1
encoder_out = model.encoder.forward(**encoder_input)
target_tokens = utils.strip_pad(targets[i, :], tgt_dict.pad()).cpu()
decoder_targets = torch.unsqueeze(target_tokens, 0)
decoder_out = model.decoder.forward(decoder_targets, encoder_out)
probs = model.get_normalized_probs(decoder_out, log_probs=False)
sample_probs = []
for j in range(len(target_tokens)):
sample_probs.append(probs[:,j,:].flatten()[target_tokens[j]].item())
all_probs.append(sample_probs)
# print(target_tokens.shape)
# for j in range(len(target_tokens)):
# decoder_targets = torch.unsqueeze(target_tokens[:j+1], 0)
# decoder_out = model.decoder.forward(decoder_targets, encoder_out)
# probs = model.get_normalized_probs(decoder_out, log_probs=False)
# print('---------------')
# print(probs[:,0,:].flatten()[target_tokens[0]])
# print(probs[:,j,:].flatten()[target_tokens[j]])
# print('---------------')
if step == 16:
df = pd.DataFrame.from_records(all_probs)
df.to_csv('probs.csv', index=False)
def cli_main():
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == '__main__':
torch.set_printoptions(profile="short")
torch.set_printoptions(threshold=50)
cli_main()