-
Notifications
You must be signed in to change notification settings - Fork 23
/
seg_s3dis.py
64 lines (47 loc) · 1.55 KB
/
seg_s3dis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python3
import math
# modify the following path to train and test on other areas
filelist = '../data/3DIS/prepare_label_rgb/train_files_for_val_on_Area_1.txt'
filelist_val = '../data/3DIS/prepare_label_rgb/val_files_Area_1.txt'
num_class = 13
sample_num = 2048
max_point_num = 8192
batch_size = 16
num_epochs = 200
label_weights = [1.0] * num_class
learning_rate_base = 0.001
decay_steps = 5000
step_val = 500
decay_rate = 0.8
learning_rate_min = 1e-6
weight_decay = 1e-8
jitter = 0.0
jitter_val = 0.0
sample_num_variance = 1 // 8
sample_num_clip = 1 // 4
rotation_range = [0, math.pi/72., math.pi/72., 'u']
rotation_range_val = [0, 0, 0, 'u']
rotation_order = 'rxyz'
scaling_range = [0.001, 0.001, 0.001, 'g']
scaling_range_val = [0, 0, 0, 'u']
ss = 8 # shell size (number of points contained in each shell)
sconv_param_name = ('K', 'D', 'P', 'C')
sconv_params = [dict(zip(sconv_param_name, sconv_param)) for sconv_param in
[
(ss*4, 4, 512, 128),
(ss*2, 2, 128, 256),
(ss*1, 1, 32, 512)]]
sdconv_param_name = ('K', 'D', 'pts_layer_idx', 'qrs_layer_idx')
sdconv_params = [dict(zip(sdconv_param_name, sdconv_param)) for sdconv_param in
[
(ss*1, 1, 2, 1),
(ss*2, 2, 1, 0),
(ss*4, 4, 0, -1)]]
x=1
fc_param_name = ('C', 'dropout_rate')
fc_params = [dict(zip(fc_param_name, fc_param)) for fc_param in
[(128 * x, 0.0),
(64 * x, 0.2)]]
sampling = 'fps' # 'fps' or 'random'
optimizer = 'adam'
data_dim = 3