-
Notifications
You must be signed in to change notification settings - Fork 23
/
test_seg_3dis.py
143 lines (118 loc) · 6.63 KB
/
test_seg_3dis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/python3
"""Testing On Segmentation Task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import h5py
import argparse
import importlib
import numpy as np
import tensorflow as tf
from datetime import datetime
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'setting'))
from utils import provider
from utils import data_utils
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--load_ckpt', '-l', default='log/seg//shellconv_seg_s3dis_area_2/ckpts/epoch-19', help='Path to a check point file for load')
parser.add_argument('--model', '-m', default='shellconv', help='Model to use')
parser.add_argument('--setting', '-x', default='seg_s3dis', help='Setting to use')
parser.add_argument('--repeat_num', '-r', help='Repeat number', type=int, default=1)
parser.add_argument('--save_ply', '-s', help='Save results as ply', default=False)
args = parser.parse_args(
print(args)
model = importlib.import_module(args.model)
setting_path = os.path.join(os.path.dirname(__file__), args.model)
sys.path.append(setting_path)
setting = importlib.import_module(args.setting)
sample_num = setting.sample_num
max_point_num = setting.max_point_num
batch_size = args.repeat_num * math.ceil(max_point_num / sample_num)
######################################################################
# Placeholders
indices = tf.placeholder(tf.int32, shape=(batch_size, None, 2), name="indices")
is_training = tf.placeholder(tf.bool, name='is_training')
pointclouds = tf.placeholder(tf.float32, shape=(batch_size, max_point_num, setting.data_dim), name='points')
######################################################################
######################################################################
points_sampled = tf.gather_nd(pointclouds, indices=indices, name='pts_sampled')
logits_op = model.get_model(points_sampled, is_training, setting.sconv_params, setting.sdconv_params, setting.fc_params,
sampling=setting.sampling,
weight_decay=setting.weight_decay,
bn_decay = None,
part_num=setting.num_class)
probs_op = tf.nn.softmax(logits_op, name='probs_op')
# for restore model
saver = tf.train.Saver()
parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
print('{}-Parameter number: {:d}.'.format(datetime.now(), parameter_num))
with tf.Session() as sess:
# Load the model
saver.restore(sess, args.load_ckpt)
print('{}-Checkpoint loaded from {}!'.format(datetime.now(), args.load_ckpt))
indices_batch_indices = np.tile(np.reshape(np.arange(batch_size), (batch_size, 1, 1)), (1, sample_num, 1))
folder = os.path.dirname(setting.filelist_val)
filenames = [os.path.join(folder, line.strip()) for line in open(setting.filelist_val)]
for filename in filenames:
print('{}-Reading {}...'.format(datetime.now(), filename))
data_h5 = h5py.File(filename)
data = data_h5['data'][...].astype(np.float32)
data_num = data_h5['data_num'][...].astype(np.int32)
batch_num = data.shape[0]
if data.shape[-1] > 3:
data = data[:,:,:3]
labels_pred = np.full((batch_num, max_point_num), -1, dtype=np.int32)
confidences_pred = np.zeros((batch_num, max_point_num), dtype=np.float32)
print('{}-{:d} testing batches.'.format(datetime.now(), batch_num))
for batch_idx in range(batch_num):
if batch_idx % 10 == 0:
print('{}-Processing {} of {} batches.'.format(datetime.now(), batch_idx, batch_num))
points_batch = data[[batch_idx] * batch_size, ...]
point_num = data_num[batch_idx]
tile_num = math.ceil((sample_num * batch_size) / point_num)
indices_shuffle = np.tile(np.arange(point_num), tile_num)[0:sample_num * batch_size]
np.random.shuffle(indices_shuffle)
indices_batch_shuffle = np.reshape(indices_shuffle, (batch_size, sample_num, 1))
indices_batch = np.concatenate((indices_batch_indices, indices_batch_shuffle), axis=2)
seg_probs = sess.run([probs_op],
feed_dict={
pointclouds: points_batch,
indices: indices_batch,
is_training: False,
})
probs_2d = np.reshape(seg_probs, (sample_num * batch_size, -1))
predictions = [(-1, 0.0)] * point_num
for idx in range(sample_num * batch_size):
point_idx = indices_shuffle[idx]
probs = probs_2d[idx, :]
confidence = np.amax(probs)
label = np.argmax(probs)
if confidence > predictions[point_idx][1]:
predictions[point_idx] = [label, confidence]
labels_pred[batch_idx, 0:point_num] = np.array([label for label, _ in predictions])
confidences_pred[batch_idx, 0:point_num] = np.array([confidence for _, confidence in predictions])
filename_pred = filename[:-3] + '_pred.h5'
print('{}-Saving {}...'.format(datetime.now(), filename_pred))
file = h5py.File(filename_pred, 'w')
file.create_dataset('data_num', data=data_num)
file.create_dataset('label_seg', data=labels_pred)
file.create_dataset('confidence', data=confidences_pred)
has_indices = 'indices_split_to_full' in data_h5
if has_indices:
file.create_dataset('indices_split_to_full', data=data_h5['indices_split_to_full'][...])
file.close()
if args.save_ply:
print('{}-Saving ply of {}...'.format(datetime.now(), filename_pred))
filepath_label_ply = os.path.join(filename_pred[:-3] + 'ply_label')
data_utils.save_ply_property_batch(data[:, :, 0:3], labels_pred[...],
filepath_label_ply, data_num[...], setting.num_class)
######################################################################
print('{}-Done!'.format(datetime.now()))
if __name__ == '__main__':
main()